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Abstract: In ultrashort-pulsed laser processing, surface modification is subject to complex laser
and scanning parameter studies. In addition, quality assurance systems for monitoring surface
modification are still lacking. Automated laser processing routines featuring machine learning
(ML) can help overcome these limitations, but they are largely absent in the literature and still lack
practical applications. This paper presents a new methodology for machine learning classification
of self-organized surface structures based on light microscopic images. For this purpose, three
application-relevant types of self-organized surface structures are fabricated using a 300 fs laser
system on hot working tool steel and stainless-steel substrates. Optical images of the hot working
tool steel substrates were used to learn a classification algorithm based on the open-source tool
Teachable Machine from Google. The trained classification algorithm achieved very high accuracy in
distinguishing the surface types for the hot working steel substrate learned on, as well as for surface
structures on the stainless-steel substrate. In addition, the algorithm also achieved very high accuracy
in classifying the images of a specific structure class captured at different optical magnifications.
Thus, the methodology proposed represents a simple and robust automated classification of surface
structures that can be used as a basis for further development of quality assurance systems, automated
process parameter recommendation, and inline laser parameter control.

Keywords: machine learning analysis; automated classification; nano- and microstructures; femtosecond
laser; self-organized

1. Introduction

In classical manufacturing, ultrashort-pulse laser (USPL) processing has become firmly
established in recent decades, especially in drilling, cutting, and structuring processes,
due to its nearly cold and residue-free material ablation [1–3]. With regard to surface
modification, a wide variety of nano- and microscale surface structures can be produced in
a one-step process at high fabrication speeds. In addition to laser-inscribed structures [4,5],
of which the size corresponds to the laser focus diameter in the micro-range, the production
of self-organized structures formed in the laser spot is particularly interesting.

Self-organized structures are formed by light–material interactions and after material
ablation and solidification phenomena on the surface [6–11]. The resulting topography and
morphology of these structures results from complex interactions of the laser light with
the material properties [12–14], the scanning strategy [12,15], and the environmental condi-
tions [16]. According to their morphology and topography, the self-organized structures
can be divided, for example, into laser-induced periodic surface structures (LIPSSs), craters,
and microstructures [12].
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The formation of self-organized structures is significant for USPL processing from
two points of view, as illustrated in Figure 1. On the one hand, self-organized structures
degrade the surface quality and limit laser processing for ablation scenarios aiming for
smooth surfaces at simultaneously high ablation rates [17]. In particular, heat accumulation
at high pulse repetition rates results in an early formation of craters and microstructures
and therefore restricts the scalability of USPL processing [1,3].
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Figure 1. Two strands concerning self-organized structures. On the one hand, LIPSS, crater, and
microstructures offer a wide range of technical and biomedical applications. On the other hand, self-
organized structures have to be controlled when aiming for smooth surfaces and high surface quality.

On the other hand, it has been shown that self-organized structures offer high potential
to tailor optical, chemical, and physical surface properties for technical and biomedical
applications [12]. In technical applications, self-organized structures can improve the tribo-
logical performance of friction partners [18], modify the reflection and absorption properties
of the surface for optoelectronics and solar absorbers [19–24], for semiconductors [25–27],
and enhance the sensitivity of photodetectors [28,29]. In biomedical applications, self-
organized nano- and microscaled surface textures can tailor cell adhesion and cell growth,
and can be used to control cell proliferation [30–34]. Furthermore, it has been shown that
self-organized structures can improve the biocompatibility of materials [35].

The applications mentioned reveal the great potential of self-organized surface struc-
tures. At the same time, however, these structures can also be undesirable under certain
circumstances and limit the scalability of USPL processing. For both scenarios, intelligent
concepts can help monitor and control the formation of self-organized structures. However,
such approaches must consider different challenges in material processing.

Firstly, changes to the hardware of laser systems can lead to inconsistent results
in surface modification. The quality of the processing results largely depends on the
homogeneity and characteristics of the laser beam profile. However, possible changes
can occur due to the laser system’s or beam guidance’s instability. Furthermore, the laser
crystals used as active media in solid-state lasers age over time, causing their optical
properties to deteriorate. In addition, gradual heat-induced warpage of the beam guidance
optics can lead to a slight, progressive defocusing of the laser spot in the working area. As
a result, USPL processing can lead to irreproducible results or degradation of the surface
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quality [1,36], even with already-defined parameters. These facts make it necessary to
develop quality assurance systems that ensure consistent results in USPL manufacturing.

Second, the formation of self-organized structures is difficult to predict, and transfer-
ring laser parameter findings from one material to another is challenging. Currently, costly
parameter studies must be performed to realize or avoid self-organized structures on spe-
cific materials. This is mainly due to the nature of the formation of self-organized structures,
which, as already mentioned, depend on quite complex interactions of laser light with the
material surface. Thus, process parameter recommendations based on machine learning
(ML) algorithms can simplify and save USPL processing time. Finally, quality assurance
systems and process parameter recommendations based on machine learning could be
coupled with the micromachining center control to realize inline laser parameter control.
This principle would significantly increase the status of USPL processing in manufacturing,
but this is still in its infancy.

To date, far too little attention has been paid to ML for the monitoring and automated
laser parameter development in USPL processing. However, the advantages of ML for laser
processing are increasingly being recognized in the literature. Based on neural networks,
real-time feedback process monitoring can be realized, ensuring reliable structuring control.
Xie et al. [37] have shown that neural networks can ensure precision in laser drilling using
femtosecond lasers and can detect beam displacement and unintended laser beam modifi-
cations such as the translation or rotation of the beam. Mills et al. [38] also implemented
image-based monitoring of material removal of individual pulses via a neural network
for femtosecond laser processing. The authors show that learned neural networks can
determine the type of material, laser exposure and number of pulses from image data of
single pulse exposures on surfaces. Na et al. [39] used a conditional generative adversarial
network and scanning electron microscopy (SEM) images of femtosecond laser-structured
surfaces to predict surface morphology depending on the laser parameters. The authors
found that the developed models could accurately predict SEM images to reveal surface
morphology for unexplored combinations of laser fluence and scanning speed. An interest-
ing paper on surface classification has been published by Wang et al. [40]. The authors used
the k-means clustering method to automatically classify the LIPSSs into quality classes
based on SEM images. It was highlighted that the presented method, including deci-
sion boundary determination, reduces time-consuming and costly trial-and-error laser
parameter studies, and can be used to determine an optimized processing window for
LIPSS morphology.

The few studies addressing ML algorithms for surface structure modification using
USPL processing focus on SEM images to train and test data. However, SEM technology
cannot be integrated into USPL machining centers since technology-required vacuum
conditions cannot be practically provided. Apart from the very high cost of SEM devices, it
is likely that charging effects from primary electrons affect the ablation process. In sum, the
methods proposed for SEM images can provide essential theoretical information for USPL
processing but will elude practical application in laser micromachining systems.

With the vision for using ML for quality assurance systems, process parameter recom-
mendations, and inline laser parameter control in USPL processing, we present a new ML
approach to classify surface structures based on digital light microscope images. In order to
evaluate the approach as quickly as possible, an existing open-source algorithm for general
classification tasks was used for ML analysis and trained, as well as validated with specially
collected data. The complete development of a new ML algorithm from scratch, specifically
for the classification of different self-organized structures, was initially dispensed with, as
this would have taken considerably more time and also required significantly more training
data. As a basis for the training data, significantly different self-organized structure types
(LIPSS, CRATER, and MICRO structures) were generated on two different steel substrates
(hot work tool steel (HWTS) and stainless steel (SS)) using a 300 fs laser.

The study was divided into four principal workflow steps. First, the different surface
structure types and a smooth reference (REF) on the HWTS substrate were imaged using a
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digital microscope. Second, 250 images per structure class were used to learn a customized
algorithm based on the open-source tool Teachable Machine. In this context, the detection
accuracy of the developed algorithm was determined by implementing validation samples
of the same substrate. Subsequently, the algorithm was tested with test data of both
steel substrates to analyze applicability and transferability to different materials. Finally,
investigations were carried out to classify the specific structures captured at different optical
magnifications to demonstrate the robustness of the proposed method.

2. Materials and Methods
2.1. Preparation Samples

The hot working tool steel used (X37CrMoV5-1, material designation 1.2343 according
to DIN EN ISO 4957 [41]) was purchased from ABRAMS Industries GmbH & Co. KG (Os-
nabrück, Germany) as plates ((70 × 70 × 5) mm). Tool steel is widely used in molding and
tool-making for injection molding machines. Here, surface structures are used to improve
molding processes, for example. The specimen plates ((100 × 100 × 1.5) mm) of stainless
steel (X5CrNi18-10, material designation 1.4301 according to DIN EN 10088-2 [42] and DIN
EN 10088-3 [43]) used for validation were purchased from K&D Handel (Mönchengladbach,
Germany). This stainless-steel substrate is used, for example, in the food industry, where
nano- and microstructures are relevant for the formation of self-cleaning surfaces. Prior to
laser structuring, all samples were ground with a Saphir 520 grinding machine from ATM
Qness GmbH (Mammelzen, Germany). A homogeneous surface quality was ensured using
sizes 600, 1200, 2400, and 4000 grit sandpaper before investigations were performed. After
grinding, the samples were cleaned with isopropanol (purity > 99.5%). The specimens
polished and cleaned in this way served as a reference (REF).

2.2. Laser Treatment

All laser treatments were performed with a 300 fs fiber laser with an amorphous
glass Yb-doped core (UFFL_60_200_1030_SHG from Active Fiber Systems GmbH (Jena,
Germany)). A laser wavelength of 1030 nm and a pulse repetition rate of 150 kHz were
used for all experiments. The Gaussian laser beam was focused via an F-theta lens with a
focal length of 163 mm, leading to a circular focus diameter of df = 36.6 µm at 1/e2 intensity.
A constant pulse overlap (PO) of 50% and a line overlap (LO) of 80% were achieved by
deflecting the focused laser beam with a scan head of the type intelliSCAN 14 (Scanlab
GmbH, Puchheim, Germany) [15]. The fluence was systematically increased to form
different types of self-organized structures on the surface [3]. The LIPSSs were generated
using a fluence of F = 0.116 J/cm2. For the CRATER structures, a fluence of F = 2.011 J/cm2

was chosen, and the MICRO structure was generated at a fluence of F = 13.971 J/cm2. A
constant number of over-scans of N = 50 was applied to achieve the different types of
structures. These laser and scanning parameters were used for both steel materials and
are based on our previous study [15]. After the laser treatment, the structured samples
were cleaned with isopropanol (purity > 99.5%) in an ultrasonic bath for t = 10 min. After
polishing and laser processing, confocal laser scanning microscopy (CLSM) measurements
with a LEXT OLS 4000 and the software OLS 4000 (Olympus, Hamburg, Germany) were
performed to calculate the average area surface roughness Sa (with λc = 25 µm). Scanning
electron microscopy images were also taken using a SUPRA 25 field emission scanning
electron microscope from Zeiss (Oberkochen, Germany) to evaluate the surface morphology
after USPL processing. These images were not used for the ML process.

2.3. Machine Learning for Image Recognition and Data Classification
2.3.1. Microscopy, Data Generation, and Data Preprocessing

With the perspective of application and integrability into a USPL machining center,
we chose a digital light microscope of the type VHX-5000 with VH-Z50 objective (Keyence,
Osaka, Japan) to image the sample surface. Based on this technology, four workflow steps
were performed, as shown in Figure 2. First, raw data were generated from five HWTS
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samples and one SS sample to create training and test datasets for the algorithm. An optical
magnification of 3000× was used for the LIPSS class images, 2000× for the CRATER class
and 1000× for the REF and MICRO classes. The different magnifications were chosen
in order to display the individual structural features as detailed and comprehensively as
possible. The raw data consist of 1600 × 1200 pixel (px) microscope images in the TIF format
for each surface structure type (REF, LIPSS, CRATER, MICRO). Subsequently, each image
was compressed using a self-programmed Python script (version 3.7.9, python software
foundation, Fredericksburg, VA, USA) and saved as a PNG file. In the second workflow
step, the images of all HWTS samples and classes were combined into a training dataset
of 1000 images, with 50 images of each structural type taken from each HWTS sample,
resulting in a balanced dataset of 250 images per class for training. From this training
dataset, approximately 85% of the images were used for training (848 images) and 15% for
validating the ML algorithm (152 images). In a third workflow step, 120 additional test
images from the five HWTS samples and 120 test images from the SS sample were acquired
and merged into two independent test datasets. The trained ML algorithm was tested with
these test datasets to verify its classification accuracy and effectiveness on the different steel
substrates. In the fourth step, a further performance evaluation was undertaken. Here, the
effect of different optical magnifications was investigated to validate the trained algorithm
for the classification of surface structure types and test the robustness of the algorithm.
For this purpose, five images of all structure classes of one HWTS sample were taken at
magnifications of 1000×, 2000×, and 3000×, and tested with the trained algorithm. This
allowed us to evaluate whether the ML classification could correctly recognize and classify
images with less resolved structural features.
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2.3.2. Machine Learning Development and Hyperparameter Tuning

The web-based open-source tool Teachable Machine (https://teachablemachine.withgoogle.
com, Google LLC, Mountain View, CA, USA), accessed on 31 January 2023, was used
to create an ML model to automatically classify the different structure types. Teachable
Machine provides a graphical user interface (GUI) for an easy creation of customized
classification models without any particular ML expertise [44]. The Teachable Machine
GUI is used to upload the data, set the model parameters, and train the model. The trained
model can be exported and used for further implementations, such as web applications.

The accuracy of ML models can be improved by adjusting hyperparameters [45]. Ad-
justing the appropriate parameters to enhance model accuracy is known as hyperparameter
tuning. For Teachable Machine, the following three parameters can be varied to optimize
the model:

• Epochs: This specifies how many times each individual image in the training dataset
is input to the ML model at least once [46] (i.e., for epochs = 50, the ML model goes
through the entire training dataset 50 times during training). More epochs generally
allow for better prediction accuracy but increase the risk of overfitting the ML model
to the training data [45,46].

https://teachablemachine.withgoogle.com
https://teachablemachine.withgoogle.com
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• Batch size: This is the size of a set of images used for a training iteration [46] (i.e.,
for a batch size of 16 and a training dataset of 160 images, the data are divided into
160/16 = 10 batches and entered into the model). Once all stacks are entered, an epoch
is completed.

• Learning rate: This determines the step size of the loss function and controls how
fast a model adapts to the classification problem [46]. Detailed information about the
learning rate can be found in [47].

For the studies in this paper, the following settings were chosen: epochs = 50, batch
size = 16, and learning rate = 0.001.

2.4. Application Development and Performance Evaluation

Specific performance metrics are used to evaluate the performance of the trained ML
model. The model results can be summarized in a classification task as a confusion matrix
(CM) [48]. The CM is a crosstab that captures the number of predicted and actual classes
that occur [49].

Table 1 shows an example CM for these studies. Most important are the true positive
(TP) values, which represent the correctly predicted surface structures. True-negative (TN)
values correspond to all other misclassified surface structures. False positive (FP) and false
negative (FN) values are the sum of the misclassified elements in the columns and rows.
They are relevant for the calculation of other performance metrics.

Table 1. Principal CM scheme for the evaluation of the microstructure class predictions.

Predicted Class
Classes REF LIPSS CRATER MICRO total

REF TP TN TN TN FN
LIPSS TN TP TN TN FN

CRATER TN TN TP TN FN

Tr
ue

C
la

ss

MICRO TN TN TN TP FN
total FP FP FP FP

In addition, the accuracy and loss functions are plotted to evaluate the performance of
the ML model [50]. The accuracy graph shows the performance of the classification in per-
centage terms; the loss graph shows the uncertainty of a prediction based on the deviation
from the actual value [50,51]. When training the algorithm, the accuracy value should be
constantly optimized and the loss value minimized. Both diagrams thus characterize the
training process and indicate the effectiveness of the selected hyperparameters [51].

For better interaction with the ML model, a simple web application was also developed
and programmed, through which test data can be entered and classified. For this purpose,
the data must be stored in a database with a web address or uniform resource locator (URL).
The web application was programmed using node.js, HTML5, CSS, and JavaScript. The test
data were published via Microsoft Azure Blob Storage (Microsoft, Redmond, WA, USA)
which provides a durable and scalable storage service for large amounts of data.

3. Results and Discussion
3.1. Surface Structure Types

The resulting surface types after the polishing process and laser treatment are shown
in Figure 3a–d. The digital light microscopy images and the corresponding SEM images
provide qualitative insights into the surface morphology of the different surface classes.
More specifically, the surface topography data obtained with CLSM measurements are
summarized in Figures S1–S4 in the Supplementary Information. When comparing the
different surface types, it is clear that the surfaces obtained significantly differ in surface
morphology and topography.
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umn), and corresponding SEM images (right column) of surfaces after polishing and laser treatment,
respectively. (a) Reference after polishing (REF); (b) nanoscaled roughness of laser-induced periodic
surface structures (LIPSSs); (c) formation of microscaled depressions (CRATER). Micrometric ripple
marked as MR; (d) hierarchical roughness of self-organized microstructures (MICRO).

The polished reference (REF) specimens exhibit a homogeneous surface with only
marginal scratches from the polishing process (Figure 3a). However, it is clear from the SEM
images and average area surface roughness (Sa = 0.026 ± 0.001 µm) that these scratches
exhibit a depth in the nanometer range. In the next step, these preprocessed surfaces
were laser-treated to create different types of self-organized structures. As can be seen in
Figure 3b–d, all laser parameter settings successfully resulted in the formation of different
structure types.
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First, laser-induced periodic surface structures (LIPSSs) were realized using a flu-
ence of 0.116 J/cm² (Figure 3b). Laser-induced periodic surface structures are wavelike
surface structures with a resolution much smaller than the size of the laser spot. It is
widely accepted that LIPSSs on metals are mainly formed through electromagnetic inter-
actions between the material surface and the incident laser light. Generally, two different
LIPSS morphologies can be distinguished: low-spatial-frequency LIPSS (LSFL) and high-
spatial-frequency LIPSS (HSFL). LSFLs typically form on metal surfaces with an orientation
perpendicular to the direction of the polarization of the laser light [52]. The spatial periodic-
ity of LSFLs is usually close to the wavelength of the laser beam applied. In contrast, HSFLs
exhibit an orientation parallel to the polarization of the incident laser light [52] and have
a spatial periodicity much smaller than the laser wavelength [53]. The LIPSS fabricated
in this study can be characterized as an LSFL (see height elevation profile in Figure S2 in
the Supplementary Information) and are homogenously distributed on the surface. The
average area surface roughness is slightly increased (Sa = 0.142 ± 0.001 µm) due to the
formation of the LIPSS compared to the nearly smooth reference (REF).

Second, non-homogeneously distributed microscaled depressions, named CRATER,
were realized using a laser fluence of 2.011 J/cm² (Figure 3c). The formation of CRATER
structures is attributed to local light intensity peaks due to scattering effects on the mi-
crometric ripple [3,54] (marked as MR in Figure 3c). These phenomena lead to a locally
preferential ablation on these precursor sites (MR) and consequently to the expansion of the
interspaces by the laser shots following. The preferential ablation in the resulting valleys
leads to a further deepening of the structures up to the formation of craters [54]. In addition
to CRATER and MR, LIPSS with a changed morphology remain present on the surface.
These multiscale surface features increased surface roughness (Sa = 0.349 ± 0.014 µm)
compared to the REF and LIPSS classes.

Third, MICRO structures were realized at a fluence of 13.971 J/cm², as shown in
Figure 3d. MICRO structures are the result of the holistic formation of surface depressions
due to an abrupt increase in the ablation rate (known as the “strong ablation phase”) [55]. It
is assumed that cone-shaped MICRO structures result from crater propagation, an altered
energy distribution due to surface topography during laser irradiation, and build and
rebuild effects, e.g., due to the merging of adjacent protrusions [3,54]. However, the
average surface roughness is significantly increased compared to the other structure types
realized in this study (Sa = 4.747 ± 0.073 µm). Furthermore, the cones are covered with
nanoscaled LIPSSs and melt, leading to a hierarchical structure.

Overall, the processing methods resulted in significant differences in surface morphol-
ogy and topography. These surface features lead to different surface optics due to varying
levels of light adsorption and reflection under illumination during microscopy. Therefore,
the captured images reflected these surface features and formed the basis for this intelligent
approach to surface classification (first workflow step).

3.2. Machine Learning Model Implementation

In the second workflow step, an ML model with customized settings was defined via
TeachableMachine and trained with the created training dataset. The results of ML-based
classification of light microscopy images of the different surface structures based on the
training dataset are presented in Figure 4, which illustrates the performance of the ML
model in a CM. The model can correctly distinguish between all analyzed images and
classify the validation images into their corresponding classes. Therefore, the accuracy of
the algorithm is 100% for all surface classes.

To check the plausibility of the result, the accuracy and loss plots of the ML model
were generated. Figure 5a shows the accuracy curves of the training and validation data.
The Teachable Machine ML model used about 85% of all training data for training and
about 15% to validate the trained model. The validation data were randomly selected and
were not used to train the model but only to perform an initial performance evaluation of
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the model using data that are unknown to it [46]. Figure 5b shows the loss curves of the
training and validation data.
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The accuracy and loss curves all show optimal behavior. The accuracy of the ML
model increased and reached 100% after just one epoch. At the same time, the loss curves
continuously decreased to almost zero across all epochs. The validation data confirm
this trend in every case. The results are comprehensible since the images of the individ-
ual structure types used for training look distinctly different and each has characteristic
morphological features. The different surface structure features on the light microscopy
images are visible to the naked eye. The ML algorithm also searches for the characteristic
image features during the training process and finds them very quickly. As a result, the
algorithm can distinguish the different structure–type images very well. This happens
automatically after the training process without human influence so that the ML model can
function as part of an automated quality assurance process. However, it should be noted
that the performance of the ML model is currently based on training with a comparatively
small and poorly differentiated training dataset. The images corresponding to this dataset
were all taken under laboratory conditions and are relatively similar. Furthermore, the
results are based only on images from the digital light microscope, which was used to
capture surface structures on just one material. Different results are expected for images
that deviate from optimized conditions (e.g., lighting conditions, sharpness, color values,
etc.) or were acquired via other systems (e.g., microscopes with a lower resolution) or of
other materials. To achieve optimal results with the ML model for a wide range of different
image conditions, materials or systems, the algorithm needs to be more robust, e.g., by
training it on more differentiated data. In addition, it would be a suitable development if
the algorithm were to directly highlight relevant surface features. This would help better
understand the underlying basis for the classification used by the algorithm. In this regard,
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the ML algorithm needs further development to detect different surface features in addition
to classification. This could be realized by gradient-weighted class activation mapping
(GRAD-CAM) [56] or by you only look once (YOLO) detection algorithms [57–59].

By linking the surface structure images with the respective laser parameters, the ML
algorithm can also be extended for process parameter recommendations. In this context,
the ML algorithm could determine which laser parameters were used and how they can
be optimized if necessary. Thus, the ML evolves from a classification over a detection to
a decision-making and recommendation system. This can ultimately be integrated into a
comprehensive hardware, software, and data system. This enables the monitoring of laser
structuring and closed-loop processes in the sense of an inline process.

In summary, the ML model trained with Teachable Machine initially enables the
classification of the surface structures. The intended classification task is already perfectly
trained with the selected hyperparameters and the training data used are suitable, for
example, for integration into a web application to analyze further test data. An example of
a GUI web application is shown in Figure 6. This is intended to represent a possible quality
assurance application as it might be used in practice.
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Figure 6. Web application for surface structure classification.

Via the web application, all images published online can be searched via their re-
spective URL and displayed in the image preview. The “Predict surface” button can be
used to start an image analysis with the trained ML algorithm. As a result, the present
surface structure is classified with associated probability. In this way, the examined struc-
ture is quickly classified automatically which can be used to establish automated quality
assurance processes.

All images of the two test datasets (HWTS and SS) were analyzed via the developed
web application (third workflow step) for a detailed evaluation of the trained ML algo-
rithm. With the web application and the trained ML algorithm, all test data of the HWTS
samples could be classified correctly (see Figure 7, left), which was to be expected since
the algorithm was trained with very similar data. The test data of the SS sample could
also be distinguished especially well, but here, the algorithm shows weaknesses in the
recognition of LIPSS structures (see Figure 7, right). In one case, a LIPSS structure was
incorrectly detected as a CRATER. There are several reasons for this slight inaccuracy in
the prediction. First, the acquisition conditions of the images of the SS sample are slightly
different from those of the HWTS samples (the images are brighter, for example). Second,
some LIPSS structures show darker areas, which could also indicate CRATER for the algo-
rithm. Ultimately, this finding suggests that the algorithm still needs robust training. The
training dataset would need to include more differentiated images to reduce the influence
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of different imaging conditions. Accordingly, data from different process configurations,
materials, and image representations should be included in the training of the ML model.
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To evaluate the accuracy and robustness of the algorithm with less optimal images,
images captured at different magnifications of the individual structure types were tested
via the web application (see Figure 8). As can be concluded from Figure 9 (fourth workflow
step), the algorithm is also suitable for classifying blurred and low-resolution images. This
means that the training method used (with images of one magnification within one structure
type but different magnifications between the individual structure types) enables the
algorithm to classify images with varying resolutions correctly and very effectively. Thus,
although it was trained with a small training dataset, the algorithm is already relatively
robust. Furthermore, high-resolution images are optional for reliable classification.
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4. Conclusions

In this study, a new approach for classifying laser-induced surface structures with an
ML based on digital light microscopy images was developed and evaluated. The findings
show that a customized algorithm based on the open-source tool Teachable Machines is
highly suitable for classifying self-organized structures resulting from USPL processing.
The special feature of the classification algorithm presented here is that it already works in
a very stable way, even with a small amount of training data. After short learning times,
reliable classifications could be achieved regardless of the different magnifications used for
microscopy. Furthermore, the findings show that the algorithm provides highly accurate
results for similar substrates to those learned. In contrast to the few studies conducted so
far on surface classification in USPL processing using SEM images for training data, this
approach can be integrated into a micromachining center. Therefore, these findings lay
the groundwork for quality assurance concepts, process parameter recommendations, and
inline laser parameter control for USPL processing.

However, further research is required to further develop this concept for laser param-
eter recommendation systems and for integration into laser processing systems, e.g., for
inline process control. Future work should link the process parameters used with surface
classes and topography data. This will form the basis for predicting surface features using
ML. It is also recommended to acquire more data from different materials, laser processing
studies, and light microscopy images with a variety of setups and conditions to improve
the robustness of the algorithm. Furthermore, the web application presented in this study
should be extended to include direct interfaces for the microscope. This would enable direct
image analysis while laser-structuring the surfaces. Lastly, data pre-processing should also
be optimized in order to generate image files that are as small as possible but sufficiently
detailed for analysis. This can reduce the inconsiderable memory requirements as image
data continue to increase, thus saving costs.
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//www.mdpi.com/article/10.3390/mi15040491/s1, Figure S1: Height profile of the REF sample with
details; Figure S2: Height profile of the LIPSS sample with details. Measurement was performed
perpendicular to the orientation of the LIPSS; Figure S3: Height profile of the CRATER sample;
Figure S4: Height profile of the MICRO sample.
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