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Abstract: The integration of advanced sensor technologies has significantly propelled the dynamic
development of robotics, thus inaugurating a new era in automation and artificial intelligence. Given
the rapid advancements in robotics technology, its core area—robot control technology—has attracted
increasing attention. Notably, sensors and sensor fusion technologies, which are considered essential
for enhancing robot control technologies, have been widely and successfully applied in the field
of robotics. Therefore, the integration of sensors and sensor fusion techniques with robot control
technologies, which enables adaptation to various tasks in new situations, is emerging as a promising
approach. This review seeks to delineate how sensors and sensor fusion technologies are combined
with robot control technologies. It presents nine types of sensors used in robot control, discusses
representative control methods, and summarizes their applications across various domains. Finally,
this survey discusses existing challenges and potential future directions.

Keywords: robot sensors; robot control; robotic applications

1. Introduction

The advent of robots represents a significant milestone in technological evolution.
Robots are now increasingly prevalent across a broad spectrum of applications, from in-
dustrial processes [1–5] and medical surgeries [6–9] to various real-world scenarios [10–14].
The advancement of robotics technology is fundamentally propelled by the development
and integration of sensor technologies, which equip robots with essential tools for effec-
tive environmental interaction. In particular, advancements in sensor technology have
empowered robots to perceive complex environmental conditions with greater accuracy,
thereby laying the groundwork for autonomous navigation, obstacle avoidance, and task
execution. Advanced sensors provide rich environmental data and, when integrated with
artificial intelligence (AI) and machine learning (ML) technologies, enable robots to process
this information and make informed decisions. As sensor technology continues to evolve,
it enables robots to operate in increasingly variable and uncertain environments, thereby
enhancing their adaptability and flexibility. Furthermore, the integration of various sensor
types allows robots to achieve a more comprehensive understanding of their surroundings,
thus enhancing their perception and decision-making capabilities [15]. This technology
of multisensory information fusion is crucial for executing complex tasks, including high-
precision manufacturing and advanced surgical assistance. The structure of robotics system
with sensors is shown in Figure 1.

This article dedicates its interest to a comprehensive overview of the role of sen-
sors in robot control technology—dividing them into proprioceptive and exteroceptive
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types—and to examining their applications within robot control systems. Proprioceptive
sensors, measuring internal states such as speed and joint angles, and exteroceptive sensors,
gathering information from the robot’s environment, including distance and temperature,
are crucial for robots to execute complex tasks with high precision and autonomy. By
exploring the development and application of proprioceptive and exteroceptive sensors,
this paper highlights how robots can surpass traditional limitations, thereby achieving
unprecedented accuracy, adaptability, and autonomy. From enhancing manufacturing
processes and surgical precision to navigating complex environments for rescue missions,
sensors not only expand the capabilities of robots but also enable new applications that
were previously considered impractical. This review emphasizes the symbiotic relationship
between robot control technology and sensor technology, thus predicting a future where
robots play a central role in addressing society’s most pressing challenges. It highlights the
transformative impact of sensor technology in enhancing the capabilities and efficiency of
robots. Through this exploration, the article aims to elucidate the critical role of sensors in
advancing robot control technology and their potential to innovate industries by improving
quality, safety, and efficiency. The relationship between robots equipped with various
sensors and different application scenarios is shown in Figure 2.
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Figure 1. Structure of robotics system with sensors.
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Figure 2. Sensors in robotic control.

The purpose of this work is to review the aspects of sensor technology in robot control
technology from the perspectives of key technologies, applications, and challenges. The
review is divided into four sections. The second section briefly introduces nine different
types of sensors and their key technologies in robot control. The third section presents the
application of robot control systems equipped with various types of sensors across different
domains, such as assembly, quality inspection, minimally invasive surgical assistance, and
search and rescue. Finally, the fourth section provides a conclusion and brief discussion.
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2. Sensors and Robotics Control

Sensors are devices that are capable of perceiving and converting environmental infor-
mation into electrical signals or other required formats according to specific rules, as well
as transmitting them to other devices. Robots utilize a variety of sensors to detect different
aspects of their environment. Generally, sensors are divided into two main categories
based on their operating principles [16]. Proprioceptive sensors are used to measure the
internal values of a dynamic system (such as a robot), like motor speed, robot arm joint
angles, and robot pose. This article will introduce the proprioceptive sensors used in robot
control applications, including Inertial Measurement Units (IMUs), magnetometers, ac-
celerometers, and gyroscopes. Exteroceptive sensors, in contrast, acquire information from
a robot’s environment, such as, measurements of distance, light intensity, sound amplitude,
temperature, force magnitude, gas concentration, and image information. Therefore, the
measurements obtained from exteroceptive sensors are interpreted by the robot to extract
meaningful environmental features. In robot control applications, exteroceptive sensors
include tactile, force, ultrasonic, infrared, LiDAR, gas, sound, vision, and EMG sensors,
which will also be discussed in this article.

2.1. IMUs

The IMU, which is a pivotal sensor system, plays an indispensable role in the realm
of robotic control. Tasked with the collection of data from robotic entities, these units
transmute raw data into essential insights pertaining to localization, orientation, and accel-
eration. An IMU comprises an array of sensors, including but not limited to gyroscopes,
accelerometers, and magnetometers. Additionally, it may encompass barometers, tempera-
ture sensors, pressure sensors, and attitude sensors. Progress in technology has ushered
IMUs into an era of miniaturization, thus resulting in Microelectromechanical Systems
(MEMSs) that are more compact, agile, and efficient. The utilization of IMUs in robotic con-
trol spans a diverse range of applications, from navigation and positioning to human–robot
interaction and motion control.

In the field of navigation and positioning, Gao et al. [17] proposed a novel method for
determining the position of indoor mobile robots by combining visual and inertial sensors.
This technique utilizes an adaptive and fading extended Kalman filter to fuse data from
visual sources and IMUs, thereby significantly reducing the errors commonly associated
with visual navigation methods. The use of IMUs allows for frequent data updates, thereby
enabling swift and accurate positioning at a lower cost than traditional laser radar solutions.
However, laser radar systems exhibit superior performance in indoor localization. On the
other hand, Zhao et al. [18] have developed an autonomous navigation and positioning
system for serpentine robots, which is predicated on MEMS IMU technology. Operating
without reliance on fixed nodes or external inputs, this solution uses the robot’s built-in
MEMS IMU for navigation, thus employing an extended Kalman filter for position tracking.
It stands out for its compactness, low power requirement, and straightforward installation,
thereby offering a scalable option for various multilinked robotic configurations. Yet, it
requires further development to support longer and more complex operations.

Regarding human–robot interaction, Chen et al. [19] presented an innovative wearable
IMU sensor that employs probabilistic models to predict the initial swing phase in foot
movement. Attached to the user’s right heel, the sensor accurately models foot dynamics,
thus updating a probabilistic map for predicting foot placement. In addition to achieving
an accuracy comparable to previous models, it enables earlier prediction times. However, it
calls for improvements in creating personalized, real-time models, especially for individuals
with unusual walking patterns. Škulj et al. [20] developed a system that uses wearable
IMUs placed on the user’s body to remotely control collaborative robots. This approach
translates the user’s motion into collaborative industrial robot commands through an
innovative algorithm, which is noted for its user-friendliness, adaptability, and reliability.
Future improvements aim at easing system integration and adding tactile feedback to
enhance the interaction between robots and objects.
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With respect to motion control, Lin et al. [21] proposed a safety control strategy for
soft robots with variable stiffness based on IMU technology. By integrating IMU data with
a piecewise constant curvature model, they estimated the robot’s position, orientation, and
load, thereby enabling the robot to detect collisions and respond safely. These actuators offer
exceptional flexibility, compliance, and versatility, all while utilizing cost-effective IMUs.
However, the system faces limitations in load estimation across various positions, as well as
challenges in the accuracy of position estimation, dynamics consideration, model precision,
and its application in multisegmented continuum robots. Bennett et al. [9] introduced a
control method for wrist rotation in myoelectric prosthetic hands using an IMU to detect
upper arm movements. By detecting upper arm movements via an IMU installed on the
prosthesis, this method controls the wrist’s rotational speed, thereby offering more precise
control over myoelectric prostheses with wrist rotators. This control mechanism enhances
task execution speed and intuitiveness for the user, thus streamlining task execution and
diminishing the need for extensive task planning. Despite these advantages, the system
has been discovered to be challenging, particularly when transitioning between different
control regions and executing tasks that involve overhead movements.

Table 1 compares the advantages and disadvantages of different control technologies
used in robots involving the IMU across various scenarios.

Table 1. In the field of robotics control technologies, comparisons of the advantages and disadvantages
of different methods involving the IMU across various scenarios.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Navigation and Positioning

Indoor Mobile Robot
Positioning Method [17]

High data update frequency,
rapid and accurate

positioning, and low cost.

Performance is inferior to
LiDAR in indoor positioning.

Serpentine Robot
Autonomous Navigation and

Positioning System [18]

Small size, low energy
consumption, easy

installation, and low
computational demand.

Needs improvement for
long-duration and

long-distance applications.

Human-Robot Interaction

Probabilistic Distribution
Model-Based Method for

Predicting Foot Placement in
Early Swing Phase [19]

Can predict earlier while
maintaining similar accuracy.

Needs improvement in
adapting to users with

abnormal gaits.

Flexible Remote Operation
Method for Collaborative

Industrial Robots [20]

Intuitive and easy to use, high
flexibility, and strong

robustness.

System needs further
integration simplification and

the addition of tactile
feedback loops.

Motion Control

Active Safety Control of
Variable Stiffness Soft

Robots [21]

Excellent flexibility,
compliance,

multifunctionality, and
low cost.

Unable to perform load
estimation at any position,

with limitations in dynamics
consideration and
model accuracy.

Radial Forearm Myoelectric
Prosthesis Wrist Rotation

Control Method [9]

Makes task execution quicker,
more intuitive for the user,
and reduces the need for

task planning.

Difficult to operate, especially
when switching controls and
performing overhead tasks.

2.2. Visual Sensors

Visual sensing technology constitutes one of the quintessential means for robotic envi-
ronmental perception. It functions by capturing visual data and converting it into digital
formats for further utilization by robotic systems. This technology has been progressively
researched and developed internationally since the 1970s. The initial prototypes of visual
sensors originated in the United States. However, due to the limited computational capacity
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and board resources of microprocessors at that time, the supported machine vision tasks
were relatively rudimentary, thus constraining its broader application. Since the 1990s,
with the evolution of embedded machine vision and semiconductor technology, visual
sensors have emerged as a focal point of research in both academic and industrial sectors,
thereby witnessing a continuous accumulation of technological expertise. Commercially
advanced products have found widespread applications in areas such as industrial manu-
facturing and video surveillance. Over the past few decades, researchers have explored a
multitude of sensor types, including Charge-Coupled Device (CCD) image sensors [22],
Complementary Metal Oxide Semiconductor (CMOS) image sensors [23], intelligent vi-
sual sensors [24,25], and infrared image sensors [26,27] to facilitate artificial vision. These
sensors feature a variety of communication interfaces, including TCP/IP, OLE for Process
Control (OPC), Controller Area Network (CAN), Recommended Standard 232 (RS232), etc.,
thereby enabling data exchange with external devices like robot controllers, Programmable
Logic Controllers (PLCs), Human–Machine Interfaces (HMIs), and PCs. In robotic control,
visual sensors are employed for functions such as object recognition, quality control, object
grasping and manipulation, medical surgery, and autonomous navigation.

Regarding object recognition, Ji et al. [12] studied an apple-picking robot guided by an
automatic visual recognition system. This system utilized a CCD camera to capture apple
images, which were then processed on an industrial computer using median filters to elimi-
nate noise. To enhance recognition precision and efficiency, a support vector machine-based
apple recognition classification algorithm was introduced. While this method satisfied the
recognition accuracy and efficiency requirements for apple harvesting robots, improve-
ments are needed in recognition rates under leaf occlusion and in reducing recognition
execution time in real-time systems. Li et al. [2] developed a method for the automatic
skip welding trajectory recognition of spatial discontinuous welds based on laser vision
sensors. They employed an adaptive angle measurement laser scanning displacement
sensing system to detect the angular features of complex structures using a weld seam
trajectory recognition algorithm based on Euclidean distance discrimination. This system
significantly enhanced the measurement degrees of freedom—exhibiting high efficiency
and stability—but its applicability needs further enhancement for wider scenarios.

With respect to quality control, Moru et al. [1] proposed a machine vision algorithm for
gear quality control inspection. This algorithm acquired and analyzed images captured by a
machine vision camera (Manta G-504) through a developed machine vision application that
calculates relevant parameters of the gears using outer diameter, inner diameter, and tooth
count algorithms. This method had extremely low system calibration errors and tolerances,
thus providing high quality, but the measurement errors and precision were affected by
factors such as lighting, temperature, camera resolution, and sensor configuration, which
need further mitigation. Rout et al. [28] proposed a method using laser and vision sensors
in robotic arc welding for detecting, locating, and setting process parameters for different
weld seam gaps. They combined the seam position data obtained from vision sensors with
weld seam gap changes output from laser sensors, and then they applied fuzzy logic and
the NSGA-II algorithm to optimize the welding parameters, thus enhancing weld seam
quality. This method achieved higher positioning accuracy and productivity, which are
applicable for both continuous and offline quality control, but further refinement is needed
for welds with different gaps or shapes.

In terms of object grasping and manipulation, Cao et al. [29] crafted a novel approach
by integrating a multimodal neural network with Euler region regression for neuromor-
phic vision-based grasp estimation. Utilizing the DAVIS sensor to monitor light intensity
changes at the pixel level, their network, trained on a dataset of 154 moving objects, special-
izes in identifying optimal grasping points. This method surpasses conventional cameras
in efficiency, speed, and accuracy, thus enhancing object edge detection for improved grasp
performance. Challenges include shadow misinterpretations and event density discrepan-
cies affecting prediction reliability, thus highlighting areas for future enhancement. Wang
et al. [30] proposed a method for SCARA robot pose estimation and grasping based on
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point cloud deep learning. They used a stereo vision system placed directly above objects
to obtain point cloud data and integrated point cloud and category information into a point
class vector using the end-to-end deep learning model PointNetRGPE. This method used
multiple PointNet networks to estimate the robot’s grasping posture and introduced a new
architecture in the PointNetRGPE model to address the issue of rotational symmetry in the
z axis direction. This approach performed excellently in addressing rotational symmetry
issues in z axis pose estimation, thus showing good performance, but the grasping success
rate for irregular objects still requires improvement.

With respect to medical applications and surgery, Allan et al. [7] developed a method
for detecting and locating surgical instruments in minimally invasive surgery. This method
employed probabilistic supervised classification techniques to identify pixels belonging
to surgical tools in laparoscopic images, thereby using this classification as a starting
point to estimate the 3D model posture of the tools within a level set framework using an
energy minimization algorithm. It was among the first methods capable of locating the
five degrees of freedom posture of surgical instruments from a monocular view, without
the need to rotate the instrument shaft. Nevertheless, its robustness and the accuracy
of 3D estimation require improvements, and real-time performance also needs further
optimization. Martell et al. [6] proposed a visual method for strain measurement in robotic
surgical suturing. Through a series of steps, including image enhancement, edge detection,
line detection (using Hough transform), line contour and marker detection, marker tracking
(using quadratic regression), and strain calculation, they processed videos from existing
surgical cameras and accurately calculated strain in the suturing thread. This method had
subpixel resolution and high precision, thus providing a higher level of safety in clinical
settings. However, when the suture line was at an oblique angle to the camera, the method
could not accurately detect strain.

Regarding autonomous navigation, Lee et al. [31] proposed an efficient map-building
method (SLAM) for indoor service robots based on a monocular vision sensor. This method
directly estimated the robot’s orientation by analyzing the direction of vanishing points
and derived the robot’s position and line landmark estimation model into simple linear
equations. Using local map correction techniques, it effectively calibrated camera posture
and landmark positions. This method reduced computational demands, thus allowing
implementation in low-cost embedded systems and application in real-time autonomous
robot navigation systems. Compared to other methods, it was more accurate and efficient.
However, its applicability in large indoor environments needs further enhancement. Nirmal
Singh et al. [32] developed a two-layered navigation system for robots blending visual and
infrared sensory inputs. This system employs a hierarchical strategy, where the initial
layer uses a wireless camera to capture images and define interim goals through a path
optimization algorithm. Subsequently, infrared detection guides the robot towards these
goals. The cycle repeats, alternating between visual mapping and infrared navigation, until
the destination is reached. This method performed well under high illumination conditions,
but in low light, due to the reduced computational region, the shortest path might become
longer. Additionally, the system’s accuracy in outdoor environments could be impacted.

Table 2 compares the advantages and disadvantages of different control technologies
used in robots involving visual sensors across various scenarios.
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Table 2. In the field of robotics control technologies, comparisons of the advantages and disadvantages
of different methods involving visual sensors across various scenarios.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Object Recognition

Apple-Picking Robot Guided
Automatic Recognition Visual

System [12]

Improved recognition
precision and efficiency.

Lower recognition rate under
leaf occlusion, and real-time

performance needs
improvement.

Automatic Welding Trajectory
Recognition Method for

Spatial Intermittent Weld
Seams [2]

High degree of measurement
freedom and efficiency,

strong stability.

Applicability needs further
enhancement.

Quality Control

Machine Vision Algorithm for
Gear Quality Control

Inspection [1]

Extremely low system
calibration error and tolerance,

high quality.

Measurement error and
precision are affected by

lighting and other factors.

Method for Detecting,
Searching, and Setting Process
Parameters for Different Weld

Seams Gaps in Robotic Arc
Welding [28]

Higher positioning accuracy
and productivity; suitable for

continuous and offline
quality control.

Needs further improvement
for welds with different gaps

or shapes.

Object Grasping

Multimodal Neural Network
Estimation of Grasping
Posture Based on Euler
Region Regression [29]

More energy-efficient, lower
latency, higher temporal

resolution, and
dynamic range.

Shadows of objects may be
mistakenly processed,

affecting prediction results.
Accurate prediction is difficult

for objects with
insufficient events.

SCARA Robot Pose
Estimation Grasping Method
Based on Point Cloud Deep

Learning [30]

Good performance in dealing
with the pose estimation

problem of z axis
rotational symmetry.

Lower success rate in
grasping irregular objects.

Medical Surgery

Method for Detecting and
Locating Surgical Instruments

in Minimally Invasive
Surgery [7]

Capable of locating the five
degrees of freedom of surgical

instruments, thus reducing
the positioning process.

Robustness and accuracy of
3D estimation can be

improved, and real-time
performance needs

further optimization.

Strain Measurement Method
in Robotic Surgical

Suturing [6]

Subpixel resolution, high
precision, and high safety.

Unable to accurately detect
strain when the suture line is

at an angle to the camera.

Autonomous Navigation

Efficient Map-Building
(SLAM) Method for Indoor

Service Robots [31]

Low computational
requirements, low cost,
applicable to embedded
systems, high real-time
performance, accurate

and efficient.

Applicability in large indoor
environments needs

further improvement.

Dual-Level Subgoal Mobile
Robot Navigation

Algorithm [32]

Performs well under high
illumination conditions.

In low light conditions, the
shortest path may become

longer. In outdoor
environments, accuracy

may decrease.

2.3. Sound Sensors

Sound sensors are widely applied and play a significant role in robotic control systems.
According to their working principles, commonly used sound sensors in robotic systems
include capacitive [33], piezoelectric [34], piezoresistive [35], flexible [36], and more minia-
turized MEMS-type sound sensors [37]. Additionally, there exists a specialized type of



Micromachines 2024, 15, 531 8 of 31

sound sensor known as the ultrasonic sensor. In robotic control systems, the application of
sound sensors encompasses navigation and positioning, environmental perception, and
fault diagnosis. Additionally, the application of ultrasonic sensors in the field of obstacle
avoidance and navigation in robotics has been introduced.

In terms of navigation and positioning, Franchi et al. [38] developed an adaptive
2D forward-looking sonar underwater navigation strategy for Autonomous Underwater
Vehicles (AUVs). This approach employs a strategy based on adaptive unscented Kalman
filters using 2D forward-looking sonar to estimate linear velocity. Utilizing onboard sensors,
this method boasts excellent compactness, thereby making it suitable for smaller AUVs and
demonstrating considerable reliability. However, its adaptability to varying environments
can still be enhanced, and there is potential for further improvements in its compact
design. Chen et al. [39] introduced a distributed sonar localization system for indoor
robotic navigation. This system, by deploying distributed sonar transmitters on the ceiling
and coordinating with sonar receivers on mobile robots, utilizes the SLAM algorithm to
assist in positioning. The system is characterized by high accuracy, low cost, and easy
deployment without cumulative errors, thereby offering robustness. Nonetheless, severe
environmental noise interference, such as waves or reflected signals at the same frequency
as the transmission signal, can adversely affect its positioning accuracy. Additionally, signal
attenuation in practical scenarios limits its coverage range, thus constraining its application
in large-scale indoor environments [40].

Regarding environmental perception, Uhm et al. [41] proposed a design method-
ology for a multimodal sensor module in an outdoor robotic monitoring system. This
approach integrates multiple visual and sound sensors to form a unified system capable
of synchronously extracting and matching data from 3D LiDAR sensors, thus effectively
collecting information from various outdoor environments. The multimodal sensor module
can gather six types of images: RGB, thermal, night vision, depth, rapid RGB, and infrared
images. The system possesses good heat resistance and durability for prolonged outdoor
use. Nevertheless, it requires further upgrades to withstand harsher conditions, such as
polar regions, and its applicability in other settings, like medical institutions and smart
factories, needs further verification. Takami et al. [42] proposed a method to estimate mov-
ing targets in an invisible field of view containing optical and acoustic sensors. Applying
a recursive Bayesian estimation framework, they probabilistically processed and fused
observation data from optical and acoustic sensors. This method deduces Interaural Level
Differences (ILDs) from two microphones for different target positions, thereby storing
these ILDs as fingerprints or acoustic clues. By comparing new acoustic observations
with stored ILDs for correlation, it calculates the likelihood of acoustic observations, thus
achieving accurate estimation of targets within an invisible field of view. This approach
performed well across all time-steps, thus making it applicable to various practical applica-
tions like home security, health care, and urban search and rescue. However, its accuracy
might be limited in complex environments.

In terms of fault detection, Yun et al. [3] developed a technique for detecting faults in
robot arms using stethoscope-mounted USB microphones to capture operational sounds.
This method involves training autoencoders with neural networks to distinguish anomalies
from normal sounds by analyzing reconstruction errors from sound signal inputs. This
method effectively reduces noise interference, thereby enhancing fault detection accu-
racy. However, the prediction accuracy of each stethoscope is affected by the distance
between the sensor and the target. Additionally, the narrow frequency response range of
the stethoscope limits its performance. Tagawa et al. [43] proposed an acoustic anomaly de-
tection method for mechanical failures suitable for noisy real-world factory environments.
Based on a noise-tolerant deep learning approach using Generative Adversarial Networks
(GANs), this method reconstructs and detects anomalies in sound signals. It outperforms
traditional classification methods in handling real-world industrial mechanical sound data,
thereby contributing to reduced maintenance costs, enhanced safety in processing, im-
proved equipment availability, and reduced production downtime costs while maintaining
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acceptable performance levels. However, this deep learning method requires extensive
data when dealing with complex audio signals and industrial noise, or its performance
may be compromised [44].

With respect to obstacle avoidance and navigation, Chen et al. [45] proposed a method
for mobile robot navigation control using ultrasonic sensors and a Knowledge-Based Neural
Fuzzy Controller (KNFC). This controller optimizes the parameters of the KNFC through a
Knowledge-Based Cultural Multistrategy Differential Evolution (KCMDE) algorithm. It
has been successfully applied to the PIONEER 3-DX-type mobile robot, thereby achieving
efficient autonomous navigation and obstacle avoidance. The method also incorporates
an innovative evasion strategy, which enhances the robot’s adaptability and navigation
ability in complex environments by analyzing the angles between obstacles and the robot
and setting thresholds to avoid dead zones in specific environments. Compared to other
navigation methods, the KNFC demonstrates superior learning ability and system perfor-
mance. However, a limitation of this approach is the need to preset multiple parameters
for the differential evolution algorithm, which can pose challenges in parameter selection.
Future research should focus on developing adaptive strategies for parameter adjustment,
which may increase the overall complexity of the system.

Table 3 compares the advantages and disadvantages of different control technologies
used in robots involving sound sensors across various scenarios.

Table 3. In the field of robotics control technologies, comparisons of the advantages and disadvantages
of different methods involving sound sensors across various scenarios.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Navigation and Positioning

Adaptive 2D
Forward-Looking Sonar
Navigation Strategy [38]

Excellent compactness
and reliability.

Adaptive capability to
variable environments could

be improved.

Split-Type Sonar Localization
System [39]

High precision, low cost, easy
deployment, no cumulative

error, strong robustness.

Severe noise in the
environment can easily affect

positioning accuracy; has
limited coverage.

Knowledge-Based Neural
Fuzzy Controller (KNFC)

Method [45]

Superior learning capability
and system performance

compared to other
navigation methods.

Requires presetting multiple
parameters for differential
evolution algorithms, thus

posing challenges in
parameter selection.

Environmental Perception

Design Method for
Multimodal Sensor

Module [41]

Good heat resistance and
durability for long-term

outdoor use.

System needs further
upgrades to adapt to
harsher conditions.

Estimating Invisible Moving
Targets [42]

Performs well across all
time-steps; suitable for a

variety of practical
applications.

Accuracy may be limited in
complex environments.

Fault Detection

Industrial Robotic Arm
Anomaly Detection [3]

Effectively reduces noise
interference, thereby

improving fault identification
accuracy.

Stethoscope’s prediction
accuracy is affected by

distance, and its narrow
frequency response range

limits performance.

Acoustic Anomaly Detection
in Noisy Industrial
Environments [43]

Outperforms traditional
classification methods, thus
reducing maintenance and

production downtime costs, as
well as enhancing safety and

equipment availability.

Requires large amounts of
data; otherwise, performance

may be compromised.
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2.4. Gas Sensors

Gas sensors serve as a crucial means for robots to perceive the external environment.
In the field of robotic control, relevant gas sensors primarily include metal oxide semicon-
ductor gas sensors [46], electrochemical gas sensors [47], photoionization gas sensors [48],
and catalytic combustion gas sensors [49]. Gas sensors are crucial in robotic control appli-
cations, as they equip robots with the capability to detect and identify gases or volatile
compounds in the environment, which is essential not only for environmental monitor-
ing, safety assurance, and health surveillance but also provides critical information for
robot–environment interaction, thereby enhancing autonomous decision making and the
ability to execute complex tasks [13,50,51]. Gas sensors in robotic control systems have a
broad range of applications, including navigation tracking, environmental exploration, and
environmental mapping.

Regarding navigation tracking, Ishida et al. [50] innovated a method for gas/odor
tracking using robots, which relies on the dynamic responses of gas sensors to detect
changes in odor concentrations. This technique allows robots to adjust their speed based
on sensor outputs, thus facilitating rapid and efficient odor plume tracking. This approach
significantly enhances the performance of odor plume tracking robots—thereby overcom-
ing the limitations of gas sensors—and is four times faster than existing methods. However,
faster response speeds and lower power consumption might be achieved with other types
of sensors. On another front, Song et al. [52] introduced a navigation system for robots
combining olfactory and auditory sensors to locate odor and sound sources. This system,
which employs gas and airflow sensors alongside acoustic technology for precise source
localization, adapts robot movement by aligning real-time navigation with detected signals.
Enhanced by wireless communication for collaborative operations, this approach offers a
comprehensive environmental perception, thereby enabling complex task performance and
improved adaptability. Nonetheless, outdoor navigation faces challenges from environ-
mental variables like wind patterns and temperature fluctuations, thus highlighting areas
for future enhancement.

With respect to environmental exploration and detection, Zhao et al. [14] developed
MSRBOTS, a search and rescue robot system tailored for underground mines comprising two
explosion-proof robots and an Operator Control Unit (OCU), all connected by a kilometer-long
fiber optic cable for up to 2 km of tandem communication. Equipped with sensors, cameras,
audio systems, and a unique robotic arm for obstacle removal, these robots can be operated
remotely or autonomously to gather and relay environmental data. This system outperforms
most other robots in water handling, obstacle clearing ability, and durability, and it has received
certification from safety approval and certification centers. However, it has limited mobility
and its size and weight are considerable. The designs of the robotic arm and the interface of
the OCU require further optimization. Fan et al. [13] introduced a mobile robot equipped
with an electronic nose for emergency gas identification and mapping. Featuring unsupervised
learning for gas model updating, the robot integrates detection, discrimination, and mapping
modules for comprehensive gas analysis, which are supported by radar, cameras, and scanners
for enhanced awareness. It can perform online gas sensing tasks in unknown environments
with strong adaptability, high efficiency, and high accuracy. In the field of robotics applications,
it is imperative to ensure that sensors possess intrinsic safety, which presents a challenge for
search and rescue robot systems.

In terms of environmental mapping, Loutfi et al. [53] introduced a method for envi-
ronmental mapping using mobile robots equipped with gas sensors aimed at monitoring
and safety applications. By incorporating spatial data from laser rangefinders, they created
detailed maps showing the distribution of various odors in large indoor and outdoor
settings. This approach, relying on the gas sensors’ transient responses for odor detection,
facilitated the generation of multilayer maps that provide insights into gas distributions
across different environments. While effective in broad settings and approximating man-
ual survey results, the technique faces hurdles in distinguishing specific odor mixtures
and requires a deeper analysis of gas sensor behaviors. Hernandez Bennetts et al. [51]
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developed a system for identifying and mapping multiple gases using a mobile robot fitted
with a range of nonselective sensors. By leveraging an array of metal oxide sensors and
probabilistic algorithms, this method effectively models gas distributions in uncontrolled
environments. It uniquely applies Photoionization Detectors (PIDs) to refine gas concen-
tration estimates and distribution models for each detected compound. This adaptive
approach allows for the creation of distinct models and maps for various analytes, thereby
improving prediction accuracy through PID sensor calibrations. Despite its adaptability to
complex scenarios, challenges in experimental consistency, data collection, and the static
nature of generated maps due to environmental variability highlight areas for ongoing
research and development.

Table 4 compares the advantages and disadvantages of different control technologies
used in robots involving gas sensors across various scenarios.

Table 4. In the field of robotics control technologies, comparisons of the advantages and disadvantages
of different methods involving gas sensors across various scenarios.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Navigation Tracking

Control Method for Gas/Odor
Plume Tracking Robots [50]

Significantly improved
tracking performance, thus

overcoming the limitations of
gas sensors.

Using other types of sensors
could achieve faster response

times and lower
power consumption.

Mobile Robot Navigation
Method for Odor/Sound

Source Searching [52]

Enhanced perception and
reaction to the environment.
Capable of performing more
complex tasks, with stronger

collaboration and information
sharing capabilities.

Natural disturbances may
impact navigation

performance.

Environmental Exploration

Remote Sensing Search and
Rescue Robot System

(MSRBOTS) Designed for
Coal Mine Environments [14]

Strong water-crossing ability,
obstacle clearance capability,

and durability.

Limited maneuverability,
large size and weight, the

design of the robotic arm and
the interface of the operation

control unit need
further optimization.

Method for Gas Detection and
Mapping in Emergency

Response Scenarios by Mobile
Robots [13]

Strong adaptability, high
efficiency, and accuracy.

Ensuring intrinsic safety of
sensors poses a challenge.

Environmental Mapping

Method for Mapping Gas
Distribution of Multiple Odor

Sources [53]

Suitable for large, unmodified
environments, thus achieving

effects similar to
manual operations.

Untrained systems face
challenges in classifying

specific mixtures of odors.

Method of Combining
Multiple Nonselective Gas

Sensors on Mobile Robots [51]

Improved prediction accuracy
through the incorporation of

calibration factors of
PID sensors.

Data collection process is
challenging, the accuracy of

gas distribution needs
improvement, and the

distribution maps are static.

2.5. Force Sensors

Force sensors play a pivotal role in the realm of robotic control, thus boasting a wide
array of applications. Over the past seven decades, significant advancements have been
made in the study of multiaxis force sensors. These sensors have been extensively applied
under various requirements and conditions, with prevalent sensitive element technologies
encompassing resistive strain measurement [54,55], optical strain measurement [56], semi-
conductor strain gauges [57], and capacitive induction [58]. Depending on their structural
design, multiaxis force sensors can be classified into 3-DOF force sensors [59,60], 6-DOF
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sensors [61], column-type force sensors [61], beam–column-type force sensors [62], and
Stewart platform force sensors [63]. Within robotic control, force sensors are broadly used
for force control and feedback, human–robot cooperation, object gripping and manipula-
tion, assembly and machining tasks, and medical surgeries.

Regarding force control and feedback, Xu et al. [4] developed a hybrid force control
strategy for robotic belt grinding that combines active and passive approaches to improve
turbine blade manufacturing. By using a six-dimensional force/torque sensor with a PI/PD
controller for active control and a one-dimensional sensor with a PID controller for passive
control, this method effectively reduces grinding imperfections and inaccuracies. The inte-
gration of a Kalman filter enhances data fusion, thereby optimizing control precision and
efficiency while minimizing interference. Despite its effectiveness, particularly in enhanc-
ing processing stability, the approach faces difficulties with thin-walled blades and complex
shapes, thus indicating a need for further refinement in precision, system simplification,
and cost reduction. Boudaoud et al. [64] introduced a model and optimal force control
for a nonlinear electrostatic microgripper equipped with a force sensor for manipulating
microglass balls. After assessing the microgripper’s linear range, they proposed a nonlinear
model and an optimal force feedback controller using a Kalman filter to enhance signal
accuracy. This method achieves precise force control, thereby ensuring reliable microob-
ject handling with improved force resolution. However, nonlinear dynamics introduce
challenges in system stability and predictability, with concerns over complexity, cost, and
performance under varied conditions.

With respect to human–robot collaboration, Wang et al. [65] presented a novel ap-
proach for compensating load and calculating load information in upper limb exoskeletons
using a six-axis force/torque sensor. By measuring the force and torque across the ex-
oskeleton’s links and employing a compensator within the controller, this method allows
operators to handle varying weights with consistent human–machine interaction forces.
It also enables accurate determination of the load’s weight and center of gravity, which
is vital for the stability of full-body exoskeletons. This method achieved effective load
compensation and strength enhancement, along with precise load information computation,
thereby demonstrating promising application potential. However, the complexity and cost
of this system are relatively high, thus necessitating further validation in more complex
and variable environments. Li et al. [66] introduced a collision detection system for robots
utilizing base-mounted force/torque sensors to compute reaction forces without the need
for joint friction modeling. Through a detailed procedure for dynamic model identification
and a compensation technique for sensor signal coupling, this method offers improved ac-
curacy for full-body robotic detection. This approach enhanced detection accuracy, thereby
enabling full-body robotic detection suitable for advanced collision response strategies
with high sensitivity and rapid detection capabilities and providing an accurate dynamic
model. However, the method has not yet accurately determined collision locations, which
may limit its application scope and effectiveness of response strategies, and more complex,
effective collision response strategies require further development and validation.

In terms of gripping and manipulation, Ma et al. [67] introduced a robotic system
designed for the precise assembly of small parts, thereby incorporating microvision and
force sensing technologies. The setup includes an industrial robot equipped with a vacuum
suction tool, three cameras for spatial and detailed component positioning, and a micro
force sensor for insertion feedback. This system utilizes image-based visual servoing
for component alignment and a force-guided approach for insertion, thus streamlining
the assembly process while accommodating various component shapes. This system
enhanced assembly efficiency and reduced operational complexity, thus demonstrating
strong adaptability to irregular components. However, efficiency during the insertion
phase of assembly remains to be improved, and the alignment accuracy needs enhancement.
Sanchez et al. [68] proposed a method of blind manipulation of deformable objects based
on force sensing and finite element modeling. This method senses and manipulates the
deformation of soft objects using a single force–torque sensor attached to the end of a
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robotic arm. Instead of relying on a vision system, the method simplifies manipulation
by controlling the position of individual postures on a grid, thereby achieving precise
posture accomplishment. This approach possesses a certain degree of precision, but the
consistency between the actual object deformation and model estimation is affected due to
the difficulty in directly obtaining each object’s physical parameters. Moreover, there are
certain limitations in accuracy.

Regarding assembly and machining tasks, Garcia et al. [5] introduced a dual-arm
robot control device for surface treatment, thereby enabling the coordinated use of dual
robot arms—one to hold the workpiece and the other equipped with a processing tool. The
system allows operators to control the movement of the tool across the workpiece surface
remotely, with a force sensor ensuring optimal pressure and orientation. Designed with
operational constraints to prevent workspace breaches and collisions, this system marries
the precision of automation with the flexibility of manual control. This system exhibits
robust cooperative performance, thereby balancing the advantages of automation with
user control. However, the operation is relatively complex for users, and the user interface
requires further optimization to make remote operations more intuitive. Mohammad
et al. [69] developed a dual-scale robotic system for polishing featuring a low-inertia
force-controlled end effector for improved precision. The end effector, part of a larger
microrobotic unit, utilizes a linear actuator for compliant tool movement, with an integrated
force sensor providing real-time feedback for force adjustments. This setup achieved
superior force tracking, thus reducing overshoot and tracking error and enhancing polishing
performance. While it demonstrates flexibility and compatibility, extending its capabilities
to multiaxis force control remains an area for future development.

With respect to medical surgery, Beelen et al. [70] crafted a force feedback control
strategy for surgical remote manipulators to address and neutralize shunt dynamics effects,
thereby enhancing operation precision and safety in medical surgeries. By compensating for
parallel dynamics through a novel filter construction and employing a dual-layer method
for time domain passivity, this approach significantly improves interaction fidelity with
tissues, thereby offering better temporal stability and reducing injury risks. Despite its
advancements in surgical precision, the technique encounters obstacles with sensor noise,
bilateral stability concerns, and the capabilities of actuators and controllers, alongside a
limitation in achieving comprehensive multiaxis control. Ebrahimi et al. [8] developed
an adaptive control system for robot-assisted eye surgeries to safeguard against excessive
scleral force. Utilizing a force-sensing device with fiber Bragg grating sensors on a robotic
platform, this system employs adaptive control strategies to maintain the force within
safe limits, which is guided by defined trajectories. The inclusion of a piezoelectric-driven
platform to simulate surgical disturbances further underscores its utility in enhancing
surgical safety and precision, most notably in retinal procedures. This approach enhances
the precision and safety of retinal surgery, thus successfully reducing the force exerted on
the eyeball. However, this method has training requirements for new users—implying
additional time and resource investment—and further modifications and improvements are
needed to enhance the acceptance and comfort of surgeons. Moreover, its application range
is relatively limited, and research on users with existing robotic experience is insufficient.

Table 5 compares the advantages and disadvantages of different control technologies
used in robots involving force sensors across various scenarios.
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Table 5. In the field of robotics control technologies, comparisons of the advantages and disadvantages
of different methods involving force sensors across various scenarios.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Force Control

Mixed Active/Passive Force
Control Strategy for Robotic

Belt Grinding [4]

High precision and efficiency,
strong adaptability, improved

processing stability.

Lower machining precision
for complex parts, complexity

and cost need reduction.

Modeling and Optimal Force
Control Method for Nonlinear

Electrostatic
Microgrippers [64]

Enhanced gripping force
resolution, higher reliability,

accuracy, practicality,
and applicability.

Stability and predictability
may be affected by nonlinear
behavior, complexity, and cost

need reduction.

Human–Robot Collaboration

Multijoint Load
Compensation and Load

Information Calculation for
Upper Limb Exoskeletons [65]

Effective load compensation
and strength enhancement. High complexity and cost.

Robotic Collision Detection
Method [66]

Improved detection accuracy,
high sensitivity, and rapid

detection capability; accurate
dynamic model provided.

Inability to precisely
determine collision location.

Object Manipulation

Efficient Assembly Method for
Small Components by
Automatic Precision

Robots [67]

Increased assembly efficiency,
reduced operational
complexity, strong

adaptability to irregular parts.

Lower efficiency in assembly
insertion phase; alignment

accuracy needs improvement.

Blind Manipulation Method
for Deformable Objects [68]

Certain precision in the
method.

Consistency and accuracy
limitations between actual

object deformation and
model estimation.

Machining Tasks

Dual-Arm Robot Control
Device for Surface Treatment

Tasks [5]

Powerful cooperative
performance; balanced

advantages of automation and
user control.

Relatively high operational
difficulty; user interface needs

further optimization.

Low-Inertia Effect
Force-Controlled End Effector

for Robot Polishing [69]

Reduced overshoot, stable
time, and tracking error,

excellent force tracking ability,
high flexibility, and

compatibility.

Further research needed for
multiaxis force control

implementation.

Medical Surgery

Force Feedback Control
Design for Nonideal

Teleoperators [70]

Improved precision, reduced
risk of accidental damage,

enhanced temporal stability of
interaction.

Affected by force sensor noise,
bilateral stability, and

limitations of actuators and
controllers; incomplete

implementation of multiaxis
control.

Adaptive Control Method to
Enhance Scleral Force Safety

in Robot-Assisted Ophthalmic
Surgery [8]

Improved precision and safety
in retinal surgery; successfully
reduced force on the eyeball.

Requires additional time and
resources; further

improvements needed to
increase acceptance and

comfort for surgeons.

2.6. LiDAR

LiDAR (Light Detection and Ranging) is a technology that uses laser pulses to measure
distance and speed, and it is widely utilized in robotic control and navigation systems.
Depending on their operating modes, LiDAR can be classified into several main types:
solid-state LiDAR [71], flash LiDAR [72], phase-shift LiDAR [73], and frequency-modulated
continuous-wave (FMCW) LiDAR [74]. In robotic control, LiDAR is employed for navi-
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gation and positioning, environmental perception, target recognition and tracking, and
obstacle detection and avoidance.

Regarding navigation and positioning, Li et al. [75] introduced an innovative nav-
igation strategy for a four-wheeled legged robot by leveraging OpenStreetMap (OSM)
data, 3D LiDAR, and CCD cameras to address real-world environmental variances. This
hybrid approach utilizes OSM for global route planning, enhanced by Dijkstra’s algorithm,
and employs sensor fusion for detailed local path adjustments, thereby ensuring accurate
obstacle navigation. This method enables real-time road feature detection, thus enhancing
navigation accuracy and adaptability and improving the efficiency and safety of path
planning. However, the information provided by OSM may be insufficient for complex
planning tasks, and future work needs to incorporate additional semantic knowledge, such
as traffic signs and building shapes, to enhance the practicality of the navigation frame-
work. Jiang et al. [10] proposed a precise autonomous navigation system for greenhouse
robots combining 3D and 2D LiDAR with SLAM to streamline real-time localization and
environmental mapping. The integration of various sensors facilitates a comprehensive
navigation framework, thus utilizing Dijkstra for global path planning and DWA for agile
local maneuvering. This method enhances the navigation system’s accuracy and envi-
ronmental perception, increases safety, and reduces computational burden. The system
also has a degree of scalability. However, the system’s navigation speed and accuracy are
closely linked, with possible sacrifices in navigation accuracy at high speeds, and different
speeds require the reconfiguration of navigation parameters, thus increasing operational
complexity. Moreover, the system’s application scope is limited and may not suit more
complex tasks.

With respect to environmental perception, Rovira-Más et al. [11] proposed an en-
hanced perception method for agricultural robot navigation specifically for navigating
robots in field environments like vineyards, where GPS reliability falters. This strategy
integrates 3D vision, LiDAR, and ultrasonic sensors to form an Enhanced Perception Ob-
stacle Map (EPOM), thus improving navigation precision and obstacle avoidance. This
method, integrating multiple sensing technologies, improves navigation consistency and
safety while using existing sensors for self-assessment, thereby enhancing the system’s
practicality and flexibility. Despite its promising capabilities, the method’s robustness
across diverse conditions remains to be thoroughly validated, thus pointing toward a need
for expanded testing and refinement in self-assessment techniques. Tasneem et al. [76]
introduced an adaptive foveation method for scanning depth sensors, thus enabling the
dynamic focusing of sensor resolution on areas of interest within its field of view. This ap-
proach, through strategic resolution allocation and deconvolution, allows for the creation of
high-resolution “artificial foveae” that adapt to maximize data collection efficiency. When
applied to technologies like TOF and LiDAR, it introduces possibilities for enhanced SLAM
algorithm performance and energy-efficient scanning. Combined with variable angular
resolution and robot motion, this method has the potential to enhance the efficiency of
SLAM algorithms. However, further improvements are needed to capture and process
dynamic scenes and robot motion in real-time, and more research is required to prove its
advantages in capture timing and robot motion efficiency over traditional SLAM methods.

Target detection and tracking, Álvarez-Aparicio et al. [77] introduced a lidar-based
method for detecting and tracking people, employing a single lidar sensor alongside the
People Tracker software (PeTra, License: L-GPL v3), which incorporates a convolutional
neural network (CNN) for identifying human legs in varied environments. The use of a
Kalman filter enables the system to maintain consistent tracking of individuals across time.
This method has shown efficacy in complex scenarios involving up to two individuals and
is adaptable to platforms with limited computational power. However, its performance
may be compromised in scenarios with more than two individuals. Manuel Guerrero-
Higueras et al. [78] have proposed a full convolutional neural network utilizing 2D lidar
scanning for tracking individuals within mobile robots, a crucial advancement for safety
in cluttered environments. The PeTra tool they developed, based on an offline-trained
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convolutional neural network, is capable of effectively tracking legs within these complex
environments. This system has potential applications in enhancing navigation, promoting
human-robot interaction, and in safety-oriented applications. It utilizes lidar data to
generate two-dimensional occupancy maps, which are then used in the neural network
classifier. Nevertheless, the real-time performance of this system necessitates further
optimization, and the current data preprocessing methodology may impact its effectiveness,
requiring enhancements for improved accuracy.

In terms of obstacle detection and avoidance, Chen et al. [79] developed a LiDAR-
based, real-time obstacle avoidance system that dynamically adjusts to the latest robot
position and environmental changes. It uses multiconstraint functions to set subgoals
within the exploration area, thereby employing an ant colony optimization algorithm for
continuous path reevaluation. This strategy optimizes the use of current LiDAR data
and environmental insights to efficiently plan trajectories, thus showcasing strong real-
time capabilities while minimizing resource demands. Nonetheless, the approach lacks
in addressing the dynamic behavior of obstacles and requires enhancements for complex
settings, along with a need for better parameter adjustment methods and potential applica-
tion in drone navigation for 3D space exploration. Mohd Romlay et al. [80] introduced an
innovative navigation system for the visually impaired using a Fuzzy Logic Controller cou-
pled with Optimal Reciprocal Collision Avoidance (FLC-ORCA) for maneuvering through
obstacles. This system, leveraging detailed environmental data from advanced LiDAR sen-
sors, predicts and navigates around obstacles without centralized communication, thereby
relying on fuzzy logic models to account for object motion. While it significantly improves
obstacle avoidance, it requires further refinement for early collision detection and should
be integrated with other navigation aids for comprehensive functionality.

Table 6 compares the advantages and disadvantages of different control technologies
used in robots involving LiDAR across various scenarios.

Table 6. In the field of robotics control technologies, comparisons of the advantages and disadvantages
of different methods involving LiDAR across various scenarios.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Navigation and Positioning

Autonomous Navigation
Method for Quadrupedal

Robots [75]

Real-time detection enhances
navigation accuracy and

adaptability, improves path
planning efficiency and safety,

and has good robustness.

May not be sufficient for
complex planning tasks;

needs increased practicality.

Autonomous Navigation
System for Greenhouse

Mobile Robots [10]

Improves navigation precision
and environmental perception,
enhances safety and reduces

computational load, has
certain scalability.

Navigation precision may be
sacrificed at high speeds, and
navigation parameters need to
be reset for different speeds.

Environmental Perception

Enhanced Perception Method
for Agricultural Robot

Navigation [11]

Combines multiple sensing
technologies to improve

navigation consistency and
safety; enhances system

practicality and flexibility.

Real-world application
effectiveness needs to

be validated.

Adaptive Foveation Method
for Scanning Depth

Sensors [76]

Offers more flexible data
collection and has the

potential to improve SLAM
algorithm efficiency.

Real-time performance needs
improvement; advantages in

capture time and robot motion
efficiency to be verified.
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Table 6. Cont.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Target Tracking

Method for Person Detection and
Tracking Using LiDAR

Sensors [77]

Performs well in complex
scenarios with no more than two

people; has a lower computational
burden.

May perform poorly in scenarios
with more than two people.

Method for Tracking People in
Mobile Robots Based on Fully
Convolutional Networks [78]

Has certain applicability.

Real-time performance needs
further optimization; data

preprocessing methods need
improvement to

enhance accuracy.

Obstacle Detection

Real-Time Multiconstraint
Avoidance Strategy Based on

LiDAR [79]

Good real-time performance,
reduces computational and

storage costs, lowers complexity.

Dynamic characteristics of
obstacles not fully considered;

needs better methods to fine-tune
cost function parameters.

Robot Navigation Assistance
Device Using Fuzzy Logic

Controllers [80]

Significantly improves obstacle
avoidance capability.

Limited as a standalone
application; needs integration

with other navigation systems for
best performance.

2.7. Infrared Sensors

Infrared sensors play a pivotal role in the field of robotic control, thus primarily
utilizing infrared radiation (IR) to detect and measure the characteristics of objects. Based
on their working modes, infrared sensors related to robotic control can be categorized into
the following types: infrared thermal imagers [81], infrared proximity sensors [82], infrared
photodetectors [83], and infrared spectroscopy sensors [84]. In robotic control, infrared
sensors are used for navigation and mapping, distance measurement, human detection and
tracking, posture control, and more.

Regarding navigation and localization, Xu et al. [85] have developed a novel robotic
rat autonavigation system based on finite state machines. This system integrates inertial
sensors and infrared thermal sensors to optimize behavior by analyzing the movements
of the robotic rat and recognizing infrared targets. Sensor data are fed into a finite state
machine, which is responsible for generating stimulus patterns to control the robotic rat.
This system offers an innovative solution in the Search and Rescue (SAR) domain, thus
leveraging the advantages of biomimicry and mechanical control. However, its design
and implementation are complex, and it is currently primarily applied in specific SAR
environments, with further research required to enhance its reliability and practicality.
Viejo et al. [86] developed a 3D SLAM technique for robots that integrates visual cues
with Growing Neural Gas (GNG) networks using data from infrared and Kinect cameras.
This method enhances robot self-localization by applying GNG networks to 3D spatial
data and refining movement tracking through advanced 3D registration techniques. By
effectively merging 3D spatial information with 2D visual features, it achieves significant
improvements in mapping accuracy and data processing efficiency. However, the compu-
tational time of the GNG algorithm is lengthy and needs further optimization for speed
improvement.

With respect to distance measurement, Pierlot et al. [87] devised the Beacon-Based
Angle Measurement Sensor (BeAMS), which is a novel localization tool for mobile robots
using modulated infrared signals for precise angle measurement and beacon identification.
BeAMS stands out for its real-time tracking capabilities, compactness, and energy efficiency,
thereby achieving a high data acquisition rate suitable for dynamic applications. Its
central estimator enhances the accuracy of beacon angle calculations, thus contributing
to the system’s reliability. However, the automatic gain control mechanism introduces
errors, and localization accuracy is susceptible to varying environmental conditions [88].
Mesa et al. [89] developed a distance estimation approach that harnesses the power of
MultiLayer Perceptrons (MLPs) combined with a trio of reflective optical distance sensors—
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visible light, ultraviolet, and near infrared. This sensor fusion model is designed to extend
the measurement capabilities and ensure redundancy, thereby improving accuracy and
reducing susceptibility to interference by compensating for different radiation effects. The
MLP framework allows for customization with multiple configurations, thus enhancing
the system’s adaptability for embedded applications. Despite its benefits, the necessity for
extensive MLP pretraining could pose challenges in terms of time and resource allocation.

In terms of human detection and tracking, Liu et al. [90] developed a mobile robot-
assisted system for detecting elderly falls using Pyroelectric Infrared (PIR) sensors for body
contour imaging and posture recognition. This innovative approach uses PIR sensors not
just for motion detection but to create detailed contour images for posture analysis, thus
employing sparse representation techniques for fall detection. This cost-effective method is
unaffected by lighting conditions but relies on frontal capture, with data collection possibly
limited by participants’ postures. Additionally, environmental heat sources may interfere
with the infrared imaging, thus performing better in more controlled settings like nursing
homes. Benli et al. [91] proposed a Thermal Multisensor Fusion (TMF) method aiming
to achieve human-centric tracking through thermal vision and human thermal signals.
This method combines omnidirectional infrared sensors and stereoscopic infrared sensors,
where the former provides a broad field of view for detecting human targets, and the latter
determines the distance of the human body in specific directions. By fusing data from these
two sensors, the system can more accurately predict target distance. The method achieves
high-precision tracking through TMF stereoscopic distance results on multiple platforms,
thus effectively improving localization accuracy. It enables tracking independent of lighting
conditions and can track targets in a wider field of view. However, this method is currently
limited to tracking a single target and requires increasing the number of cooperative robots
equipped with TMF and introducing other types of sensors to enhance accuracy.

Regarding posture control, Chou et al. [92] introduced a biomimetic stair-climbing
method based on a hexapod robot. Utilizing a two-phase process involving the initial
body tilt for front leg positioning and subsequent center of mass adjustment, this method
integrates infrared rangefinders and inclinometers for stair detection and body tilt measure-
ment, respectively. This approach ensures the robot’s effective adaptation to various stair
dimensions, thereby enhancing its autonomous climbing ability. This method endows the
robot with strong autonomous climbing capabilities and good environmental adaptability,
but its data collection may be limited by the viewing angles, and its design and implemen-
tation are relatively complex. Additionally, the robot’s autonomous movement in broader
environments requires improvement. Li et al. [93] proposed a method for the real-time
detection of gait events in lower limb exoskeleton robots using infrared distance sensors.
By using smart shoes integrating three infrared distance sensors, stable distance signals are
obtained and converted into effective foot posture information. This system uses the gap
between the heel and toe for real-time online detection of six gait events throughout the
gait cycle. The system employs an online detection algorithm using a local search window
and fixed threshold for minimal time delay and lower computational load. This method
enhances the accuracy, detection rate, and response speed of gait event detection and can
be effectively integrated with exoskeleton robot systems. However, this system is currently
mainly applicable to regular gait patterns, with further research and optimization needed
for more complex gait modes.

Table 7 compares the advantages and disadvantages of different control technologies
used in robots involving infrared sensors across various scenarios.
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Table 7. In the field of robotics control technologies, comparisons of the advantages and disadvantages
of different methods involving infrared sensors across various scenarios.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Navigation and Localization

Novel Autonomous Navigation
System for Robot Mouse Based on

Finite State Machines [85]

Fully utilizes the advantages of
biomimicry and

mechanical control.

Design and implementation are
relatively complex; reliability and
practicality need to be improved.

Method Combining Visual
Features and Growing Neural Gas
Network for Robot 3D SLAM [86]

Effectively reduces camera errors,
reduces data amount, and

improves parallel processing.
Enhances the accuracy and

efficiency of feature extraction.

GNG algorithm’s computation
time is long; needs further

optimization for speed
enhancement.

Distance Measurement

Beacon-Based Angle
Measurement Sensor (BeAMS) for

Mobile Robot Localization [87]

High acquisition frequency
(10Hz), strong real-time capability,
compact, low power consumption,

flexible and easy to use, and
high accuracy.

Localization accuracy may be
affected by environmental

diversity changes.

Distance Estimation Method
Combining Multilayer Perceptron

(MLP) and Reflective Optical
Sensors [89]

Low cost, high accuracy and
anti-interference ability, flexible
architecture choice, suitable for

embedded systems.

The system requires pretraining of
MLP, which may consume

additional time and resources.

Human Tacking

Mobile Robot-Assisted Contour
Imaging and Body Posture

Recognition Method for Elderly
Fall Detection [90]

Cost-effective; unaffected by
lighting conditions.

Relies on frontal capture, and
environmental heat sources may
interfere with infrared imaging.

Human Tracking with Thermal
Multisensor Fusion (TMF)

Method [91]

High accuracy, achieves tracking
independent of lighting

conditions, and can track targets
in a broader field of view.

Limited to tracking a single target;
accuracy has room for

improvement.

Posture Control

Bionic Stair Climbing Method
Based on Hexapod Robots [92]

Endows robots with strong
autonomous climbing capabilities

and good
environmental adaptability.

Data collection may be limited by
viewing angles, and design and

implementation are
relatively complex.

Method for Real-Time Detection
of Gait Events in Lower Limb

Exoskeleton Robots [93]

Improves the accuracy, detection
rate, and response speed of gait

event detection.

Further research and optimization
are needed for more complex

gait patterns.

2.8. Tactile Sensors

Tactile sensors, as a key technology for robots to perceive their external environment,
have received widespread attention in the last decade. These sensors, by measuring the in-
teraction between the robot and its environment, emulate biological tactile perception. The
primary aim of tactile sensing technology is to detect or perceive physical quantities during
robot–object or robot–environment interactions to gather information about objects and
environments or to complete specific operational tasks. Tactile sensors are pivotal in robotic
control applications, as they endow robots with human-like tactile capabilities, thereby
enabling them to perceive and interact with their operational environment more precisely
and enhancing their capacity to execute complex tasks with increased safety and effi-
ciency [94–97]. Since the 1970s, research on robotic tactile sensors has progressed alongside
the evolution of robotic technology—undergoing nearly fifty years of development—which
can be segmented into three phases: the 1970s, the 1980s to the 1990s, and from 2000 to
the present.

Over the past several decades, researchers have explored a multitude of approaches
to create artificial tactile sensations [98–101]. These include various types of flexible and
stretchable sensors such as resistive [102], piezoresistive [103,104], capacitive [105], opti-
cal [106], piezoelectric [107,108], and acoustic sensors [109]. Whether used independently
or in combination, these sensors have made significant contributions to simulating human
tactile perception, though there still exists a considerable gap compared to the tactile per-
ception capabilities of humans. Some key developments in tactile sensing or electronic
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skin (e-skin) in robotics have introduced new possibilities in the field of robot control.
These include surface texture analysis, force control and feedback, object recognition and
classification, and gripping and manipulation control.

Regarding surface texture analysis, Wang et al. [94] crafted a novel tactile sensor array
capable of distinguishing surface textures and grooves during sliding actions by employing
Finite Element Modeling (FEM) and phase delay algorithms for in-depth analysis. This 3 ×
3 multilayer sensor array effectively captures variations in normal forces and utilizes phase
delay algorithms to discern different textures and inclinations. This method enhances the
precision of sliding detection and surface texture recognition, and the structural design
of the sensor array is relatively complex, thus requiring further research and algorithmic
optimization for complex surface textures. In a subsequent study, Wang et al. [110] explored
the use of a wearable tactile sensor array for advanced surface texture recognition, thereby
employing a combination of the WMB model and artificial neural networks. The WMB
model, integrating the W-M function with beam bundle theory, aids in reconstructing
quasi-three-dimensional surface profiles and simulating force fluctuations during sliding.
By analyzing Characteristic Frequency Clusters (CFCs) and employing neural networks
for data classification, this method achieves high classification accuracy but is complex
in model and algorithm, thus making it primarily suitable for specific types of surface
textures. Future research should explore the mechanical responses of tactile sensor arrays
in robotic hand contact, compression, and sliding motions.

With respect to force control and feedback, Deng et al. [95] proposed a method to
stabilize objects by controlling the gripping force of a multifingered robotic hand through
tactile sensing, thereby enabling it to stabilize objects with precise grip force adjustments
based on tactile feedback. Utilizing a deep neural network to process tactile data for ma-
terial and contact event recognition and a Gaussian mixture model for force and location
estimation, the system dynamically modulates the gripping force. The system effectively
integrates multifunctionality and efficient tactile detection capabilities for precise force
control. However, its limitation lies in only sensing local contact information between the
robotic hand and the object, thereby necessitating integration with other sensing technolo-
gies (like vision or force/torque sensors) to enhance perceptual capabilities. Armleder
et al. [111] introduced an innovative force control system for human–robot interaction,
thereby employing a large-scale robotic skin for full-body tactile feedback. This system
facilitates complex physical collaborations by providing sensitive touch feedback and en-
abling multipoint contact management and adaptive interaction with humans and objects.
Through the integration of tactile and proximity data, the robot can perform a variety of
tasks with enhanced safety and efficiency. Despite its promising application in interactive
scenarios, the system’s adaptability to diverse interaction types remains to be fully explored,
thus indicating a need for further refinement to extend its utility across a wider range of
human–robot collaboration contexts.

In terms of object recognition and classification, Pohtongkam et al. [96] unveiled a
tactile recognition system for humanoid robots featuring a sophisticated sensor array and
Deep Convolutional Neural Networks (DCNNs) for object classification. Their palm-sized
sensor array, crafted using PCB technology and conductive materials, facilitates detailed
pressure distribution mapping. By evaluating 19 different DCNN architectures for identify-
ing objects across 20 categories, they demonstrated the potential for enhanced tactile-based
object recognition. Despite its high accuracy, the system demands considerable compu-
tational efforts and extensive training, thereby highlighting the need for efficient image
processing and machine learning strategies to optimize performance. Pastor et al. [112]
introduced an innovative approach for tactile object recognition through robotic palpation,
thereby employing 3D convolutional neural networks to process pressure image sequences
as 3D tactile tensors. This technique, which is capable of discerning both external and
internal object characteristics under varying grasp forces, leverages tactile sensor arrays
for detailed pressure imaging. Named 3D TactNet, their CNN model effectively identifies
diverse and complex object types, including deformable items. The system recognizes a
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variety of object types, including complex and deformable objects, thus demonstrating high
recognition performance and adaptability. However, its design and training process are
relatively complex, and it may misclassify very similar categories. Future research needs to
explore multimodal perception strategies and new dynamic methods.

Regarding grasping and manipulation control, Stachowsky et al. [97] developed a
novel sliding detection and correction approach to optimize robotic gripping force, thus
making it adaptable to a variety of grippers and not reliant on prior knowledge of the
object’s properties. This method employs a sliding signal detector to assess the extent of slip
and a force setpoint generator to adjust the grip strength accordingly. Aimed at preventing
slippage while avoiding unnecessary force, it proves particularly beneficial for handling
fragile items. The technique has shown broad applicability and effectiveness in preventing
slip without excessive force across multiple tests. Nonetheless, its effectiveness is contingent
on certain conditions, thereby indicating a need for further enhancements to ensure stability
across all manipulation tasks. Calandra et al. [113] introduced an innovative robotic
grasping technique that leverages both visual and tactile inputs to iteratively refine gripping
actions. By developing an action-conditional model that learns from initial sensory data,
their system predicts the success of different regrasping strategies, thus allowing for the
iterative selection of optimal actions. This deep learning approach, trained on thousands of
trials, simplifies the development of grasping strategies by circumventing the complexities
of tactile sensor calibration and contact force modeling. While the method successfully
merges visual and tactile data for improved grasp performance, its current limitation to
single-step predictions and its lack of fine manipulation capabilities before gripping or in
response to slippage during lifting points to areas for future development. The goal is to
apply this model in more challenging environments to broaden its application scope.

Table 8 compares the advantages and disadvantages of different control technologies
used in robots involving tactile sensors across various scenarios.

Table 8. In the field of robotics control technologies, comparisons of the advantages and disadvantages
of different methods involving tactile sensors across various scenarios.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Surface Texture Analysis

Tactile Sensor Array for Sliding
and Groove Surface Recognition

in Sliding Motion [94]

Improved precision in sliding
detection and surface
texture recognition.

Structure design is relatively
complex, and recognition of
complex surface textures still

requires algorithm optimization.

Method for Recognizing Surface
Textures [110]

Achieved high
classification accuracy.

High complexity and currently
mainly applicable to specific types

of surface textures.

Force Control

Method for Controlling the
Grasping Force of Multifinger

Grippers to Stabilize Objects [95]

Effectively integrates
multifunctionality and efficient
tactile detection, thus achieving

precise force control.

Can only perceive local contact
information between the gripper
and objects; needs to be combined
with other sensing technologies to

enhance perception.

Human–Robot Interaction Force
Control System Based on

Multimodal Robot Skin [111]

Demonstrated applicability in
real-world applications.

Limited to handling a finite type
of user interactions; the system
needs further optimization for
broader application scenarios.

Object Recognition

Tactile Recognition System for
Humanoid Robots Based on Deep
Convolutional Neural Networks

(DCNNs) [96]

Improved object recognition
accuracy and efficiency.

The system has high complexity,
thus requiring substantial

computational resources and
training time.

Robotic Palpation Tactile Object
Recognition Method Based on 3D

Convolutional Neural
Networks [112]

Showed high recognition
performance and adaptability.

The design and training process is
relatively complex, and

misclassification may occur in
very similar categories.
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Table 8. Cont.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Grasping Task

Slip Detection and Correction
Strategy for Adjusting Robot

Gripping Force [97]

Applicable to a wide range of
gripping scenarios, strong

universality, and effectively
eliminates slippage without

excessive force.

May not be suitable in some
special cases; further research is

needed to expand its stability
during operations.

Robot Grasping and Regrasping
Technique Integrating Vision and

Tactile Information [113]

Enhanced adaptability and
efficiency during the grasping
process, thus showing a high

success rate on various objects.

Can only perform single-step
predictions, and its actions are

relatively coarse, making it
possibly unsuitable for precise

object manipulation or slip
handling before grasping.

2.9. Electromyography (EMG) Sensors

Electromyography (EMG) sensors are devices designed to capture the electrical signals
generated by muscles during their activity [114,115]. Based on their operational principles
and application modes, they can be categorized into four primary types: surface EMG
sensors (sEMG) [116,117], intramuscular EMG sensors (iEMG) [118], multichannel EMG
sensors [119], and wireless EMG sensors [120]. Within the realm of robotic control, EMG
sensors are applied in the control of prosthetic limbs, robotic arms and hands, and the
operation of exoskeletons.

Regarding prosthetic limb control, Tavakoli et al. [121] have developed an innovative
control strategy for advanced prosthetic hands utilizing single-channel sEMG signals to
differentiate up to four discrete gestures. These gestures, encompassing fist clenching, hand
opening, wrist flexion and wrist extension, and facilitating the actuation of the prosthetic
limb’s grasping functions. Employing high-dimensional feature spaces coupled with sup-
port vector machine algorithms, this methodology enables the efficacious classification of
said gestures. Distinguished by its simplicity, rapidity, and cost-effectiveness, this system
is noted for its compactness, lower energy consumption, and enhanced user intuitive-
ness. Nonetheless, it may pose operational challenges to users under specific scenarios.
Furthermore, Cha et al. [122] have proposed a novel methodology that integrates EMG
signal classification with rule-based tactile feedback mechanisms for the control of robotic
prosthetic hands. This method employs convolutional neural networks (CNNs) for the
classification of EMG signals procured from subjects, thereby facilitating intent recognition.
Additionally, a wearable tactile feedback device has been conceptualized to provide users
with grasp force information pertaining to the robotic prosthetic. This integrated system,
integrating CNN models with tactile feedback devices, assures efficacious control over
the prosthetic hand while delivering intuitive feedback. Despite its notable precision and
accuracy, the considerable dimensions of the tactile feedback apparatus present operational
difficulties, and the prerequisite for extensive EMG signal classification training introduces
supplementary temporal costs.

With respect to robotic arm and hand control, Bouteraa et al. [123] introduced a
technique for the remote manipulation of robotic arms that integrates biofeedback, thereby
employing gestures captured by Kinect sensors and EMG signals for controlling robotic
hands while incorporating force feedback to enhance grasping actions. This system utilizes
visual and electromyographic signals for posture recognition and modulates grasping
intensity through a fuzzy logic system based on EMG signals, thereby achieving precise
trajectory tracking. This methodology amalgamates multiple sensing technologies, thus
ensuring high efficiency, stability, and robustness of operation. Future endeavors will focus
on optimizing control strategies to enhance system adaptability and user convenience.
Laksono et al. [124] have devised an upper limb robotic control scheme based on EMG
signals, which maps human elbow and shoulder movements to a two-degree-of-freedom
robotic arm, to facilitate human–robot collaboration and remote operation. By connecting
three EMG sensors to the brachioradialis, biceps brachii, and anterior deltoid muscles, this
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framework captures muscle activity signals to control the robotic arm’s motion. This archi-
tecture offers an effective method for the direct control of robots through human muscle
signals that is characterized by simplicity, low computational cost, rapid response, and
strong robustness. Future work will concentrate on enhancing control strategies through
pattern recognition technologies to improve system performance and adaptability. Zeng
et al. [125,126] proposed to use EMG signals to estimate a human user’s arm stiffness and
then developed a Dynamical Movement Primitives (DMPs)-based method that simulta-
neously models the human user’s movement and stiffness, thus enabling the transfer of
compliant manipulation skills from the human user to robots.

In terms of the operation of exoskeletons, Gui et al. [127] proposed an EMG-driven
torque estimation method for custom lower limb exoskeletons, thus enabling the adaptive
prediction of two-degree-of-freedom joint torques. Utilizing Radial Basis Function Neural
Networks (RBFNNs) and an enhanced Slotine–Li controller, this approach eliminates the
need for the calibration of traditional EMG torque models. The introduction of a dual
learning mechanism allows the system to adapt in real-time to variations in EMG signals,
thereby improving operational flexibility and accuracy. This adaptive strategy simplifies
the usage process and avoids frequent recalibration, thus demonstrating its potential and
convenience for practical applications. However, the system currently faces limitations in
addressing unknown Ground Reaction Forces (GRFs). Caulcrick et al. [128] have developed
a torque modeling technique for lower limb exoskeletons that integrates Mechanomyog-
raphy (MMG) and EMG signals, thereby aiming for more accurate on-demand assistive
control. Employing machine learning techniques such as linear regression, polynomial
regression, and neural networks for human joint torque prediction, they explored the
complementary and competitive advantages of MMG and EMG signals in exoskeleton
interaction. This method not only enhances torque estimation accuracy and stability but
also reveals potential applications in the rehabilitation of neuromotor disorders, with future
research directed towards expanding sensor networks to optimize system performance.

Table 9 compares the advantages and disadvantages of different control technologies
used in robots involving EMG sensors across various scenarios, and Table 10 compares the
advantages and disadvantages of various sensor types in robotic control applications.

Table 9. In the field of robotics control technologies, comparisons of the advantages and disadvantages
of different methods involving EMG sensors across various scenarios.

Application Scenario Technology/Method Name Advantages Disadvantages/Improvements
Needed

Prosthetic Limb Control

Prosthetic Hand Control
Technology Capable of

Recognizing Four Gestures [121]

Simple, fast, low-cost, more
compact system, lower energy

consumption, and more intuitive
user operation.

Users may find it difficult to
operate in certain scenarios.

Robotic Prosthetic Hand Control
Integrating EMG and Tactile

Feedback Devices [122]

High recognition precision
and accuracy.

The tactile device is large and
inconvenient to operate;

additionally, extensive training is
required for users, thus increasing

additional time costs.

Robotic Arm and Hand Control

Remote Manipulation Technology
for Robotic Arms with Integrated

Biofeedback [123]

High efficiency, stability,
and robustness.

The adaptability of the system
and the convenience of use for the

operator need to be improved.

Upper Limb Robotic Control
Scheme Based on EMG

Signals [124]

Simple operation, low
computational cost, rapid

response, strong robustness.

The performance and adaptability
of the system need

further improvement.

Operation of Exoskeletons

EMG Signal-Driven Torque
Estimation Method for Lower

Limb Exoskeletons [127]

High flexibility and accuracy;
possesses strong applicability.

There are limitations in dealing
with unknown Ground Reaction

Forces (GRFs).

Torque Modeling Technique for
Lower Limb Exoskeletons

Combining MMG and EMG
Signals [128]

Strong accuracy and high stability.
Awaiting optimization of system

performance through joint use
with other sensors.



Micromachines 2024, 15, 531 24 of 31

Table 10. Comparisons of the advantages and disadvantages of various sensor types in robotic control
applications.

Sensor Name Advantages Disadvantages

IMUs [9,17–21]

Low cost, small size, high flexibility, easy
installation, and low computational

requirements. Unaffected by environmental
factors, with strong robustness.

Limited accuracy, not suitable for
long-duration and long-distance scenarios.

Visual Sensors [1,2,6,7,12,28–32] High precision, strong stability, low latency,
and more energy-efficient.

Affected by lighting, obstructions, and
shadows.

Sound Sensors [3,38,39,41–43,45] High precision, low cost, easy deployment,
excellent compactness, and reliability.

Susceptible to noise in the environment,
limited coverage, and performance affected

by distance.

Gas Sensors [13,14,50–53] High efficiency and accuracy; strong
adaptability. Easily affected by environmental factors.

Force Sensors [4,5,8,64–70] High precision and efficiency, strong
adaptability, flexibility, and compatibility. Complex implementation and higher cost.

LiDAR [10,11,75–80] Strong real-time performance, high flexibility,
and good robustness.

Difficult to achieve both high precision and
speed in navigation applications; suboptimal

performance when used alone.

Infrared Sensors [85–87,89–93]

Strong real-time performance, compact, low
power consumption, low cost, flexible use,
high accuracy, and unaffected by lighting

conditions.

Limited by the angle of view, relies on frontal
capture, and environmental heat sources may

interfere with infrared imaging.

Tactile Sensors [94–97,110–113]
High recognition performance and

adaptability, strong universality, high accuracy,
and efficiency.

Complex implementation and needs to be
combined with other sensing technologies.

EMG Sensors [121–124,127,128]
Highly accurate and precise, with notable
flexibility and cost-effectiveness, alongside
swift responsiveness and robust stability.

Adaptability is somewhat limited, and the
operation is comparatively complex.

3. Applications

Over the past few decades, as sensor technology has increasingly integrated with
robotics, robot control techniques utilizing various sensors have been widely applied in
different fields. This section will introduce several typical applications of robot control
technologies using different sensors in fields such as quality inspection, minimally invasive
surgical assistance, and search and rescue. As demonstrated in Figure 2, we will not
elaborate further here.

3.1. Industrial Field

With the development of electronics, computer science, mechanical engineering, and
artificial intelligence, robots equipped with various sensors are playing an increasingly
indispensable role in the industrial sector. The advancement of Industry 4.0 has led to
stringent requirements for precision and accuracy in intelligent factories, especially in gear
measurement and inspection. In this context, high-quality control has become central to
gear manufacturing inspection. To meet this need, Moru et al. [1] developed a machine
vision algorithm that achieves subpixel level accurate measurement of gears through
image analysis.

In welding tasks, such as robot welding for complex box beam structures, Li et al. [2]
addressed the issue of low efficiency and flexibility in teaching programming by proposing
a weld seam trajectory recognition method based on laser scanning displacement sensors.
This method allows for the automatic guidance of the welding gun in spatial intermittent
jumping welding. In [28], a robot arc welding technique assisted by laser and vision sensors
was presented, which improves weld position accuracy and welding quality by adjusting
the welding gap value within the welding cycle.

Sound and vibration analysis are key tools for diagnosing the health of machines.
Yun et al. [3] introduced a method using an internal sound sensor based on a stethoscope
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for anomaly detection in industrial robot arms using an autoencoder. In [43], an acoustic
anomaly detection method for mechanical failures in noisy real-world factory environments
was developed.

In grinding and polishing tasks, Xu et al. [4] proposed a hybrid active–passive force
control strategy for robot sand belt grinding of turbine blades aimed at reducing grinding
marks and improving contour accuracy. In [5], a dual robotic arm control method for
surface treatment tasks was presented. Mohammad et al. [69] developed a low-inertia
effect force-controlled end effector for robotic polishing. In the field of precision operations,
Ma et al. [67] developed an automated precision robotic assembly system equipped with
microvision and force sensors. In [64], a method for modeling the optimal force control of a
nonlinear electrostatic microgripper was proposed.

3.2. Medical Field

Minimally invasive surgery is favored for its small incisions, short hospital stays, and
rapid postoperative recovery. Surgical robots in this field have enhanced the visualization
and precision of operations, thus further expanding the range of minimally invasive
surgeries. One challenge in robotic surgery is maintaining appropriate suture tension,
and to address this, Martell et al. [6] developed a method for assessing surgical suture
strain using visual measurement. This method, based on noninvasive video processing,
can display the strain of the suture line in real-time, thereby effectively reducing the
learning curve and enhancing the performance and safety of robotic surgery. In advanced
robot-assisted and computer-assisted surgery, research on detecting and locating surgical
instruments in laparoscopic images is a crucial component. Allan et al. [7] proposed a
detection and localization method for instruments in laparoscopic surgery.

With respect to ophthalmic surgery tasks, Ebrahimi et al. [8] introduced an adaptive
control strategy to enhance the safety of scleral force in robot-assisted ophthalmic surgery,
thereby aiming to reduce the risk of unsafe scleral forces. In the field of prosthetic control,
ref. [9] developed a method for controlling the rotation of a myoelectric prosthetic wrist
based on an IMU, which is aimed at improving the control of myoelectric prostheses with
wrist rotators.

3.3. Agricultural Field

The development of intelligent greenhouses is closely linked to the application of
mobile robots. In the complex environment of greenhouses, the precise positioning and
navigation of robots are key technologies. Jiang et al. [10] proposed an autonomous
navigation system for greenhouse mobile robots combining 3D LiDAR and 2D LiDAR
SLAM. To address the autonomous navigation of agricultural robots operating in orchards,
ref. [11] developed a technology combining 3D vision, LiDAR, and ultrasonic sensors for
enhanced perception navigation in agricultural robots.

In the field of apple-picking robots, a key technology is the machine vision system for
identifying and locating apples. Ji et al. [12] developed an automatic recognition method
guided by a vision system for apple picking robots.

3.4. Rescue and Search

Emergency personnel such as firefighters, bomb technicians, and urban search and
rescue experts often face extreme dangers in natural and man-made disasters, including
hazardous chemicals in the air. Mobile robots equipped with gas sensors can provide crucial
information, such as identifying and locating potential sources of different chemicals in
emergency areas. Fan et al. [13] proposed a method for gas identification and mapping in
emergency response scenarios using mobile robots equipped with electronic noses. Zhao
et al. [14] presented a remote sensing rescue robot system for coal mine underground
environments consisting of an operation control unit and two mobile robots with explosion-
proof and waterproof capabilities capable of remotely observing and collecting information
about the coal mine environment.
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4. Conclusions and Future Directions

In this review, we briefly introduced nine types of sensors applied in robot control
technology, including IMUs, visual sensors, acoustic sensors, gas sensors, force sensors,
LiDAR, infrared sensors, tactile sensors, and EMG sensors. We discussed their specific
applications in robot control and categorized and elucidated representative control methods.
Furthermore, we provided an overview of their applications across various domains. Lastly,
we explored potential future research directions.

In the realm of sensor technology and robotic control, our investigation has spanned
two pivotal sensor types: proprioceptive and exteroceptive, each with distinct applica-
tions in various robotic scenarios. Proprioceptive sensors, including IMUs, gyroscopes,
accelerometers, and magnetometers, equip robots with detailed insights into their own
status and movement dynamics. These sensors are indispensable across a spectrum of
functionalities such as navigation, positioning, interactive human–robot dynamics, and
precise motion regulation. Conversely, exteroceptive sensors—encompassing tactile, force,
ultrasonic, infrared sensors, LiDAR, gas sensors, acoustic sensors, visual sensors, and EMG
sensors—empower robots to sense and engage with their external environment effectively.
Technological advancements have significantly accelerated the evolution of these sensors,
thus rendering them more compact, efficient, and economically viable. Moreover, improve-
ments in algorithmic and computational methodologies have substantially enhanced our
capacity to process and interpret the vast amounts of data that these sensors generate.
This convergence of technological progress has unlocked new avenues for robot auton-
omy, adaptability, and intelligence, thereby broadening their applicability across diverse
fields. Robots are now increasingly capable of performing in a wide array of roles, ranging
from industrial automation and medical procedures to personal assistance and emergency
response tasks, thus heralding a new era in robotics where machines can operate more
seamlessly and intelligently within human environments.

The vigorous development of robot control technology is contingent on the rapid ad-
vancement of sensor technology and other related technologies. However, future research
and applications in this field are expected to encounter multifaceted challenges and new
directions of work. As specific tasks become increasingly complex and refined, future
research will necessitate the development of new sensor technologies, thereby continu-
ously enhancing the sensitivity and accuracy of sensors to meet the demands for precise
detection and identification in more complex environments. A robot’s ability to perceive
its environment is fundamental to performing complex tasks. Future efforts will require
more in-depth research into how to effectively integrate and fuse information from diverse
sensors (such as visual, tactile, sound, and gas sensors) to enhance robots’ understanding
of their environment and the accuracy of their decision making. The challenge lies in
efficiently processing and interpreting a large volume of multimodal data and ensuring the
effective integration of information among different sensors.
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20. Škulj, G.; Vrabič, R.; Podržaj, P. A Wearable IMU System for Flexible Teleoperation of a Collaborative Industrial Robot. Sensors
2021, 21, 5871. [CrossRef] [PubMed]

21. Lin, N.; Wu, P.; Wang, M.; Wei, J.; Yang, F.; Xu, S.; Ye, Z.; Chen, X. IMU-Based Active Safe Control of a Variable Stiffness Soft
Actuator. IEEE Robot. Autom. Lett. 2019, 4, 1247–1254. [CrossRef]

22. Gu, W.P.; Xiong, Z.Y.; Wan, W. Autonomous seam acquisition and tracking system for multi-pass welding based on vision sensor.
Int. J. Adv. Manuf. Technol. 2013, 69, 451–460. [CrossRef]

23. Idrobo-Pizo, G.A.; Motta, J.M.S.T.; Sampaio, R.C. A Calibration Method for a Laser Triangulation Scanner Mounted on a Robot
Arm for Surface Mapping. Sensors 2019, 19, 1783. [CrossRef] [PubMed]

24. Xu, H.; Lin, N.; Luo, L.; Wei, Q.; Wang, R.; Zhuo, C.; Yin, X.; Qiao, F.; Yang, H. Senputing: An Ultra-Low-Power Always-On
Vision Perception Chip Featuring the Deep Fusion of Sensing and Computing. IEEE Trans. Circuits Syst. I Regul. Pap. 2022,
69, 232–243. [CrossRef]

25. Luo, J.; Liu, W.; Qi, W.; Hu, J.; Chen, J.; Yang, C. A vision-based virtual fixture with robot learning for teleoperation. Robot. Auton.
Syst. 2023, 164, 104414. [CrossRef]

26. Gao, X.; You, D.; Katayama, S. Infrared image recognition for seam tracking monitoring during fiber laser welding. Mechatronics
2012, 22, 370–380. [CrossRef]

27. Zhou, F.y.; Yuan, X.f.; Yang, Y.; Jiang, Z.f.; Zhou, C.l. A high precision visual localization sensor and its working methodology for
an indoor mobile robot. Front. Inf. Technol. Electron. Eng. 2016, 17, 365–374. [CrossRef]

28. Rout, A.; Deepak, B.B.V.L.; Biswal, B.B.; Mahanta, G.B. Weld Seam Detection, Finding, and Setting of Process Parameters for
Varying Weld Gap by the Utilization of Laser and Vision Sensor in Robotic Arc Welding. IEEE Trans. Ind. Electron. 2022,
69, 622–632. [CrossRef]

29. Cao, H.; Chen, G.; Li, Z.; Hu, Y.; Knoll, A. NeuroGrasp: Multimodal Neural Network With Euler Region Regression for
Neuromorphic Vision-Based Grasp Pose Estimation. IEEE Trans. Instrum. Meas. 2022, 71, 2511111 . [CrossRef]

30. Wang, Z.; Xu, Y.; He, Q.; Fang, Z.; Xu, G.; Fu, J. Grasping pose estimation for SCARA robot based on deep learning of point cloud.
Int. J. Adv. Manuf. Technol. 2020, 108, 1217–1231. [CrossRef]

http://dx.doi.org/10.1007/s10845-021-01862-4
http://dx.doi.org/10.1016/j.rcim.2020.102047
http://dx.doi.org/10.1080/00207721.2021.1938279
http://dx.doi.org/10.1155/2011/879086
http://www.ncbi.nlm.nih.gov/pubmed/21436874
http://dx.doi.org/10.1109/TBME.2012.2229278
http://www.ncbi.nlm.nih.gov/pubmed/23192482
http://dx.doi.org/10.1109/TBME.2021.3071135
http://www.ncbi.nlm.nih.gov/pubmed/33822717
http://dx.doi.org/10.1109/TNSRE.2017.2682642
http://dx.doi.org/10.3389/fpls.2022.815218
http://dx.doi.org/10.1109/JSEN.2020.3016081
http://dx.doi.org/10.1016/j.compeleceng.2011.11.005
http://dx.doi.org/10.3390/s19030685
http://www.ncbi.nlm.nih.gov/pubmed/30736489
http://dx.doi.org/10.3390/s17102426
http://www.ncbi.nlm.nih.gov/pubmed/29065560
http://dx.doi.org/10.1109/TASE.2021.3111678
http://dx.doi.org/10.3390/s19081773
http://www.ncbi.nlm.nih.gov/pubmed/31013897
http://dx.doi.org/10.3390/s18030879
http://www.ncbi.nlm.nih.gov/pubmed/29547515
http://dx.doi.org/10.1109/TNSRE.2021.3133656
http://www.ncbi.nlm.nih.gov/pubmed/34874865
http://dx.doi.org/10.3390/s21175871
http://www.ncbi.nlm.nih.gov/pubmed/34502761
http://dx.doi.org/10.1109/LRA.2019.2894856
http://dx.doi.org/10.1007/s00170-013-5034-6
http://dx.doi.org/10.3390/s19081783
http://www.ncbi.nlm.nih.gov/pubmed/31013968
http://dx.doi.org/10.1109/TCSI.2021.3090668
http://dx.doi.org/10.1016/j.robot.2023.104414
http://dx.doi.org/10.1016/j.mechatronics.2011.09.005
http://dx.doi.org/10.1631/FITEE.1500272
http://dx.doi.org/10.1109/TIE.2021.3050368
http://dx.doi.org/10.1109/TIM.2022.3179469
http://dx.doi.org/10.1007/s00170-020-05257-2


Micromachines 2024, 15, 531 28 of 31

31. Lee, T.j.; Kim, C.h.; Cho, D.i.D. A Monocular Vision Sensor-Based Efficient SLAM Method for Indoor Service Robots. IEEE Trans.
Ind. Electron. 2019, 66, 318–328. [CrossRef]

32. Nirmal Singh, N.; Chatterjee, A.; Chatterjee, A.; Rakshit, A. A two-layered subgoal based mobile robot navigation algorithm with
vision system and IR sensors. Measurement 2011, 44, 620–641. [CrossRef]

33. Miles, R.N.; Cui, W.; Su, Q.T.; Homentcovschi, D. A MEMS Low-Noise Sound Pressure Gradient Microphone With Capacitive
Sensing. J. Microelectromech. Syst. 2015, 24, 241–248. [CrossRef]

34. Jung, Y.H.; Hong, S.K.; Wang, H.S.; Han, J.H.; Trung, X.P.; Park, H.; Kim, J.; Kang, S.; Yoo, C.D.; Lee, K.J. Flexible Piezoelectric
Acoustic Sensors and Machine Learning for Speech Processing. Adv. Mater. 2020, 32, 1904020. [CrossRef]

35. Gou, G.Y.; Li, X.S.; Jian, J.M.; Tian, H.; Wu, F.; Ren, J.; Geng, X.S.; Xu, J.D.; Qiao, Y.C.; Yan, Z.Y.; et al. Two-stage amplification of
an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 2022, 8, eabn2156. [CrossRef]

36. Guo, H.; Pu, X.; Chen, J.; Meng, Y.; Yeh, M.H.; Liu, G.; Tang, Q.; Chen, B.; Liu, D.; Qi, S.; et al. A highly sensitive, self-powered
triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516. [CrossRef]

37. Wood, G.S.; Torin, A.; Al-mashaal, A.K.; Smith, L.S.; Mastropaolo, E.; Newton, M.J.; Cheung, R. Design and Characterization of a
Micro-Fabricated Graphene-Based MEMS Microphone. IEEE Sensors J. 2019, 19, 7234–7242. [CrossRef]

38. Franchi, M.; Ridolfi, A.; Allotta, B. Underwater navigation with 2D forward looking SONAR: An adaptive unscented Kalman
filter-based strategy for AUVs. J. Field Robot. 2021, 38, 355–385. [CrossRef]

39. Chen, W.; Xu, J.; Zhao, X.; Liu, Y.; Yang, J. Separated Sonar Localization System for Indoor Robot Navigation. IEEE Trans. Ind.
Electron. 2021, 68, 6042–6052. [CrossRef]

40. Liu, Z.; Chen, R.; Ye, F.; Huang, L.; Guo, G.; Xu, S.; Chen, D.; Chen, L. Precise, Low-Cost, and Large-Scale Indoor Positioning
System Based on Audio Dual-Chirp Signals. IEEE Trans. Veh. Technol. 2023, 72, 1159–1168. [CrossRef]

41. Uhm, T.; Park, J.; Lee, J.; Bae, G.; Ki, G.; Choi, Y. Design of Multimodal Sensor Module for Outdoor Robot Surveillance System.
Electronics 2022, 11, 2214. [CrossRef]

42. Takami, K.; Furukawa, T.; Kumon, M.; Kimoto, D.; Dissanayake, G. Estimation of a nonvisible field-of-view mobile target
incorporating optical and acoustic sensors. Auton. Robot. 2016, 40, 343–359. [CrossRef]
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44. Abayomi-Alli, O.O.; Damaševičius, R.; Qazi, A.; Adedoyin-Olowe, M.; Misra, S. Data Augmentation and Deep Learning Methods
in Sound Classification: A Systematic Review. Electronics 2022, 11, 3795. [CrossRef]

45. Chen, C.H.; Lin, C.J.; Jeng, S.Y.; Lin, H.Y.; Yu, C.Y. Using Ultrasonic Sensors and a Knowledge-Based Neural Fuzzy Controller for
Mobile Robot Navigation Control. Electronics 2021, 10, 466. [CrossRef]

46. Palacin, J.; Martinez, D.; Clotet, E.; Palleja, T.; Burgues, J.; Fonollosa, J.; Pardo, A.; Marco, S. Application of an Array of Metal-Oxide
Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection. Sensors 2019, 19, 1957. [CrossRef]

47. Gao, Z.; Chen, S.; Li, R.; Lou, Z.; Han, W.; Jiang, K.; Qu, F.; Shen, G. An artificial olfactory system with sensing, memory and
self-protection capabilities. Nano Energy 2021, 86, 106078. [CrossRef]

48. Palleja, T.a.; Balsa, R.; Tresanchez, M.; Moreno, J.; Teixidó, M.; Font, D.; Marco, S.; Pomareda, V.; Palacin, J. Corridor Gas-Leak
Localization Using a Mobile Robot with a Photo Ionization Detector Sensor. Sens. Lett. 2014, 12, 974–977. [CrossRef]

49. Lin, S.; Zhou, Y.; Hu, J.; Sun, Z.; Zhang, T.; Wang, M. Exploration for a BP-ANN model for gas identification and concentration
measurement with an ultrasonically radiated catalytic combustion gas. Sens. Actuators B Chem. 2022, 362, 131733. [CrossRef]

50. Ishida, H.; Nakayama, G.; Nakamoto, T.; Moriizumi, T. Controlling a gas/odor plume-tracking robot based on transient responses
of gas sensors. IEEE Sens. J. 2005, 5, 537–545. [CrossRef]

51. Hernandez Bennetts, V.; Schaffernicht, E.; Pomareda, V.; Lilienthal, A.J.; Marco, S.; Trincavelli, M. Combining Non Selective Gas
Sensors on a Mobile Robot for Identification and Mapping of Multiple Chemical Compounds. Sensors 2014, 14, 17331–17352.
[CrossRef]

52. Song, K.; Liu, Q.; Wang, Q. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search. Sensors 2011,
11, 2129–2154. [CrossRef]

53. Loutfi, A.; Coradeschi, S.; Lilienthal, A.J.; Gonzalez, J. Gas distribution mapping of multiple odour sources using a mobile robot.
Robotica 2009, 27, 311–319. [CrossRef]

54. Ben Atitallah, B.; Rajendran, D.; Hu, Z.; Ramalingame, R.; Quijano Jose, R.B.; da Veiga Torres, R.; Bouchaala, D.; Derbel, N.;
Kanoun, O. Piezo-Resistive Pressure and Strain Sensors for Biomedical and Tele-Manipulation Applications. In Advanced Sensors
for Biomedical Applications; Kanoun, O., Derbel, N., Eds.; Smart Sensors, Measurement and Instrumentation; Springer International
Publishing: Cham, Switzerland, 2021; pp. 47–65. [CrossRef]

55. Luo, J.; Peng, D.; Liu, C.; Tang, B.; Pang, M.; Xiang, K. An Improved Combined Framework of Force Measurement With Friction
Model for Harmonic Gear. IEEE Sens. J. 2023, 23, 9943–9951. [CrossRef]

56. Xiong, L.; Jiang, G.; Guo, Y.; Liu, H. A Three-Dimensional Fiber Bragg Grating Force Sensor for Robot. IEEE Sens. J. 2018,
18, 3632–3639. [CrossRef]

57. Tamura, R.; Horikoshi, T.; Sakaino, S.; Tsuji, T. High Dynamic Range 6-Axis Force Sensor Employing a Semiconductor—Metallic
Foil Strain Gauge Combination. IEEE Robot. Autom. Lett. 2021, 6, 6243–6249. [CrossRef]

58. Lee, D.H.; Kim, U.; Jung, H.; Choi, H.R. A Capacitive-Type Novel Six-Axis Force/Torque Sensor for Robotic Applications. IEEE
Sens. J. 2016, 16, 2290–2299. [CrossRef]

http://dx.doi.org/10.1109/TIE.2018.2826471
http://dx.doi.org/10.1016/j.measurement.2010.12.002
http://dx.doi.org/10.1109/JMEMS.2014.2329136
http://dx.doi.org/10.1002/adma.201904020
http://dx.doi.org/10.1126/sciadv.abn2156
http://dx.doi.org/10.1126/scirobotics.aat2516
http://dx.doi.org/10.1109/JSEN.2019.2914401
http://dx.doi.org/10.1002/rob.21991
http://dx.doi.org/10.1109/TIE.2020.2994856
http://dx.doi.org/10.1109/TVT.2022.3205960
http://dx.doi.org/10.3390/electronics11142214
http://dx.doi.org/10.1007/s10514-015-9473-9
http://dx.doi.org/10.3390/electronics10192329
http://dx.doi.org/10.3390/electronics11223795
http://dx.doi.org/10.3390/electronics10040466
http://dx.doi.org/10.3390/s19091957
http://dx.doi.org/10.1016/j.nanoen.2021.106078
http://dx.doi.org/10.1166/sl.2014.3174
http://dx.doi.org/10.1016/j.snb.2022.131733
http://dx.doi.org/10.1109/JSEN.2004.839597
http://dx.doi.org/10.3390/s140917331
http://dx.doi.org/10.3390/s110202129
http://dx.doi.org/10.1017/S0263574708004694
http://dx.doi.org/10.1007/978-3-030-71225-9_3
http://dx.doi.org/10.1109/JSEN.2023.3262196
http://dx.doi.org/10.1109/JSEN.2018.2812820
http://dx.doi.org/10.1109/LRA.2021.3093008
http://dx.doi.org/10.1109/JSEN.2015.2504267


Micromachines 2024, 15, 531 29 of 31

59. Fontana, M.; Marcheschi, S.; Salsedo, F.; Bergamasco, M. A Three-Axis Force Sensor for Dual Finger Haptic Interfaces. Sensors
2012, 12, 13598–13616. [CrossRef]

60. Valdastri, P.; Roccella, S.; Beccai, L.; Cattin, E.; Menciassi, A.; Carrozza, M.; Dario, P. Characterization of a novel hybrid silicon
three-axial force sensor. Sens. Actuators A Phys. 2005, 123-124, 249–257. [CrossRef]

61. Sun, Y.; Liu, Y.; Zou, T.; Jin, M.; Liu, H. Design and optimization of a novel six-axis force/torque sensor for space robot.
Measurement 2015, 65, 135–148. [CrossRef]

62. Templeman, J.O.; Sheil, B.B.; Sun, T. Multi-axis force sensors: A state-of-the-art review. Sens. Actuators A Phys. 2020, 304, 111772.
[CrossRef]

63. Dwarakanath, T.A.; Dasgupta, B.; Mruthyunjaya, T.S. Design and development of a Stewart platform based force—Torque sensor.
Mechatronics 2001, 11, 793–809. [CrossRef]

64. Boudaoud, M.; Haddab, Y.; Le Gorrec, Y. Modeling and Optimal Force Control of a Nonlinear Electrostatic Microgripper.
IEEE-ASME Trans. Mechatron. 2013, 18, 1130–1139. [CrossRef]

65. Wang, X.; Song, Q.; Zhou, S.; Tang, J.; Chen, K.; Cao, H. Multi-connection load compensation and load information calculation for
an upper-limb exoskeleton based on a six-axis force/torque sensor. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419863186. [CrossRef]

66. Li, W.; Han, Y.; Wu, J.; Xiong, Z. Collision Detection of Robots Based on a Force/Torque Sensor at the Bedplate. IEEE-ASME
Trans. Mechatron. 2020, 25, 2565–2573. [CrossRef]

67. Ma, Y.; Du, K.; Zhou, D.; Zhang, J.; Liu, X.; Xu, D. Automatic precision robot assembly system with microscopic vision and force
sensor. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419851619. [CrossRef]

68. Sanchez, J.; Mohy El Dine, K.; Corrales, J.A.; Bouzgarrou, B.C.; Mezouar, Y. Blind Manipulation of Deformable Objects Based on
Force Sensing and Finite Element Modeling. Front. Robot. AI 2020, 7, 73. [CrossRef] [PubMed]

69. Mohammad, A.E.K.; Hong, J.; Wang, D. Design of a force-controlled end-effector with low-inertia effect for robotic polishing
using macro-mini robot approach. Robot. Comput.-Integr. Manuf. 2018, 49, 54–65. [CrossRef]

70. Beelen, M.J.; Naus, G.J.L.; van de Molengraft, M.J.G.; Steinbuch, M. Force feedback control design for nonideal teleoperators.
Control. Eng. Pract. 2013, 21, 1694–1705. [CrossRef]

71. Li, K.; Li, M.; Hanebeck, U.D. Towards High-Performance Solid-State-LiDAR-Inertial Odometry and Mapping. IEEE Robot.
Autom. Lett. 2021, 6, 5167–5174. [CrossRef]

72. Carrara, L.; Fiergolski, A. An Optical Interference Suppression Scheme for TCSPC Flash LiDAR Imagers. Appl. Sci. 2019, 9, 2206.
[CrossRef]

73. Hai, Y.; Luo, Y.; Liu, C.; Dang, A. Remote Phase-Shift LiDAR With Communication. IEEE Trans. Commun. 2023, 71, 1059–1070.
[CrossRef]

74. Sun, C.; Chen, Z.; Ye, S.; Lin, J.; Shi, W.; Li, B.; Teng, F.; Li, X.; Zhang, A. Highly-time-resolved FMCW LiDAR with synchronously-
nonlinearity-corrected acquisition for dynamic locomotion. Opt. Express 2023, 31, 7774–7788. [CrossRef] [PubMed]

75. Li, J.; Qin, H.; Wang, J.; Li, J. OpenStreetMap-Based Autonomous Navigation for the Four Wheel-Legged Robot Via 3D-Lidar and
CCD Camera. IEEE Trans. Ind. Electron. 2022, 69, 2708–2717. [CrossRef]

76. Tasneem, Z.; Adhivarahan, C.; Wang, D.; Xie, H.; Dantu, K.; Koppal, S.J. Adaptive fovea for scanning depth sensors. Int. J. Robot.
Res. 2020, 39, 837–855. [CrossRef]

77. Álvarez-Aparicio, C.; Guerrero-Higueras, A.M.; Rodríguez-Lera, F.J.; Ginés Clavero, J.; Martín Rico, F.; Matellán, V. People
Detection and Tracking Using LIDAR Sensors. Robotics 2019, 8, 75. [CrossRef]

78. Manuel Guerrero-Higueras, A.; Alvarez-Aparicio, C.; Calvo Olivera, M.C.; Rodriguez-Lera, F.J.; Fernandez-Llamas, C.; Mar-
tin Rico, F.; Matellan, V. Tracking People in a Mobile Robot From 2D LIDAR Scans Using Full Convolutional Neural Networks for
Security in Cluttered Environments. Front. Neurorobot. 2019, 12, 85. [CrossRef] [PubMed]

79. Chen, W.; Sun, J.; Li, W.; Zhao, D. A real-time multi-constraints obstacle avoidance method using LiDAR. J. Intell. Fuzzy Syst.
2020, 39, 119–131. [CrossRef]

80. Mohd Romlay, M.R.; Mohd Ibrahim, A.; Toha, S.F.; De Wilde, P.; Venkat, I.; Ahmad, M.S. Obstacle avoidance for a robotic
navigation aid using Fuzzy Logic Controller-Optimal Reciprocal Collision Avoidance (FLC-ORCA). Neural Comput. Appl. 2023,
35, 22405–22429. [CrossRef]

81. Fehlman II, W.L.; Hinders, M.K. Passive infrared thermographic imaging for mobile robot object identification. J. Field Robot.
2010, 27, 281–310. [CrossRef]

82. Tee Kit Tsun, M.; Lau, B.T.; Siswoyo Jo, H. An Improved Indoor Robot Human-Following Navigation Model Using Depth
Camera, Active IR Marker and Proximity Sensors Fusion. Robotics 2018, 7, 4. [CrossRef]

83. Guo, Y.; Li, Y.; Zhang, Q.; Wang, H. Self-powered multifunctional UV and IR photodetector as an artificial electronic eye. J. Mater.
Chem. C 2017, 5, 1436–1442. [CrossRef]

84. Kawasaki, M.; Kawamura, S.; Tsukahara, M.; Morita, S.; Komiya, M.; Natsuga, M. Near-infrared spectroscopic sensing system for
on-line milk quality assessment in a milking robot. Comput. Electron. Agric. 2008, 63, 22–27. [CrossRef]

85. Xu, H.; Xie, H.; Chen, Y.; Yang, C.; Xu, K. A New Cyborg Rat Auto Navigation System Based on Finite State Machine. IEEE Sens.
J. 2023, 23, 23456–23466. [CrossRef]

86. Viejo, D.; Garcia-Rodriguez, J.; Cazorla, M. Combining visual features and Growing Neural Gas networks for robotic 3D SLAM.
Inf. Sci. 2014, 276, 174–185. [CrossRef]

http://dx.doi.org/10.3390/s121013598
http://dx.doi.org/10.1016/j.sna.2005.01.006
http://dx.doi.org/10.1016/j.measurement.2015.01.005
http://dx.doi.org/10.1016/j.sna.2019.111772
http://dx.doi.org/10.1016/S0957-4158(00)00048-9
http://dx.doi.org/10.1109/TMECH.2012.2197216
http://dx.doi.org/10.1177/1729881419863186
http://dx.doi.org/10.1109/TMECH.2020.2995904
http://dx.doi.org/10.1177/1729881419851619
http://dx.doi.org/10.3389/frobt.2020.00073
http://www.ncbi.nlm.nih.gov/pubmed/33501240
http://dx.doi.org/10.1016/j.rcim.2017.05.011
http://dx.doi.org/10.1016/j.conengprac.2013.08.002
http://dx.doi.org/10.1109/LRA.2021.3070251
http://dx.doi.org/10.3390/app9112206
http://dx.doi.org/10.1109/TCOMM.2023.3233962
http://dx.doi.org/10.1364/OE.480346
http://www.ncbi.nlm.nih.gov/pubmed/36859902
http://dx.doi.org/10.1109/TIE.2021.3070508
http://dx.doi.org/10.1177/0278364920920931
http://dx.doi.org/10.3390/robotics8030075
http://dx.doi.org/10.3389/fnbot.2018.00085
http://www.ncbi.nlm.nih.gov/pubmed/30670960
http://dx.doi.org/10.3233/JIFS-190766
http://dx.doi.org/10.1007/s00521-023-08856-8
http://dx.doi.org/10.1002/rob.20307
http://dx.doi.org/10.3390/robotics7010004
http://dx.doi.org/10.1039/C6TC04771H
http://dx.doi.org/10.1016/j.compag.2008.01.006
http://dx.doi.org/10.1109/JSEN.2023.3291870
http://dx.doi.org/10.1016/j.ins.2014.02.053


Micromachines 2024, 15, 531 30 of 31

87. Pierlot, V.; Van Droogenbroeck, M. BeAMS: A Beacon-Based Angle Measurement Sensor for Mobile Robot Positioning. IEEE
Trans. Robot. 2014, 30, 533–549. [CrossRef]

88. Jabborov, F.; Cho, J. Image-Based Camera Localization Algorithm for Smartphone Cameras Based on Reference Objects. Wirel.
Pers. Commun. 2020, 114, 2511–2527. [CrossRef]

89. Mesa, J.; Betancur-Vasquez, D.; Botero-Valencia, J.; Valencia-Aguirre, J. Sensor Fusion for Distance Estimation Under Disturbance
with Reflective Optical Sensors Using Multi Layer Perceptron (MLP). IEEE Lat. Am. Trans. 2019, 17, 1418–1423. [CrossRef]

90. Liu, T.; Liu, J. Mobile Robot Aided Silhouette Imaging and Robust Body Pose Recognition for Elderly-fall Detection. Int. J. Adv.
Robot. Syst. 2014, 11, 42. [CrossRef]

91. Benli, E.; Spidalieri, R.L.; Motai, Y. Thermal Multisensor Fusion for Collaborative Robotics. IEEE Trans. Ind. Inform. 2019,
15, 3784–3795. [CrossRef]

92. Chou, Y.C.; Yu, W.S.; Huang, K.J.; Lin, P.C. Bio-inspired step-climbing in a hexapod robot. Bioinspir. Biomim. 2012, 7, 036008.
[CrossRef]

93. Li, C.; He, Y.; Chen, T.; Chen, X.; Tian, S. Real-Time Gait Event Detection for a Lower Extremity Exoskeleton Robot by Infrared
Distance Sensors. IEEE Sens. J. 2021, 21, 27116–27123. [CrossRef]

94. Wang, Y.; Chen, J.; Mei, D. Flexible Tactile Sensor Array for Slippage and Grooved Surface Recognition in Sliding Movement.
Micromachines 2019, 10, 579. [CrossRef] [PubMed]

95. Deng, Z.; Jonetzko, Y.; Zhang, L.; Zhang, J. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for
Object Stabilization. Sensors 2020, 20, 1050. [CrossRef] [PubMed]

96. Pohtongkam, S.; Srinonchat, J. Tactile Object Recognition for Humanoid Robots Using New Designed Piezoresistive Tactile
Sensor and DCNN. Sensors 2021, 21, 6024. [CrossRef] [PubMed]

97. Stachowsky, M.; Hummel, T.; Moussa, M.; Abdullah, H.A. A Slip Detection and Correction Strategy for Precision Robot Grasping.
IEEE-ASME Trans. Mechatron. 2016, 21, 2214–2226. [CrossRef]

98. Yogeswaran, N.; Dang, W.; Navaraj, W.; Shakthivel, D.; Khan, S.; Polat, E.; Gupta, S.; Heidari, H.; Kaboli, M.; Lorenzelli, L.; et al.
New materials and advances in making electronic skin for interactive robots. Adv. Robot. 2015, 29, 1359–1373. [CrossRef]

99. Nawrocki, R.A.; Matsuhisa, N.; Yokota, T.; Someya, T. 300-nm Imperceptible, Ultraflexible, and Biocompatible e-Skin Fit with
Tactile Sensors and Organic Transistors. Adv. Electron. Mater. 2016, 2, 1500452. [CrossRef]

100. Ozioko, O.; Dahiya, R. Smart Tactile Gloves for Haptic Interaction, Communication, and Rehabilitation. Adv. Intell. Syst. 2021, 4,
2100091. [CrossRef]

101. Ozioko, O.; Karipoth, P.; Hersh, M.; Dahiya, R. Wearable Assistive Tactile Communication Interface Based on Integrated Touch
Sensors and Actuators. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1344–1352. [CrossRef]

102. Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-
Gogonea, S.; et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463. [CrossRef]

103. Karipoth, P.; Christou, A.; Pullanchiyodan, A.; Dahiya, R. Bioinspired Inchworm- and Earthworm-like Soft Robots with Intrinsic
Strain Sensing. Adv. Intell. Syst. 2021, 4. [CrossRef]

104. Ozioko, O.; Karipoth, P.; Escobedo, P.; Ntagios, M.; Pullanchiyodan, A.; Dahiya, R. SensAct: The Soft and Squishy Tactile Sensor
with Integrated Flexible Actuator. Adv. Intell. Syst. 2021, 3. [CrossRef]

105. Somlor, S.; Hartanto, R.S.; Schmitz, A.; Sugano, S. A novel tri-axial capacitive-type skin sensor. Adv. Robot. 2015, 29, 1375–1391.
[CrossRef]

106. Ward-Cherrier, B.; Pestell, N.; Cramphorn, L.; Winstone, B.; Giannaccini, M.E.; Rossiter, J.; Lepora, N.F. The TacTip Family: Soft
Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies. Soft Robot. 2018, 5, 216–227. [CrossRef] [PubMed]

107. Dahiya, R.S.; Adami, A.; Pinna, L.; Collini, C.; Valle, M.; Lorenzelli, L. Tactile Sensing Chips With POSFET Array and Integrated
Interface Electronics. IEEE Sens. J. 2014, 14, 3448–3457. [CrossRef]

108. Yogeswaran, N.; Hosseini, E.S.; Dahiya, R. Graphene Based Low Voltage Field Effect Transistor Coupled with Biodegradable
Piezoelectric Material Based Dynamic Pressure Sensor. Acs Appl. Mater. Interfaces 2020, 12, 54035–54040. [CrossRef] [PubMed]

109. Hughes, D.; Correll, N. Texture recognition and localization in amorphous robotic skin. Bioinspir. Biomim. 2015, 10, 055002.
[CrossRef]

110. Wang, Y.; Chen, J.; Mei, D. Recognition of surface texture with wearable tactile sensor array: A pilot Study. Sens. Actuators A
Phys. 2020, 307, 111972. [CrossRef]

111. Armleder, S.; Dean-Leon, E.; Bergner, F.; Cheng, G. Interactive Force Control Based on Multimodal Robot Skin for Physical
Human-Robot Collaboration. Adv. Intell. Syst. 2022, 4, 2100047. [CrossRef]

112. Pastor, F.; Gandarias, J.M.; Garcia-Cerezo, A.J.; Gomez-de Gabriel, J.M. Using 3D Convolutional Neural Networks for Tactile
Object Recognition with Robotic Palpation. Sensors 2019, 19, 5356. [CrossRef]

113. Calandra, R.; Owens, A.; Jayaraman, D.; Lin, J.; Yuan, W.; Malik, J.; Adelson, E.H.; Levine, S. More Than a Feeling: Learning to
Grasp and Regrasp Using Vision and Touch. IEEE Robot. Autom. Lett. 2018, 3, 3300–3307. [CrossRef]

114. Yang, C.; Luo, J.; Wang, N. Human-in-the-Loop Learning and Control for Robot Teleoperation; Elsevier: Amsterdam, The Netherlands,
2023.

115. Luo, J.; Lin, Z.; Li, Y.; Yang, C. A Teleoperation Framework for Mobile Robots Based on Shared Control. IEEE Robot. Autom. Lett.
2020, 5, 377–384. [CrossRef]

http://dx.doi.org/10.1109/TRO.2013.2293834
http://dx.doi.org/10.1007/s11277-020-07487-9
http://dx.doi.org/10.1109/TLA.2019.8931134
http://dx.doi.org/10.5772/57318
http://dx.doi.org/10.1109/TII.2019.2908626
http://dx.doi.org/10.1088/1748-3182/7/3/036008
http://dx.doi.org/10.1109/JSEN.2021.3111212
http://dx.doi.org/10.3390/mi10090579
http://www.ncbi.nlm.nih.gov/pubmed/31480392
http://dx.doi.org/10.3390/s20041050
http://www.ncbi.nlm.nih.gov/pubmed/32075193
http://dx.doi.org/10.3390/s21186024
http://www.ncbi.nlm.nih.gov/pubmed/34577230
http://dx.doi.org/10.1109/TMECH.2016.2551557
http://dx.doi.org/10.1080/01691864.2015.1095653
http://dx.doi.org/10.1002/aelm.201500452
http://dx.doi.org/10.1002/aisy.202100091
http://dx.doi.org/10.1109/TNSRE.2020.2986222
http://dx.doi.org/10.1038/nature12314
http://dx.doi.org/10.1002/aisy.202100092
http://dx.doi.org/10.1002/aisy.201900145
http://dx.doi.org/10.1080/01691864.2015.1092394
http://dx.doi.org/10.1089/soro.2017.0052
http://www.ncbi.nlm.nih.gov/pubmed/29297773
http://dx.doi.org/10.1109/JSEN.2014.2346742
http://dx.doi.org/10.1021/acsami.0c13637
http://www.ncbi.nlm.nih.gov/pubmed/33205956
http://dx.doi.org/10.1088/1748-3190/10/5/055002
http://dx.doi.org/10.1016/j.sna.2020.111972
http://dx.doi.org/10.1002/aisy.202100047
http://dx.doi.org/10.3390/s19245356
http://dx.doi.org/10.1109/LRA.2018.2852779
http://dx.doi.org/10.1109/LRA.2019.2959442


Micromachines 2024, 15, 531 31 of 31

116. Li, Z.; Wang, B.; Sun, F.; Yang, C.; Xie, Q.; Zhang, W. sEMG-Based Joint Force Control for an Upper-Limb Power-Assist Exoskeleton
Robot. IEEE J. Biomed. Health Inform. 2014, 18, 1043–1050. [CrossRef] [PubMed]

117. Tang, B.; Li, R.; Luo, J.; Pang, M.; Xiang, K. A membership-functionâĂŞbased broad learning system for humanâĂŞrobot
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