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Abstract: This study establishes thermodynamic assumptions regarding the growth of condensation
droplets and a mathematical formulation of droplet energy functionals. A model of the gas–liquid
interface condensation rate based on kinetic theory is derived to clarify the relationship between
condensation conditions and intermediate variables. The energy functional of a droplet, derived
using the principle of least action, partially elucidates the inherent self-organizing growth laws of
condensed droplets, enabling predictive modeling of the droplet’s growth. Considering the effects of
the condensation environment and droplet heat transfer mechanisms on droplet growth dynamics,
we divide the process into three distinct stages, marked by critical thresholds of 105 nm3 and 1010 nm3.
Our model effectively explains why the observed contact angle fails to reach the expected Wenzel
contact angle. This research presents a detailed analysis of the factors affecting surface condensation
and heat transfer. The predictions of our model have an error rate of less than 3% error compared to
baseline experiments. Consequently, these insights can significantly contribute to and improve the
design of condensation heat transfer surfaces for the phase-change heat sinks in microprocessor chips.

Keywords: condensation droplet; heat transfer; droplet growth; energy functional; dissipative
structure; the principle of least action

1. Introduction

Due to the excellent heat transfer properties condensation droplets demonstrate on
superhydrophobic surfaces, they are used in a wide range of thermal management ap-
plications, such as water harvesting, latent heat transfer, refrigeration, electronic thermal
management, and power generation [1–7]. To further enhance the heat transfer performance
of these surfaces, it is crucial to study the mechanisms of both heat transfer and droplet
growth on subcooling surfaces. In his study, Aref Vandadi optimized two-tier surfaces
providing guidance for the structure and texture of superhydrophobic materials; this work
significantly contributed to the design of efficient condensation surfaces in heat transfer
applications [8]. Moreover, the growth of condensation droplets is dynamic and primarily
involves nucleation, direct growth, merging, removal, and re-nucleation processes.

However, the growth mechanism of condensation droplets on superhydrophobic
surfaces with microstructures remains a topic of ongoing debate. Using Environmental
Scanning Electron Microscopy (ESEM), Eucken et al. [9] observed fluctuations in the contact
angle during the growth of partially wetting (PW) droplets and Wenzel droplets. They
noted a gradual increase in the apparent contact angle for PW droplets, unlike Wenzel
droplets, which underwent several depinning events, leading to an expansion of the wetted
area. Notably, the apparent contact angle of the Wenzel droplets ultimately failed to reach
the theoretically predicted Wenzel contact angle. Rykaczewski [10] established a constant
contact angle (CCA) model and a constant base (CB) growth model of the mechanism
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of droplet growth and determined the droplet growth rate based on these two models.
However, in his research, the condensation surface lacked micro- and nanostructures,
indicating that the model may not directly apply to droplet growth on such surfaces.

Dropwise condensation is considered a quasi-static process in thermodynamics, where
the system transitions from one steady state or equilibrium state to another. If the droplet
growth process can be described by a potential function, then, according to the principle of
least action, calculating the minimum of this potential function can clarify the developmen-
tal laws governing the growth of condensation droplets.

In this paper, we present a more accurate model for the growth of a single condensation
droplet. Our contributions are as follows: (1) Thermodynamic assumptions about the
‘adiabatic evolution’ [11,12] in the growth process of condensation droplets are established,
and a mathematical expression of the energy functional of these droplets is developed based
on the concept of dissipative structures. The entire system is characterized by three potential
fields: the temperature field, the surface tension field, and the gravity field. (2) Based on
the principles of kinetic theory, a model of the condensation rate at the gas–liquid interface
is derived. Subsequently, the heat transfer rates of droplets can be ascertained from the
condensation rate model specific to the gas–liquid interface. (3) After constraining the
droplet volume, the intermediate variables within the nonlinear equations are resolved
by integrating a heat transfer thermal resistance model for a single condensation droplet
into the condensation rate model of the gas–liquid interface. (4) We calculate the energy
system function of a condensation droplet for different droplet volumes and obtain the true
shape of the condensation droplet based on the principle of least action [13,14]. We predict
the growth model at different stages and conduct condensation experiments to verify the
model’s predictions. We posit that throughout the entire growth process, the radius of the
droplet’s contact circle incrementally expands, ultimately attaining a Wenzel state.

2. Theoretical Models
2.1. Thermodynamic Assumptions for Condensation Droplet Growth

The heat transfer of dropwise condensation is mainly achieved by condensation
droplets. The vapor in the vapor–liquid interface is adsorbed by the condensation droplets,
and the latent heat from the phase transformation is transferred to the supercooled substrate
through the droplets. The process of droplet condensation growth includes two parts: heat
transfer and mass transfer. Notably, the rate of surface mass transfer is much lower than
that of droplet internal heat transfer [15,16]. When vapor deposits new water molecules
on the droplet’s vapor–liquid interface, simultaneous mass and heat transfer processes
occur, with the latter being completed instantaneously. Consequently, the temperature field
distribution within the droplet rapidly returns to a steady state, devoid of any internal
heat sources. This process is characterized in physics as ‘adiabatic evolution.’ Furthermore,
the rate of change in the thickness of the deposited layer at the vapor–liquid interface is
exceedingly slow over time, thus qualifying it as a gradual invariant.

According to the theory of the ‘adiabatic phenomenon’, the process of increasing
the volume of a condensation droplet proceeds as follows: Initially, both the mass and
the latent heat from the phase transition are simultaneously applied to the surface of the
droplet. Then, the latent heat from the phase transition is rapidly and steadily transferred.
Ultimately, the droplet remains in adiabatic equilibrium until the end of the process. The
study of the heat transfer process from a condensing droplet at a designated instantaneous
volume follows the assumption that the internal heat transfer within the droplet exhibits
steady-state thermal conductivity and that there is no internal heat source.

The dynamic process of condensation droplet growth follows the stationary action
principle. To describe non-equilibrium thermodynamic phenomena via the variational
method, Onsager [17] proposed a variational principle for steady-state heat transfer based
on the concept of entropy production, namely, the stationary action principle. Prigogine [18]
used the theory of dissipative structures to portray the thermodynamic behavior of systems
far from equilibrium. When the dissipative structure is within a small range near the
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thermodynamic equilibrium, it is possible to derive its stability and kinetic equations from
a potential function.

A single condensation droplet is a dissipative structure present in a system. When the
droplet is in adiabatic equilibrium, a fine equilibrium structure exists for the dissipative
structure (which occupies most of the process). The fine equilibrium structure has two
superimposed states: the Cassie state and the Wenzel state. Its energy can be expressed as
a general function. The minimum value of the energy generalization for a defined droplet
volume can be obtained according to the direct method of variational differentiation. The
shape of the droplet is the “true shape” of the droplet when the energy generalization is
minimized. Thus, apparent parameters such as the contact angle and the contact line length
of the droplet at a constant volume can be obtained from this “true shape”.

The thermal conduction process of the droplet satisfies the differential heat conduction
equation [19]:

ρc
∂T
∂t

= λ

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
+ Φ (1)

where ρ is the density of the liquid, c is the specific heat capacity, λ is the thermal conduc-
tivity of the liquid, and Φ is the internal heat source.

According to the assumption that the thermal conduction inside the droplet is in a
steady state and that there is no internal heat source, the differential equation for thermal
conductivity simplifies to the following:

λ

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
= 0 (2)

The constant temperature boundary conditions are T = T0.

2.2. Mathematical Formulation of Energy Functional for Dissipative Structures

When the droplet is in adiabatic equilibrium, the dissipative structure is a fine equilib-
rium structure (which it occupies during most of the process). There are two superimposed
states in the fine equilibrium structure, the Cassie state and the Wenzel state, whose ener-
gies can be represented by a functional. For the energy functional of the droplet under a
fixed volume, the minimum value can be obtained by the direct variational method, and
the shape of the droplet at the minimum energy functional value is the true shape of the
droplet. Consequently, apparent characteristics such as the contact line length and contact
angle of the droplet can be obtained. By comparing the minimum energies of the Cassie
and Wenzel states, the lower energy state can be identified, which elucidates the transition
mechanism between the Cassie and Wenzel states.

The internal energy change (or enthalpy change) caused by the redistribution of the
temperature field in the heat conduction process in this system is defined as the thermal
potential, as shown in Figure 1. When the droplet is in state 1, the external pressure is P,
the volume is V, the internal uniform temperature field is Ts, the enthalpy is H1, and the
internal energy is U1. Similarly, when the droplet is in state 2, the external pressure is still
P, the volume is still V, the internal temperature field is T(x, y, z), the enthalpy is H2, and
the internal energy is U2. Introducing excess temperature Θ(x, y, z) = T(x, y, z)− Ts, the
energy increment of state 2 is

∆E = U2 − U1 = ∆H =
y

Ω

ρcΘ(x, y, z)dxdydz (3)

Taking the internal energy of the droplet in state 1 as the zero point of thermal potential,
∆E can be defined as the thermal potential energy of the droplet in state 2:

Ea = ∆E =
y

Ω

ρcΘ(x, y, z)dxdydz (4)
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As shown in Figure 2, the system includes a square substrate with a side length of
L0, using the substrate’s vapor–solid interface energy as the baseline for surface potential.
The potential surface energy of the system consists of the outer contour of the droplet and
the solid–liquid contact surface. The surface potential energies of the Wenzel state and the
Cassie state can be expressed as follows:

Eb−w = 2πr2σlv(1 − cos θ) + rgh(σsl − σsv)πr2 sin2 θ (5)

Eb−c = 2πr2σlv(1 − cos θ) + (σsl − σsv)πr2 sin2 θ (6)

where r is the droplet radius, θ is the contact angle, rgh is the surface roughness, and σ is
the surface tension. The subscripts lv, sl, and sv represent the liquid–vapor, solid–liquid,
and solid–vapor interfaces, respectively.
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The height of a spherical droplet with a radius of curvature r and contact angle θ is

h = r(1 − cos θ) (7)

Therefore, the center of mass of the spherical droplet is located on its central axis, and
the distance from the bottom surface is

Zc =
(4r − h)h
12r − 4h

=
r(3 + cos θ)(1 − cos θ)

8 + 4 cos θ
(8)

The bottom of the microstructure serves as the zero point of the gravitational potential,
and the gravitational potential energy of the spherical droplet is

Ec =
π

12
ρgr4

(
2 − 3 cos θ + cos3 θ

)(
3 − 2 cos θ − cos2 θ

)
2 + cos θ

(9)

where ρ is the droplet density and g is the gravitational acceleration.
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Therefore, the energy functionals of the condensed droplets in the Wenzel state and
the Cassie state can be expressed as follows:

Πwenzel =
t

Ω
ρcΘ(x, y, z)dxdydz + 2πr2σlv(1 − cos θ) + rgh(σsl − σsv)πr2 sin2 θ

+ π
12 ρgr4 (2−3 cos θ+cos3 θ)(3−2 cos θ−cos2 θ)

2+cos θ

(10)

Πcassie =
t

Ω
ρcΘ(x, y, z)dxdydz + 2πr2σlv(1 − cos θ) + (σsl − σsv)πr2 sin2 θ

+ π
12 ρgr4 (2−3 cos θ+cos3 θ)(3−2 cos θ−cos2 θ)

2+cos θ

(11)

2.3. Heat Transfer Model

Figure 3 shows the condensation heat transfer model and simplified thermal resistance
network of a single droplet in the Wenzel state and in the Cassie state on a microstructured
surface. Because of the droplet’s small size, the heat transfer rate of the gas-liquid phase
transition is much smaller than the heat transfer rate of the droplet; therefore, the Marangoni
convection inside the droplet is ignored in the model and heat conduction is considered the
main mode of heat transfer in the droplet. The micro-pillar height is δ, and the surface is
modified with a hydrophobic coating of thickness δhc. The heat transfer model of a single
condensation droplet is simplified to a thermal resistance network, indicating that heat transfer
from saturated vapor to the substrate is limited by various thermal resistances, including
the vapor–liquid interface’s thermal resistance Ri, the thermal resistance of the droplet’s heat
conduction Rd, the micro-pillar’s thermal resistance Rp, and the thermal resistance of the
liquid bridges between micro-pillars and the hydrophobic coating Rhc1, Rhc2.
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Therefore, the heat transfer rate through a single Wenzel or Cassie condensation
droplet can be derived from G Hu [20]:

qw = ∆Tπr2
1

2hi(1−cos θ)
+

[
λhc sin2 θ

(
λp φ

δhcλp+δλhc
+ λl(1−φ)

δhcλl+δλhc

)]−1

+ r
λl sin θ

[
(1 − 0.0043θ) cot θ

2 − 2
θ ln(0 .0172θ − 0.000074θ2)

]−1


(12)
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qc =
∆Tπr2

1
2hi(1−cos θ)

+
δhcλp+δλhc

λhcλp φ sin2 θ
+ r

λl sin θ

•
[
(1 − 0.0043θ) cot θ

2 − 2
θ ln

(
0.0172θ − 0.000074θ2)]−1


(13)

where ∆T = Tsat − Ts is the degree of surface subcooling.
On the other hand, we consider condensation heat transfer from the point of view

of mass transfer at the vapor–liquid interface. Carey derived an expression for the mass
transfer between phases under non-equilibrium conditions based on kinetic theory [21,22]:

ω =

(
2γ

2 − γ

)(
M

2πR

)1/2[ Pv

T1/2
v

−
P∗∗

i

T1/2
i

]
(14)

where γ is the condensation coefficient (for pure steam, γ = 1; in addition, the usual
industrial environment contains a large volume of non-condensable gas, such that γ = 0.04),
M is the molecular weight, R is the gas constant, Pv is the actual steam pressure, Tv is the
steam temperature, Ti is the vapor–liquid interface temperature, and P∗∗

i is the equilibrium
pressure corresponding to the vapor–liquid interface temperature Ti.

For spherical condensation droplets, the change in vapor pressure due to the curved
vapor–liquid interface can be expressed by the Kelvin–Helmholtz equation:

ln
P∗∗

r
P∗ =

2συl

rRT
(15)

where P∗∗
r is the equilibrium pressure corresponding to the droplet radius r, P* is the

saturation pressure corresponding to the uniform temperature T of the system, σ is the
surface tension, and v1 is the specific volume of the droplet. With P∗∗

r = P∗∗
i at the vapor–

liquid interface, the net condensation rate of a droplet of radius r is obtained [14,15]:

ω =

(
2γ

2 − γ

)(
M

2πR

)1/2[ Pv

T1/2
v

−
P∗

i

T1/2
i

e
2συl
rRTi

]
(16)

According to the Clausius–Clapeyron relation,

ln
P∗

i
P∗

v
= −

hfg

RTi

(
1 − Ti

Tv

)
(17)

the condensation rate of a droplet of radius r can be written as

ω =

(
2γ

2 − γ

)(
M

2πR

)1/2[ Pv

T1/2
v

− P∗
v

T1/2
i

e
−

hfg
RTi

(1− Ti
Tv )e

2συl
rRTi

]
(18)

where P∗
v is the vapor saturation pressure, Pv is the actual vapor pressure, and the relation-

ship between them can be expressed as the relative humidity:

RH(%) = Pv/P∗
v × 100% (19)

From the relationship between the net condensation rate at the vapor–liquid interface,
the heat transfer rate can be obtained as follows:

q = ωhfg2πr2(1 − cos θ) (20)

where hfg is the latent heat of vaporization.
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2.4. Numerical Methods

By combining the heat transfer inside the condensation droplet with that of the vapor–
liquid interface, the control equation of the heat transfer rate through a single condensation
droplet under volume constraints is obtained as follows:

V = π
3 r3(2 − 3 cos θ + cos3 θ

)
q = ωhfg2πr2(1 − cos θ)

ω =
(

2γ
2−γ

)(
M

2πR

)1/2
[

Pv
T1/2

v
− P∗

v
T1/2

i
e
−

hfg
RTi

(1− Ti
Tv )e

2συl
rRTi

]
Ti = Tb1 +

q
λlπr sin θ

[
(1 − 0.0043θ) cot θ

2 − 2
θ ln

(
0.0172θ − 0.000074θ2)]−1

Tb1 = Ts + q•
[
πr2 sin2 θλhc

(
φλp

δhcλp+δλhc
+ (1−φ)λl

δhcλl+δλhc

)]−1
(Wenzel state)

Tb1 = Ts + q•
[
πr2 sin2 θφ

(
δhc
λhc

+ δ
λp

)]−1
(Cassie state)

(21)

where r is the droplet radius, θ is the droplet contact angle, ρ1 is the droplet density, hfg is
the latent heat of vaporization, Ts is the temperature of the silicon substrate’s surface, Tv is
the actual vapor temperature, Ti is the temperature of the vapor–liquid interface, Tb1 is the
temperature at the bottom of the droplet, Tb1 is the vapor saturation pressure, and Pv is the
actual vapor pressure.

The control Equation (21) establishes a relationship between all condensing conditions
(Pv, Tv, Ts, RH), substrate conditions (φ, δhc, δ), and intermediate variables (q, ω, Ti, Tb1, r,
θ). Some parameters are nested and unknown, and methods for their numerical calculation
are required to solve the nonlinear equation.

For the Wenzel state, the process of calculating unknown parameters in the thermal
resistance network is shown in Figure 4. Similarly, the relevant parameters for Cassie
condensation droplets can be obtained by employing the calculation formula of the Cassie
state Tb1 in the control equation group.

Under volume constraints, the total energy as a function of the contact angle θ is calcu-
lated, increasing θ by ∆θ. The calculation process continues until θ reaches 180◦, thereby
obtaining the space of possible shapes Ω [Ω1, Ω2, . . .] for a droplet of a given volume. The
intermediate variables Tb1 and Ti are obtained based on the control Equation (21) and are
used as the temperature boundary condition of the droplet. Then, the temperature field
distribution is solved using ANSYS Fluent 2020 software and used to calculate the thermal
potential energy.

A condensation droplet has different energy functional spaces in the Wenzel and Cassie
states, and the corresponding energy functional for the spherical droplet is calculated
according to Equations (14) and (15). The transformation law for the wetting state is
obtained because the spherical droplet must be in the state of minimum energy. Comparing
Πwenzel-min and Πcassie-min at each volume V to determine which one is smaller, the
true infiltration state of the spherical droplet at volume V is obtained.

Based on the principle of least action, the shape when the droplet has the minimum
energy is the true shape of the droplet. When the energy functional, as described in
Formulas (14) or (15), reaches its minimum, the corresponding droplet shape represents the
true form for a given volume V. Thus, the changing rules of the contact angle and contact
circle radius during the growth of the condensed droplet volume are obtained. Figure 5
illustrates the entire process used to determine the actual infiltration state and the shape of
the droplet for a given volume V.
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3. Results and Discussion
3.1. Influence of Droplet Volume on the Vapor–Liquid Interface and Bottom Temperature

The influence of Wenzel droplet volume on the vapor–liquid interface is demonstrated
in Figure 6, assuming that the vapor temperature Tv is 283 K, the substrate temperature
Ts on the silicon surface is 273 K, the micro-pillar structure height δ on the silicon surface
is 15 µm, the thermal conductivity λp is 0.21 W/(m·K), the solid fraction φ is 0.0641, the
hydrophobic coating thickness δhc is 1 nm, and the thermal conductivity λhc is 0.2 W/(m·K).
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Under consistent condensation conditions, Figure 6 demonstrates the variations in the
vapor–liquid interface and the bottom temperature for Wenzel-state condensation droplets
of different volumes. When the contact angles of the condensation droplets are the same,
the morphologies of the droplets are similar. However, an increase in droplet volume
causes the vapor–liquid interface temperature to approach the vapor’s temperature and the
bottom temperature of the droplet to approach the substrate’s temperature. Concurrently,
both the temperature of the vapor–liquid interface and the bottom temperature exhibit
significant changes in relation to the contact angle. Notably, when the droplet’s contact
angle reaches approximately 120◦, the disparity between these two temperatures is at
its maximum.

3.2. Influence of Droplet Volume on Heat Transfer

Under the same condensation conditions and contact angle, Wenzel state condensation
droplets of smaller volumes exhibit lower heat transfer rates; however, they display higher
average heat flux densities through the droplets, as shown in Figure 7. Since the average
heat flux density is related to the contact area of the bottom surface of the droplet, when
the contact angle is about 120◦, the average heat flux density through the droplet is at
its smallest. Typically, the average heat flux density is higher in smaller droplets, which
enhances surface heat transfer. This finding is consistent with Tanaka’s [23], who observed
that heat transfer in condensation was mainly achieved through smaller droplets.
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3.3. Self-Organized Growth Mechanism of Condensation Droplets

The mechanism of the self-organized growth of the droplet can be determined by
observing the changes in the contact angle and the radius of the contact circle when
the volume of the condensed droplet increases. Firstly, the contact angle is changed
when the droplet volume is constrained, the relevant parameters in the thermal resistance
network (e.g., the vapor–liquid interface temperature and droplet bottom temperature)
are calculated, and then the results are combined with a numerical calculation method to
determine the energy functional under the condensation droplet dissipation structure. The
contact angle corresponding to the minimum value of the system’s energy functional is
recorded. Following this, the contact circle radius is determined by calculating the volume
for a spherical droplet.

When the supercooling degree ∆T is 2 K and 10 K, respectively, the variation in droplet
contact angle and a contact circle radius of 1015 nm3 and below is analyzed. As the droplet’s
volume increases, the contact angle and contact circle radius corresponding to the minimum
value of the droplet’s energy functional are obtained, as shown in Figure 8.
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Figure 8. Variation in contact angle and contact circle radius during growth of condensation droplets.

At the onset of condensation, the contact angle increases rapidly, exceeding the equi-
librium contact angle of the microstructured surface (150◦). Subsequently, the contact angle
oscillates around this equilibrium value. Meanwhile, the radius of the contact circle gradu-
ally increases. In the middle stage of condensed droplet growth (105 nm3 < V < 1010 nm3),
the droplet contact angle stabilizes at the surface equilibrium contact angle, and the droplet
grows in a mode characterized by an increasing contact circle area. Due to vapor pressure
and the subcooling effects of the surface, as the condensed droplets enter the middle to
late growth stages (V > 1010 nm3), the droplet contact angle gradually decreases from the
equilibrium contact angle and finally remains stable around 120◦. At this stage, since the
energy functional value for the Wenzel-state droplet is lower than that for the Cassie-state
one. It is thus determined that the droplet ultimately adopts the Wenzel state rather than
the Cassie state.

Due to the effects of surface supercooling, a droplet’s final stable contact angle cannot
be accurately predicted using the Wenzel formula alone. This provides some explanation
for the uncertainties observed in the experiments of Enright et al. [24], where the actual
contact angle did not match the expected Wenzel contact angle.

Nonetheless, the results at the initial stage of condensation droplet growth are consis-
tent with the experimental observations of Enright et al. [24]. Figure 8 clearly illustrates that
the contact angle decreases sharply. This reduction is due to the discontinuous changes in
the micro- and nanostructures of the wetted area at the bottom of the droplet. An increase
in the pinning area at the droplet’s base results in an immediate reduction in the contact
angle. The growth of the droplet does not strictly adhere to a model of constant contact
with the substrate or a constant contact angle; instead, it varies dynamically. Moreover,
throughout the entire growth process of the condensing droplet, the radius of the con-
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tact circle generally increases, with only brief periods where it remains nearly constant.
Therefore, the droplet growth model of Rykaczewski [10] exhibits certain limitations.

4. Experiments
4.1. Fabrication of a Rough Si Surface

In this experiment, microstructures with varying dimensional parameters were engi-
neered onto a Si surface. These microstructures were created on a 4-inch, single-crystal Si
substrate using photolithography and Deep Reactive Ion Etching (DRIE) processes. Using
a high-depth-of-field microscope (VHX-600, KEYENCE, Osaka, Japan), a top view of the Si
surface was inspected, and the micro-pillar diameters and center-to-center distances were
accurately measured, as depicted in Figure 9, and remained unchanged, as it serves as a
clear transition to the formula that presumably follows:

f = 1 +
πd2
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Figure 9. Super-depth-of-field microscope top view of the micro-pillar structure on Si surface. (a) No.1,
(b) No.2, (c) No.3, (d) No.4.

4.2. The Condensation Experiment on the Si Surface with Micro-Pillar Structures

Condensation experiments were performed on the prepared Si surface featuring
microstructures. The Si surface was not changed, as it was already clear and properly
structured. Figure 10 depicts the software interface used to capture images and compute
the contact angle. The droplet contact angle was obtained by calculating the average value
of the left and right contact angles.
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As shown in Figure 11, pictures 1–4 correspond to four microstructured silicon surfaces
with different center-to-center distances. In all instances, the red lines coincided exactly



Micromachines 2024, 15, 566 12 of 16

with the yellow lines. Moreover, the blue lines greatly deviated from the yellow lines,
meaning our model is more accurate and universal than the ellipse model [25–27].
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In the experiment measuring the contact angle of droplets on a silicon surface with
microstructures, the droplets were prevented from infiltrating the microstructure by the
surface tension, and so the silicon surface is in a Cassie state. The intrinsic contact angle
of the smooth Si surface was experimentally measured to be about 82◦. The theoretical
contact angle for the silicon surface with a micro-pillar structure was calculated using the
Cassie state formula: cosθc = f (cosθ1 + 1)− 1 [28].

Upon comparing the experimental values listed in Table 1 with theoretical ones, it
is deduced that as the center-to-center distance between the micro-pillars increased, the
solid phase fraction decreased, and the equilibrium contact angle of the silicon surface
increased. The contact angles observed in experiments No. 1 and No. 2 aligned with their
theoretical counterparts, while the measured values in No. 3 and No. 4 are smaller than
the theoretical values. This discrepancy can be attributed to the increased spacing between
micro-columns, which causes the base of the droplet to approach the micro-columns. The
gap was wetted, forming a meniscus, so that the actual measured contact angle was smaller
than the theoretical value. It can be seen from the measurement of the surface contact angle
that microstructures can make the originally hydrophilic surface appear superhydrophobic.

Table 1. Static contact angle of micro-pillar-structured silicon surfaces.

Group d/µm a/µm h/µm f/φ
Contact Angle/◦

Theoretical Value Experimental Value

1 10 35 15 0.0641 151.13 151.35
2 10 45 15 0.0388 157.66 157.17
3 10 60 15 0.0218 162.32 160.57
4 10 90 15 0.0097 165.93 163.23
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4.3. The Condensation Experiment on the Si Surface with Micro-Pillar Structures

Condensation experiments were conducted on the prepared Si surface featuring
microstructures. The essential experimental equipment and instruments used are detailed
in Table 2.

Table 2. Equipment details.

Equipment Name Model Distributor

Optical microscope ECLIPSE LV1OOND Nikon, Shanghai, China
Objective TU-Plan Flour Nikon, Shanghai, China

CCD camera PSC603 Oplenic, Beijing, China
Humidifier 3G40A Midea, Foshan, China

Hygrothermograph HTC-1 Purich, Tianjin, China

Peltier semiconductor refrigeration chip XH-C1201 Xinhe Electronic Technology,
Guangzhou, China

Ultrathin thermocouple T-Type Benop, Shenzhen, China
Data acquisition unit 34970A Agilent, Suzhou, China

As shown in Figure 12, in the condensation micro-experiment, the temperature and
relative humidity inside the condensation chamber were maintained at 24 ± 0.3 ◦C and
60 ± 3%, respectively, with a corresponding dew point temperature of 15.8 ◦C. The temper-
ature of the test surface was maintained at 10 ◦C. Neglecting the impact of the Si wafer’s
thickness on the temperature and assuming an even distribution of surface temperature,
the surface was approximately 5.8 K. Under consistent condensation conditions, the dy-
namic process of liquid droplet condensation on silicon surfaces with four different sets of
microstructures was observed and documented.
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From Figure 13, it is evident that the condensation droplets on all four silicon surfaces
ultimately ended up in the Wenzel state. Notably, Surface 1, which has the smallest micro-
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pillar spacing, tended to form Wenzel-state droplets most readily. Given the higher heat
flux density associated with Wenzel-state droplets, which is conducive to condensation
heat transfer, it can be inferred that surfaces with smaller micro-pillar spacing exhibit
superior heat transfer performance. However, due to the limited observational capabilities
of the experimental apparatus, this study was restricted to capturing only the middle-to-
late stages of droplet growth. As the volume of the droplet increases, the contact radius
progressively expands, resulting in the manifestation of the Wenzel state. This outcome
corroborates our conclusions and validates the reliability of the theoretical model.
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5. Conclusions

In summary, utilizing kinetic theory, we have developed a condensation rate model
for the gas–liquid interface of condensation droplets, which facilitated the calculation of the
heat transfer rate of droplets of varying volumes. By considering the constraint of droplet
volume, we combined the heat resistance model for individual condensation droplets with
the condensation rate model for the gas–liquid interface. Through numerical calculations,
we were able to solve for the intermediate variables within this complex, nonlinear system.

We classified the growth of condensation droplets into three distinct stages, with
volumes of 105 nm3 and 1010 nm3, enabling a more precise prediction of the droplet
growth model. First, in the early growth stage, the contact angle increases rapidly and can
surpass the surface equilibrium contact angle. Second, during the middle growth stage, the
droplet contact angle remains constant, exhibiting growth patterns which align with the
increase in the contact circle area. Third, in the late growth stage, the droplet contact angle
gradually decreases from the equilibrium contact angle, ultimately stabilizing around 120◦.
Throughout the entire growth process, the contact circle radius of the droplet gradually
increases, ultimately transitioning into a Wenzel state. This aligns with the experimental
observations made by Enright et al. [24]. Additionally, our experiments confirmed the
accuracy of the proposed growth model. This study lays a solid theoretical foundation
and provides quantitative methods for the design and production of surfaces for use in
applications such as biochips and microfluidic chips.
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