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Abstract: In the context of an aging population and escalating work pressures, cardiovascular dis-
eases pose increasing health risks. Electrocardiogram (ECG) monitoring presents a preventive tool,
but conventional devices often compromise comfort. This study proposes an approach using Ag
NW/TPU composites for flexible and breathable epidermal electronics. In this new structure, TPU
fibers are used to support Ag NWs/TPU nanocomposites. The TPU fiber-reinforced Ag NW/TPU
(TFRAT) nanocomposites exhibit excellent conductivity, stretchability, and electromechanical durabil-
ity. The composite ensures high steam permeability, maintaining stable electrical performance after
washing cycles. Employing this technology, a flexible ECG detection system is developed, augmented
with a convolutional neural network (CNN) for automated signal analysis. The experimental results
demonstrate the system’s reliability in capturing physiological signals. Additionally, a CNN model
trained on ECG data achieves over 99% accuracy in diagnosing arrhythmias. This study presents
TFRAT as a promising solution for wearable electronics, offering both comfort and functionality in
long-term epidermal applications, with implications for healthcare and beyond.

Keywords: electronic skin; stretchable; breathable; electrospinning; intelligent wearable devices

1. Introduction

With the advent of the aging population and the simultaneous confrontation of individ-
uals with elevated work pressures and a brisk pace of life, the incidence of cardiovascular
diseases exhibits a discernible upward trend [1–3]. Cardiovascular diseases, constitut-
ing high-risk maladies, manifest not only through physical symptoms but also clinically
present as anomalies in the ECG [4,5]. The long observation and accurate reflection of a
human heart’s health condition through an electrocardiogram can play a preventive and
diagnostic role, ensuring the wellbeing of individuals [6–10]. Traditional electrocardiogram
monitoring devices are often cumbersome and require specific expertise to operate, making
them less accommodating to users’ needs. However, flexible sensors utilizing electrodes
with stretchability and breathability to gather human body information can cover specific
skin areas for extended periods without causing discomfort. This allows for the continuous
monitoring of vital signs, facilitating timely health assessments. Additionally, the integra-
tion of artificial intelligence (AI) has made the combination of flexible sensors and AI a
prominent area of research.

To enhance signal quality, a compact interface should be established between the skin
and the sensor [11–13]. Traditional electronic skin is manufactured on a substrate and
then transferred onto the skin. Because the human body requires water evaporation to
regulate temperature, the prolonged fixation of impermeable electronic devices on the
skin may induce discomfort and even lead to adverse reactions [14–17]. Flexible porous
materials, such as mesh-like membranes, elastomer microfoams, and resilient textiles,
have been widely studied as breathable platforms for stretchable electronic devices. The
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interconnected micro-pores in these materials provide exceptional breathability, greatly
enhancing comfort during wear [18–22]. Various nanomaterials, such as silver nanopar-
ticles, Ag NWs, and thin metal coatings, have been incorporated into porous substrates
to fabricate conductive electrodes that are stretchable [23–27]. However, manufacturing
flexible devices on porous substrates still requires specialized equipment and complex
procedures [28–30]. Another design employs elastic membranes to construct breathable epi-
dermal electronic devices [31–34]. Elastic materials are not ideal barriers for gas molecules
due to their abundant free volume [35–39]. Additionally, if elastic materials contain a
large number of hydrophilic groups, they can actively participate in the transport of water
molecules, significantly enhancing the breathability of the elastic membrane. Therefore,
elastomers have been widely utilized in manufacturing stretchable thin-film devices with
open mesh designs that possess breathable characteristics [24]. An approach involves
embedding metal nanowires into elastomers to manufacture breathable electrodes with
deformability [40–43]. Another advantage of the design is its low mechanical stiffness,
facilitating a close connection with highly textured skin [44–46]. However, these enviable
characteristics unfortunately come at the expense of reduced mechanical toughness [47–50].
Due to insufficient stiffness for direct manipulation, carefully designed procedures are
required to transfer prepared devices onto the human body. Additionally, removing such
devices from the skin often entails applying excessive force, posing a high risk of struc-
tural damage [51–53]. Therefore, ultrathin breathable devices are typically considered as
disposable electronic tattoos for short-term implementation.

Traditional research on arrhythmia classification aims to automate the methods used
by human experts in order to identify and classify arrhythmias from ECG signals. The main
challenges in traditional arrhythmia classification research lie in the diversity of arrhythmia
types, as well as the presence of overlap and confusion, necessitating the optimization
and improvement of classification algorithms and feature extraction to enhance accuracy
and stability [54,55]. With the continuous development of computers, researchers have
explored the direction of machine learning technologies. Due to the rapid advancement
of AI technologies, machine learning and related techniques have been widely applied to
arrhythmia recognition and classification, achieving notable results. Traditional arrhythmia
classification methods have limitations in extracting deep features from ECG signal data.
By employing deep learning techniques such as neural networks, researchers aim to achieve
more accurate and automated arrhythmia diagnosis [56,57]. CNN and recurrent neural
network (RNN) are widely used learning models in arrhythmia classification research.
Researchers also employ various preprocessing and data augmentation techniques to
enhance model performance and generalization ability. Deep learning techniques hold
great potential for arrhythmia classification and are expected to become important tools
for future automatic arrhythmia diagnosis [58–60]. A CNN, as one of the deep learning
models, is specifically designed to handle data with grid-like structures, such as images,
videos, and audio. Compared to traditional neural networks, CNNs excel in capturing
local features and spatial relationships when processing such data. Moreover, CNNs are
applied in the morphological analysis of physiological signals due to their unique positional
and shift-invariant capturing capabilities. ECG signals contain local features related to
arrhythmias, such as QRS complexes, ST segments, and T waves, which are independent of
the overall shape and size of the signal [51]. Therefore, CNNs are suitable for arrhythmia
classification tasks and have achieved promising results in this field.

Ag NWs embedded in an elastic film form a flexible nano-composite electrode with
inherent gas permeability. The electrospun TPU solution produces a flexible and porous
substrate, allowing for convenient operation and repeated use. Laser cutting is em-
ployed for patterning the nano-composite electrode. This electrode exhibits low resistance
(180.1 mΩ/sq) and moderate stretchability. The overall architecture of the electrode in the
electrospun fiber ensures high steam permeability during use, providing a comfortable
experience. Stable electrical performance is maintained even after multiple washing cycles,
meeting long-term hygiene requirements. Finally, a flexible system for ECG detection is
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developed based on TFRAT. A CNN is built and trained. This neural network can automat-
ically analyze the ECG signals obtained from the flexible system. In conclusion, comparing
TFRAT with previous electrodes, it has certain advantages (Table S1).

2. Materials and Methods

The following chemicals were used: ethylene glycol from Tianjin benchmark Chemical
Reagent Co., Ltd. (Tianjin, China); polyvinylpyrrolidone (PVP) from Wuxi Yatai United
Chemical Co., Ltd. (Tianjin, China); silver nitrate (AgNO3) and anhydrous ethanol from
Tianjin fengchuan Chemical Reagent Research Co., Ltd. (Tianjin, China); TPU (soft35A 12P)
from BASF, Ludwigshafen, Germany; and N,N-Dimethylformamide (DMF) from Shanghai
Mayer Biochemical Technology Co., Ltd. (Shanghai, China).

Ag NWs were synthesized via the polyol reduction method in our laboratory. During
the synthesis of the Ag NW precursor solution, 0.63 g of AgNO3 and 1 g of PVP were
added to a 100 mL ethylene glycol solution that was stirred until they were completely
dissolved. Subsequently, 225 µL of 88 mM CuCl2 solution was added. The mixture was
then immediately transferred to a preheated reactor and kept at 130 ◦C for 12 h, resulting
in Ag NWs that were approximately 86 µm in length and around 70 nm in diameter (as
shown in Figure S1).

The Ag NWs were added to DMF and stirred until they were uniformly dispersed.
Then, TPU particles were added to the mixture and stirred until the TPU particles were
completely dissolved. The prepared and fresh Ag NW/TPU was used. The prepared Ag
NW/TPU solution was poured into a polytetrafluoroethylene (PTFE) container, and it
dried and formed a film at room temperature.

Then, 20 g of DMF and 20 g of THF were mixed separately, after which 10 g of TPU
pellets was poured into the mixed solution, followed by stirring for 4 h at 60 ◦C. The TPU
solution was then drawn into a 20 mL plastic syringe and secured on an injection pump
with a flow rate of 5 mL/h. The distance between the needle tip and the collector is set at
16 cm, with a potential difference of 16 kV between the needle tip and the collector.

Characterization

The electronic universal testing machine (CMT 6104 100 N sensor, Shenzhen new
think measurement technology Co., Ltd., Shenzhen, China) was employed to assess the
mechanical properties of fiber fabrics and the tensile properties of TFRAT. Scanning electron
microscopy (SEM 7610F, Tokyo, Japan) images were used to observe the micromorphology
of Ag NWs and TFRAT. The four-probe resistance tester (M-3) was utilized to measure the
sheet resistance of the electrode. The stream permeability test involves sealing a glass jar
filled with deionized water using the sample and placing it in an environmental chamber.
The weight of the glass jar was periodically measured using an analytical balance with an
accuracy of ±0.1 mg. To assess long-term storage stability, the samples were placed in an
environmental chamber for 15 consecutive days, during which resistance was recorded.
Washing tests were performed by immersing the samples in tap water. The samples were
placed into a beaker filled with distilled water, and the beaker was then placed on a stirring
hotplate and stirred for 1 h to simulate the washing conditions of a washing machine.
After the washing cycle, the samples were spread out and left to air-dry naturally indoors.
Subsequently, the resistance of the samples was measured using a four-probe resistance
meter, and the changes before and after washing were recorded. The resistance changes
after multiple wash cycles can be used to evaluate the washability of the flexible electrodes.
In addition to using distilled water, detergent can also be added for comparison purposes.
The skin electrode’s contact impedance was measured using a VICTOR LCR meter. The
original ECG and EMG signals were amplified via the Intan RHD2000 amplifier and then
sampled using the Intan RHD USB interface board.
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3. Results and Discussion

Figure 1a schematically illustrates the entire manufacturing process of TFRAT. Firstly,
the previously prepared AgNW/TPU composite films were transferred onto a thermal
release adhesive. After natural drying, the film’s thickness was approximately 10 µm. Next,
the Ag NW/TPU film was cut via laser cutting according to the pattern designed in CAD
drawings, removing excess parts afterward. Finally, the Ag NW/TPU composite film was
attached to a TPU fiber membrane substrate using a hot press. The composite film was
heated to 120 ◦C, and, after 10 s, the adhesive on the heat-release glue did not exhibit
activity, allowing the removal of the heat-release tape. The polymer scaffold prepared
through electrospinning exhibits excellent stretchability. As observed in the stress–strain
curve, the elongation at break of the polymer scaffold is 412%, and Young’s modulus is
1 MPa (as shown in Figure S2). It possesses high conductivity, breathability, and washability,
making it highly suitable for applications in electronic textiles.
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Figure 1. (a) The fabrication process of TFRAT. (b) SEM images of TFRAT with 40% Ag NWs content.
(c) Electrical properties of the Ag NW/TPU film with varying Ag NW content. (d) Normalized
resistance vs. tensile resistance for conductive nanocomposites with different Ag NW contents.
(e) Change in the resistance of the TFRAT with 40 wt % Ag NWs during 1000 stretch–relaxation cycles
relative to 30% strain.

Concerning electrical performance, the SEM image in Figure 1b reveals that Ag NWs
are uniformly embedded into the TPU substrate and distributed on the surface of the
TPU. These Ag NWs form a conductive network within the Ag NW/TPU composite film.
Figure 1c indicates that, with an increase in Ag NW content in the composite film, the
sheet resistance of the Ag NW/TPU composite film gradually decreases, demonstrating
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that the overlap of the Ag NWs’ conductive network increases with the increase in Ag
NW content. Specifically, the sheet resistance is 244.3 mΩ/sq at 30 wt %, 219.3 mΩ/sq at
35 wt %, 180.1 mΩ/sq at 40 wt %, 57.8 mΩ/sq at 45 wt %, and 51.7 mΩ/sq at 50 wt %.
From Figure S3 and Figure 1b, it can be observed that the internal conductive network of
Ag NWs is denser, increasing from 40% to 45%, which is also the reason for the decrease in
resistance. The sharp decrease in sheet resistance may be due to crossing a threshold as a
result of the addition of Ag NWs, resulting in a significant increase in the contact interface
between Ag NWs.

The relationship between the resistance of TFRAT and tensile strain is illustrated
in Figure 1d. Specifically, the normalized resistance is 2.8 at 30% strain and increases
to 123.1 at 90% strain. TFRAT improves its stretchability by completely embedding Ag
NWs in the TPU film. The initially reduced sensitivity at increased loading is likely due
to the diminished influence of individual junctions within the densely interconnected
network. Conversely, an excess of Ag NWs tends to result in pronounced stiffening effects
on the corresponding nanocomposites [61]. In terms of durability, Figure 1e illustrates
the evolution of resistance after 1000 stretching cycles at 30% strain. As observed in the
stress–strain curve (Figure S4), the elongation at break of TFRAT is 453%.

Correspondingly, the resistance of electrodes formed by directly spraying Ag NWs
onto TPU fibers undergoes rapid changes with variations in tensile strain. Figure 2a illus-
trates that the irreversible changes in resistance are primarily attributed to the inconsistent
deformation between Ag NWs and TPU, leading to the sliding of nanowires and damage
to the connected network [35,62]. In Figure 2c, the resistance of the spray-coated electrodes
increases sharply by 10.6 times at 30% strain and further escalates to 135.3 times at 70%,
substantially below the tensile performance of TFRAT. The degradation in electrical per-
formance is primarily associated with the fracture of suspended Ag NWs at micro-pores,
whereas TFRAT enhances its tensile capability by embedding Ag NWs completely within
the TPU film. Regarding durability, Figure 2d illustrates the evolution of resistance after
1000 cycles of stretching at 30% strain. For the sprayed electrodes, the nominal resistance
increases by a factor of 43.5 in the relaxed state, whereas for TFRAT, the nominal resistance
increases by a factor of 4.1 (as shown in Figure 1e). TFRAT exhibits good mechanical
durability in practical applications.
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Figure 2. (a) SEM images of TFRAT before (top) and after (bottom) tensile strain at 30%; (b) SEM
images of TPU fibers before (top) and after (bottom) tensile strain at 30%; (c) the relationship between
normalized resistance and tensile strain for TFRAT and spray-coated electrodes; (d) change in the
resistance of the nanocomposite with sprayed Ag NWs during 1000 stretch–relaxation cycles to
30% strain.
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Simultaneously, breathable design is crucial for the comfortable wear of skin-adherent
electronic products. In Figure 3a shows the water vapor permeability for several wearable
materials. Conventional TPU thin films have a low permeability of 2.8 g h−1 m−2 at 400 µm,
which blocks the transepidermal water loss of the body (~5–10 g h−1 m−2) [63]. The
porous structure of the TPU fiber membrane facilitates the permeation of water vapor, with
TFRAT achieving a breathability of 11.2 g h−1 m−2 at 400 µm, exhibiting slightly lower
breathability than traditional textiles (13.8 g h−1 m−2). Accordingly, TFRAT represents
an attractive electronic material for long-term epidermal applications. Furthermore, in
practical applications, TFRATs typically feature specific patterns; in other words, the
TPU/Ag NWs composite material does not completely cover the flexible and breathable
substrate. The areas that are not covered by the TPU/Ag NW composite material may
further enhance its breathability. Therefore, this experiment also discusses the relationship
between the coverage ratio of the conductive film on the substrate and its corresponding
breathability. The results, as shown in Figure S5, indicate that when the coverage ratio is
25%, breathability is 17.7 g h−1 m−2, 16.8 g h−1 m−2 at 50%, 16.0 g h−1 m−2 at 75%, and
11.4 g h−1 m−2 at 100%. Even when the coverage ratio of the transfer-printed electrode
reaches 100%, its overall breathability can still meet the requirements of human skin.
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In practical applications, conductive microfabrics need to exhibit stable electrical
performance. TFRAT demonstrates high stability when stored for an extended period under
environmental conditions, maintaining high conductivity (as shown in Figure S6). In terms
of wash resistance, the conductive fabric was initially evaluated through simulated washing
tests. Surprisingly, TFRAT shows a decrease in resistance during the washing process (as
shown in Figure 3b), and this is possibly due to the partial removal of PVP surfactants
during washing, resulting in a reduction in contact resistance between Ag NWs [64]. The
relatively stable resistance indicates its good wash resistance, enabling its application in
a wide range of fields, surpassing disposable devices. In addition, in this experiment, a
washing test was also conducted on the spray-coated electrodes for comparison purposes,
as shown in Figure S7. It can be observed that the washing performance of the spray-coated
electrodes is very poor. The resistance of the spray-coated electrodes is 3.12 times the
initial resistance after the first wash, 12 times after repeated washing, and 268 times after
the third wash. This may be because the electrode fabrication process results in different
distributions of conductive materials, thereby affecting the washing performance of the
electrodes. As shown in Figure S8, the microstructure of the transfer-printed electrodes does
not show significant changes after washing; the Ag NWs remain well embedded within the
TPU. This structure ensures that it is less susceptible to damage inflicted on the conductive
network due to external influences. In contrast, significant changes in morphology are
observed for the spray-coated electrodes after washing. The conductive network formed by
Ag NWs on the surface of the spray-coated electrodes is severely disrupted after washing.
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Although some Ag NWs still adhere to the fibers, providing some conductivity, this is
insufficient for meeting the requirements of the daily use of electrodes.

Therefore, corresponding epidermal sensing patches were prepared (Figure S9), and
the manufactured sensing patches were adhered to the skin using breathable surgical tape
(Figure 4a). According to the impedance analysis shown in Figure 4b, the skin contact
impedance of TFRAT is slightly higher overall than that of gel electrodes, especially in the
low-frequency region where the difference between the two is more pronounced. However,
as the frequency increases, this difference begins to diminish. This is possibly because
gel electrodes possess adhesive properties, allowing them to better adhere to the skin and
reduce contact impedance. In contrast, TFRAT requires external forces to adhere better to
the skin. However, this can be improved by adjusting the applied pressure and increasing
skin moisture, among other methods. As shown in Figure 4c, high-quality ECG signals
and EMG signals were obtained from the TFRAT electrode. The unique features in these
ECG waveforms allow for quantitative heart rate calculations and useful diagnostics for
cardiac diseases. To further illustrate the quality of the ECG signals collected via TFRAT,
we instructed the test subjects to attach TFRAT to their left chest and then to go for a run.
The collected ECG signals during the running process are shown in Figure S10. Due to the
stretching of the skin, increased heart rate, and the influence of sweat during the running
process, significant changes occurred in the ECG signals. However, TFRAT was still able to
collect high-quality ECG signals. Additionally, we conducted tests on TFRAT by applying
it to the human body and keeping it attached for 24 h, even during showering, without
detachment. After removal, there were no noticeable changes on the skin surface, indicating
that TFRAT exhibits excellent biocompatibility and does not cause skin irritation or rashes
(Figure S11). Overall, TFRAT is well suited as an epidermal electrode, reliably capturing
physiological electrical signals.

Recently, CNNs integrated with flexible devices have been utilized for the analysis of
human gestures, demonstrating significant potential in healthcare and intelligent systems.
ECG signals can assist cardiac experts in analyzing various diseases such as atrial fibrillation
and early ventricular contractions. In the real-time and long-term monitoring of patients,
it is impractical for cardiac experts to offer continuous real-time assessments of ECG
signals. Therefore, there is a need to develop a computer-assisted arrhythmia analysis
system. In addition to neural networks, large datasets of ECG recordings are necessary
to achieve accurate results. The widely used ECG dataset is the MIT-BIH Arrhythmia
Database. In this work, we developed a prediction model based on the MIT-BIH Arrhythmia
Database, consisting of a 9-layer CNN. This model can detect four different arrhythmia
types, including left bundle branch block (LBBB), right bundle branch block (RBBB), atrial
premature beats (APBs), and premature ventricular contractions (PVCs).

When CNNs are used for image recognition, as the number of network layers increases,
complex high-level features gradually decompose into basic low-level features, and the
combination of numerous low-level features serves as the basis for distinguishing between
different categories of images. The convolutional layer (convolution) is used to extract
features from input data by performing convolution operations with convolutional kernel
sliding over the input data to generate output feature maps. The max pooling layer (max
pooling) reduces the spatial size of feature maps while preserving the most significant
features by selecting the maximum value within each pool. The rectified linear unit (ReLU)
and other activation functions are introduced into CNN to enhance their non-linear capabil-
ities, aiding in the further improvement of network performance. The batch normalization
layer (batch norm) accelerates the training process of neural networks and helps mitigate
issues such as vanishing or exploding gradients by normalizing the activations of each layer.
The flatten layer (flatten) converts multidimensional input data into a one-dimensional
vector, and it is typically used before connecting to fully connected layers. The fully con-
nected layer (full connection) flattens the multi-channel features generated by different
convolutional kernels to obtain the final classification result. The dropout layer (dropout)
is employed during training to randomly drop neurons, reducing overfitting.
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model for the four types of arrhythmia diagnosis.

The structure of the prediction model is illustrated in Figure 4d, with the first three
layers composed of a CNN layer, an ReLU layer, and a max pooling layer. The final
convolutional layer is followed by a batch normalization layer and a flattening layer to
transform the output of the convolutional layers from a 2D matrix to a 1D matrix. Next,
there is a fully connected layer with 128 nodes, followed by a dropout layer (dropout rate
of 0.2) to prevent overfitting. Finally, the output passes through a fully connected layer
with five nodes for the classification output. Overall, the model’s structure is designed
to extract features from inputs through convolution and pooling operations, and it then
classifies them through fully connected layers.

To fully utilize the label of each heartbeat, 99 signal points are taken forward and
200 signal points are taken backward from the R peak, forming a complete heartbeat. In
the preprocessing stage, 70% of the entire dataset is used for training, and the remaining
samples are used as test samples. As shown in the confusion matrix in Figure 4e, the
prediction accuracy on the test dataset exceeds 99%, indicating the potential of this system
to assist doctors in diagnosing arrhythmias.

4. Conclusions

In this study, we have introduced the fabrication of TFRAT, a type of skin electronic
characterized by both stretchability and breathability. In this architecture, the TPU fiber
membrane serves as the support for the material composed of Ag NW/TPU. The shear
lamination method enables the scalable production of Ag NW/TPU film nanocomposite
electrodes, which exhibit excellent conductivity, stretchability, and mechanical durability.
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The structure of TFRAT demonstrates high vapor permeability, providing a breathability
advantage in skin-related sensing applications. Its robust electrical properties ensure
long-term usability, even after repeated washing cycles. Leveraging TFRAT, a flexible
system has been developed for detecting electrocardiogram signals and analyzing ECG
data using CNN. This research shows promising potential for future wearable devices and
healthcare applications.

While our study showcases promising advancements in wearable electronics, it is
essential to acknowledge some limitations and identify future research opportunities.
One limitation lies in the sensitivity of TFRAT to environmental factors such as humidity
and temperature variations, which may affect its performance in real-world scenarios.
Additionally, the fabrication process of TFRAT could be further optimized to enhance
scalability and reduce production costs. Future studies should explore methods to mitigate
the sensitivity of TFRAT to environmental factors, possibly through the integration of
protective coatings or alternative materials. Furthermore, improvements in fabrication
techniques could lead to the development of TFRAT variants with enhanced properties,
such as increased stretchability or improved breathability. Moreover, investigating the
integration of TFRAT into multifunctional wearable systems for health monitoring beyond
ECG, such as sweat analysis or motion tracking, presents exciting avenues for research. In
conclusion, while TFRAT holds significant promise for wearable electronics and healthcare
applications, addressing its limitations and pursuing future research directions will be
crucial for realizing its full potential.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi15050598/s1. Figure S1: (a) SEM image of as-synthesized Ag
NWs by using polyol reduction method; Figure S2: Stress-strain curve of conductive microtextile
under uniaxial tensile stretching; Figure S3: SEM images of TFRAT with 45% Ag NWs content;
Figure S4: Stress-strain curve of TFRAT under uniaxial tensile stretching; Figure S5: Steam per-
meability for TFRAT of different coverage; Figure S6: Long-term storage stability at the ambient
temperature with different relative humidity levels. The resistance is fairly stable under both dry
and humid air conditions; Figure S7: The water washing performance diagram of TFRAT and spray
electrode; Figure S8: Surface SEM plot of the sample after wash cycles (a) TFRAT; (b) spray electrode;
Figure S9: TFRAT diagrammatic sketch; Figure S10: ECG signals of the running state; Figure S11: Af-
ter wearing TFRAT for 24 h (a) before removal; (b) after removal. Table S1: A summary of stretchable
and breathable conductors.
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