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Simple Summary: Hepatocellular carcinoma (HCC) represents the third cause of cancer-related
death in the world, and identification of new prognostic factors and/or therapeutic targets remains
a major issue. Recently, immune checkpoint inhibitors (ICIs) have opened promising therapeutic
options for this disease. Using a large series of transcriptomic data of clinically annotated HCC
samples, we provide evidence that the TIGIT/DNAM-1 axis, and notably the PVRIG molecule, might
be an interesting therapeutic candidate for HCC tumors.

Abstract: Hepatocellular carcinoma (HCC) is a frequent and deadly cancer in need of new treatments.
Immunotherapy has shown promising results in several solid tumors. The TIGIT/DNAM-1 axis
gathers targets for new immune checkpoint inhibitors (ICIs). Here, we aimed at highlighting the
potential of this axis as a new therapeutic option for HCC. For this, we built a large transcriptomic
database of 683 HCC samples, clinically annotated, and 319 normal liver tissues. We interrogated this
database for the transcriptomic expression of each member of the TIGIT/DNAM-1 axis and tested
their prognostic value for survival. We then focused on the most discriminant one for these criteria, i.e.,
PVRIG, and analyzed the clinical characteristics, the disease-free and overall survivals, and biological
pathways associated with PVRIG High tumors. Among all members of the TIGIT/DNAM-1 axis,
PVRIG expression was higher in tumors than in normal liver, was heterogeneous across tumors,
and was the only member with independent prognostic value for better survival. PVRIG High
tumors were characterized by a higher lymphocytic infiltrate and enriched for signatures associated
with tertiary lymphoid structures and better anti-tumor immune response. These results suggest
that patients with PVRIG High tumors might be good candidates for immune therapy involving
ICIs, notably ICIs targeting the TIGIT/DNAM-1 axis. Further functional and clinical validation is
urgently required.

Keywords: hepatocellular carcinoma; immunotherapy; PVRIG; CD112R; survival

1. Introduction

Hepatocellular carcinoma (HCC) represents the third cause of cancer-related death in
the world [1–3]. Its incidence is increasing [4,5], with one million of new cases expected
worldwide in the upcoming years. HCC represents a heterogeneous disease with multiple
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causal factors (alcohol intake, infection with hepatitis B (HBV) or hepatitis C (HCV) viruses,
and metabolic syndrome) and miscellaneous prognoses [6–8]. Surgical resection, local
ablation, and liver transplantation are the only curative treatments selected for patients
and confer a five-year survival rate above 50%. Trans-arterial chemoembolization is used
in the palliative setting, for patients with advanced disease (with a 20% improvement on
the two-year overall survival (OS) rate) [9]. In case of failure, or if the patient is not eligible
for trans-arterial chemoembolization, sorafenib and lenvatinib, two multi-kinase inhibitors,
remain the only Food and Drug Administration (FDA)-approved drugs [10]. Median OS for
these patients reaches 6.2 and 10.9 months in the Asia-Pacific region and Western countries,
respectively [11,12]. Hence, as for many aggressive cancers, there is an urgent need for new
therapeutic options [13].

Immunotherapies are part of these new therapeutic options in solid tumors [14]. They
mainly rely on immune checkpoint inhibitors (ICIs) directed against CTLA-4, PD-1 or
PD-L1 [15]. A response is observed in a variable proportion of patients with aggressive
tumors (around 10 to 20%) who previously had no other option. ICIs are thus considered
as major assets in the treatment of several aggressive cancers, such as triple-negative breast
cancer, lung, melanoma, and HCC [16]. For now, the treatment of HCC with nivolumab or
pembrolizumab, two anti-PD-1 ICIs, has shown prolonged median OS and progression-
free survival (PFS) in a subset of patients [17]. However, the FDA has recently emitted
accelerated approval to nivolumab (an anti-PD-1) and to the association of nivolumab and
ipilimumab (an anti-CTLA-4) in the second line setting, for patients who are progressing
on sorafenib. This decision was based on the results of the phase I/II study (NCT01658878)
that shows a better overall response rate and duration of response in patients treated with
these two ICIs [18,19]. No approval has however been granted by European institutions for
immunotherapies in HCC yet. Most importantly, these studies highlight the fact that HCCs
are tumors sensitive to immune therapy. In this regard, efforts are being made to identify
other ICIs as alternative targets for cancer immunotherapies.

In this line, the TIGIT/DNAM-1 axis might be an option for the next generation of
cancer immunotherapies [20]. This axis is composed of nine members, including five recep-
tors, namely DNAM-1 (CD226, activator), TACTILE (CD96, activator), TIGIT (inhibitor),
PVRIG (CD112R, inhibitor), and KIR2DL5A (CD158f, inhibitor), all expressed on cytotoxic
cells (CD8+ T cells, Natural killer (NK) cells, and γδ T cells), and four ligands, namely
NECTIN-1 (PVRL1/CD111), NECTIN-2 (PVRL2/CD112), NECTIN-3 (PVRL3/CD113), and
PVR (CD155), which can be expressed on antigen-presenting cells or tumor cells [21]. Even
though studies putting forward the role of TIGIT/DNAM as a regulator of HCC are still
particularly scarce in the literature, one recent study reports that the blockade of TIGIT
enhanced the antitumor activity of CD8+ T cells during the progression of HBV-related
HCC in a spontaneous HCC mouse model. Interestingly, the blockade of PD-L1 did not
slow HCC growth in HBs-HepR mice when administered alone, nor synergized with TIGIT
blockade. This recent finding provides robust data indicating that the TIGIT/DNAM-1
axis might be a better candidate than the PD-1/PD-L1 axis in HCC (at least in HBV-related
HCC) [22]. Additional examples along this line can be found for other tumor types. Indeed,
in murine colon carcinoma models, combined blockade of TIGIT and PD-1, has shown
synergic enhancement of CD8+ T cell function [23]. In 2019, seven clinical trials have
used the anti-TIGIT alone or in combination [24]. The anti-TIGIT is certainly the most
advanced ICIs issued from the TIGIT/DNAM1 axis, but others are in development, notably
against the second inhibitory receptor of the axis, PVRIG. In vivo studies on acute myeloid
leukemia and melanoma revealed that PVR blockade led to anti-tumoral activation and
prevented metastasis formation [25]. In humans, simultaneous blockade of PVRIG and
TIGIT enhanced trastuzumab-mediated NK cell response against breast cancers [26]. There
is currently one anti-PVRIG antibody, which is currently tested in an ongoing clinical trial,
which is either administered alone or in combination with nivolumab or anti-TIGIT ICI
in several solid tumors (NCT03667716). Altogether, these clinical trials suggest that the
TIGIT/DNAM-1 axis is indeed a target for the upcoming generation of ICIs, and a new
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therapeutic opportunity for the treatment of several tumor types, potentially including
HCC [24].

Based on these observations, we analyzed the transcriptomic expression of the mem-
bers of the TIGIT/DNAM-1 axis to search for correlations between mRNA expression
and clinicopathological data, including survival. The overall objective was to assess their
relevance as potential targets for new ICIs in HCC.

2. Materials and Methods
2.1. Gene Expression Datasets

We gathered clinicopathological and gene expression data of HCC clinical samples
from public repositories: Gene Expression Omnibus (GSE14520 and GSE54236) and TCGA
database (Table S1). We collected 683 HCC samples and 319 healthy liver tissues (1002 sam-
ples in total) that we pooled in our database. Patients were from both Western and Eastern
countries. The analysis’s workflow is detailed in Figure 1. Among the 683 HCC samples,
the follow-up and survival data were available in two datasets (GSE14520 and TCGA),
representing 602 HCC samples (Figure 1).
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2.2. Gene Expression Data Processing

Data analysis required pre-analytic processing, as previously described [27]. Briefly,
each DNA-microarray dataset was normalized separately, by using quantile normalization
for the available processed Agilent data and Robust Multichip Average (RMA) with the
non-parametric quantile algorithm for the raw Affymetrix dataset. Normalization was
performed in R using Bioconductor and associated packages (version 3.5.1, R Foundation
for Statistical Computing, Vienna, Austria). We log2-transformed the available TCGA
RNA-seq data that were already normalized. Then, we mapped hybridization probes
across the different technological platforms. We used EntrezGene (Homo sapiens gene
information db, release date: 9 December 2008, ftp://ftp.ncbi.nlm.nih.gov/gene/) to

ftp://ftp.ncbi.nlm.nih.gov/gene/


Cancers 2023, 15, 447 4 of 22

retrieve and update the non-Affymetrix gene chips annotations, and NetAffx Annotation
files (www.affymetrix.com; release date: 1 December 2008) for Affymetrix annotations.
The probes were then mapped according to their EntrezGeneID. When multiple probes
represented the same GeneID, we retained the one with the highest variance in a particular
dataset. Next, we corrected the three studies for batch effects using z-score normalization.
Briefly, for each gene expression value in each study separately, all values were transformed
by subtracting the median of the gene in that dataset divided by its standard deviation,
median, and standard deviation being measured on HCC samples only. The comparison
of gene expression levels (continuous values) in HCC versus normal tissues (NT) was
performed using the Student t-test. PVRIG expression in tumors was measured as a
discrete value (High versus Low) by using the median expression level across the whole
series as cut-off.

We applied several multigene signatures, including the molecular subtypes classi-
fication of Hoshida et al. [28], to each dataset separately. Because PVRIG is a potential
target of immunotherapy, we searched for correlations between its expression in HCC and
different immune variables. We thus tested several immune- and fibroblastic-multigene
classifiers/scores: the tumor-infiltrating lymphocyte (TIL) score [29], the 24 Bindea’s innate
and adaptive immune cell subpopulations signatures [30], the Immunologic Constant of
Rejection (ICR) classifier [31], the T-cell-inflammation signature (TIS) [32], the tertiary lym-
phoid structures (TLS) signature [33], the cytolytic activity score [34], the antigen processing
machinery (APM) score [35], and three different classifications for fibroblast subsets [36–38].

To explore the biological pathways associated with PVRIG expression in HCC, we
performed a supervised analysis with the GSE14520 dataset [39] as learning set, which
included 121 PVRIG High and 121 PVRIG Low samples. We used the TCGA dataset [40]
as an independent validation set, which included 180 PVRIG High and 180 PVRIG Low
samples. In the learning set, we compared the whole-transcriptome expression profiles
between PVRIG High and PVRIG Low samples using a Student t-test and applied a false
discovery rate (FDR) correction. Significant genes were defined by the following thresholds:
adjusted p-value < 0.05 and fold change (FC) superior to |1.5x|. Ontology analysis of the
resulting gene list was established with the GO biological processes of the Bioconductor
package clusterProfiler. We tested the robustness of the resulting gene list in the validation
set by computing the metagene score for PVRIG High samples and PVRIG Low samples,
respectively.

2.3. Statistical Analysis

Continuous variables were displayed as median (range) values and categorical vari-
ables with counts (n) and proportion (%). Correlations between the PVRIG expression-based
tumor groups (PVRIG High and Low) and clinicopathological and molecular variables
were analyzed using the Student t-test or the Fisher’s exact test when appropriate. The
disease-free survival (DFS) was calculated from the date of diagnosis until the date of
relapse (local, regional, or distant) or death from any cause. OS was calculated from the
date of diagnosis to the date of death from any cause. Follow-up was measured from
the date of diagnosis to the date of last news for event-free patients. We compared DFS
and OS of the tumor groups by using Kaplan–Meier curves and log-rank tests. Uni- and
multivariate prognostic analyses for DFS and OS were based on the Cox regression analysis
(Wald test) and searched for associations between the gene expression level (continuous
value) of members of the TIGIT/DNAM-1 and PD-1/PD-L1 axes and DFS and OS, then
between the PVRIG expression-based tumor groups and the clinicopathological variables
and DFS and OS. To measure the association between the PVRIG expression-based tumor
groups and immune- and fibroblast-related classifiers/scores, we used the glm R function
based on a binomial model with logit link. The multivariate analyses were run using the
variables significant in univariate analysis (p < 0.05). All statistical tests were two-sided at
the 5% level of significance. Statistical analysis was performed using the survival package

www.affymetrix.com
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(version 2.42) in the R software (version 3.5.1; http://www.cran.r-project.org/, release date:
2 July 2018).

3. Results
3.1. HCC Patients’ Clinical Characteristics and PVRIG Expression

Clinicopathological data of the 683 tumors gathered in our database are summarized
in Table 1. Briefly, the median value for patients’ age at diagnosis was 56 years (range
(16–90) and ~76% of patients were male. Most of the samples were of stage I for the TNM
staging (46%) [41], and grade 2 (48%) and grade 3 (34%) for the pathological grading.
Serum AFP was predominantly below 300 ng/mL (55%). The majority of patients were
positive for HBV infection (57%) and 16% were positive for HCV. Alcohol consumption
was reported for 34% of patients, non-alcoholic fatty liver disease (NAFLD) for 6%, and
hemochromatosis for 2%. According to the molecular subtyping of Hoshida [28], most
tumors were classified S3 subtype (differentiated, 47%), then S1 (stromal, 31%), and S2
(stem, 22%) subtypes. In the entire cohort, the median DFS was 28 months (range (1–121)),
with a 5-year DFS of 34% (95% CI (30–40)), and the median OS was 70 months (range
(1–121)), with a 5-year OS of 53% (95% CI (48–58); Figure S1). The median follow-up was
52 months (95% CI (49–54)).

Table 1. Clinicopathological characteristics of HCC samples (N = 683).

Characteristics HCC

Age
Total (Median, [range] (years)) 56 (16–90)

≤50 years (n (%)) 200 (33%)
>50 years (n (%)) 402 (67%)

Sex (n (%))
Female 165 (24%)
Male 518 (76%)

TNM staging (n (%))
I 260 (46%)
II 155 (28%)
III 142 (25%)
IV 4 (1%)

Pathological grade (n (%))
1 53 (15%)
2 171 (48%)
3 120 (34%)
4 11 (3%)

AFP expression level (n (%))
≤300 ng/mL 281 (55%)
>300 ng/mL 227 (45%)

HBV infection status (n (%))
Negative 244 (43%)
Positive 321 (57%)

HCV infection status (n (%))
Negative 287 (84%)
Positive 54 (16%)

Alcohol consumption (n (%))
Negative 226 (66%)
Positive 115 (34%)

NAFLD (n (%))
Negative 321 (94%)
Positive 20 (6%)

Hemochromatosis (n (%))
Negative 335 (98%)
Positive 6 (2%)

http://www.cran.r-project.org/
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Table 1. Cont.

Characteristics HCC
Hoshida’s subtypes (n (%))

S1—Stromal 191 (31%)
S2—Stemness—Angiogenic 132 (22%)

S3—Differentiated 288 (47%)
DFS (Median (range), (months)) 28 (1–121)
5 years DFS rate (95% CI, range) 34% (30–40)
OS (Median (range), (months)) 70 (1–121)
5 years OS rate (95% CI, range) 53% (48–58)

3.2. Transcriptomic Expression of Members of the TIGIT/DNAM-1 Axis in HCC

We first compared the gene expression level of each member of the TIGIT/DNAM-1
axis in HCC (N = 683) and in NT (N = 319) tissues: TIGIT, DNAM-1, TACTILE, PVRIG, and
KIR2DL5A and their ligands PVR, NECTIN-1, NECTIN-2, and NECTIN-3 (Figure 2A). PD-1
and PD-L1, whose expression has already been studied in HCC, were added for comparison.
TIGIT, DNAM-1, TACTILE, PVRIG, and KIR2DL5A expressions were lower (Student t-test)
in HCC than in NT (p = 5.4 × 10−3, p = 2.2 × 10−27, p = 2.5 × 10−15, p = 6.6 × 10−29,
and p = 9.5 × 10−12, respectively) (Figure 2B). Ligands from the TIGIT/DNAM-1 axis
were variable in expression: expression of PVR and NECTIN-2 were higher in HCC
than in NT (p = 7.1 × 10−4 and p = 1.3 × 10−32, respectively). As these ligands both
interact with activating (DNAM-1) and inhibitory (TIGIT and PVRIG) receptors on cytotoxic
cells, targeting TIGIT and PVRIG might promote the engagement of DNAM-1. Inversely,
expression of NECTIN-1 and NECTIN-3 were lower in HCC than in NT (p = 1.9 × 10−9 and
p = 1.5 × 10−6 respectively). PD-1 expression was lower in HCC than in NT (p = 5.0 × 10−1),
whereas PD-L1 expression was not significantly different between HCC and NT. Overall,
these results showed that, regarding the TIGIT/DNAM-1 axis, the microenvironment of
HCC was mostly inhibitory for cytotoxic cells, with NECTIN-2 being the predominant
ligand expressed in HCC tissues.

As a pre-screen strategy to identify which of these members was important to predict
HCC outcome, we searched for a correlation between the gene expression of each member
of the TIGIT/DNAM-1 axis and DFS and OS data. Gene expression was analyzed as a
continuous variable. As shown in Figure 3, PVRIG and NECTIN-1 were the only mem-
bers of the TIGIT/DNAM-1 axis that were significantly associated with OS in uni- and
multivariate analyses (in univariate analysis: p = 3.2 × 10−6 and p = 1.8 × 10−2, respec-
tively; in multivariate analysis: p = 4.6 × 10−4 and p = 5.5 × 10−3, respectively; Wald test
p = 2.7 × 10−5). PVRIG being also significantly associated with DFS, contrary to NECTIN-1
(Table S2), we decided to further focus our analysis on PVRIG.
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Figure 2. Members of the TIGIT/DNAM-1 axis and their respective gene expression in HCC and NT
samples: (A) Members of the TIGIT/DNAM-1 axis and their respective ligands. TACTILE, PVRIG,
DNAM-1, TIGIT, and KIR2DL5A are expressed on cytotoxic CD8+ T cells (CD8) and natural killer
(NK) cells. NECTIN-1, NECTIN-2, NECTIN-3, and PVR are expressed on antigen-presenting cells
(APC) or tumor cells. TACTILE binds NECTIN-1 and PVR with a stronger affinity for NECTIN-
1. PVRIG binds NECTIN-2. DNAM-1 binds NECTIN-2 and PVR with equivalent affinity. TIGIT
binds NECTIN-2, PVR, and NECTIN-3 with a stronger affinity for PVR and a weaker affinity for
NECTIN-3. KIR2DL5A binds PVR. PVRIG, TIGIT, and KIR2DL5A contain immunoreceptor tyrosine-
based inhibitory motif (ITIM) intracellular domain that triggers inhibitory signals, whereas DNAM-1
contains an immunoreceptor tyrosine-based activation motif (ITAM) intracellular domain that triggers
activating signals. TACTILE signaling remains poorly described yet. PD-1/PD-L1 axis was added
as a reference. Created with BioRender.com. (B) Gene expression level of each member of the
TIGIT/DNAM-1 axis in NT and HCC liver tissues. PD-1 and PD-L1 were added as references.
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analyses between each member of the TIGIT/DNAM-1 axis and OS. PD-1/PD-L1 axis was added
for references. Cox model representation. Significant p-values (p ≤ 0.05) are written in bold and
represented with plain circles.

3.3. PVRIG Gene Expression and Correlation with Clinico-Pathological Features and Molecular
Subtypes Classification

PVRIG gene expression was heterogeneous across samples, with a range of intensities
covering six intervals in log2 scale (Figure S2). We thus divided the population into two
groups, based on PVRIG’s median expression level in the whole series, respectively, defining
a PVRIG Low group and a PVRIG High group. We first searched for correlations between
the clinicopathological variables and molecular subtypes classification and the PVRIG Low
versus High gene expression status. As shown in Table 2, no difference was found with
patients’ age, TNM stage, pathological grade, AFP level, HBV and HCV infection status,
alcohol consumption, and hemochromatosis. By contrast, differences existed with a higher
proportion of females (p = 2.9 × 10−2), with more cases positive for NAFLD (p = 3.6 × 10−2)
and more Hoshida’s S1 subtypes (p = 1.9 × 10−7) in PVRIG High tumors (Table 2). Overall,
there was no major clinical feature associated with PVRIG High tumors, except that these
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tumors were significantly enriched for the Hoshida’s S1 subtype, which is characterized by
a fibrotic and immune-rich environment.

Table 2. Correlations of PVRIG gene expression with clinicopathological characteristics.

Characteristics
PVRIG Groups

Low High p-Value
Age (n (%)) ≤50 years 101 (34%) 99 (33%) 0.93

>50 years 200 (66%) 202 (67%)
Sex (n (%)) Female 73 (21%) 92 (27%) 2.9 × 10−2

Male 269 (79%) 249 (73%)
TNM staging (n (%)) I 117 (42%) 143 (51%) 0.1

II 84 (30%) 71 (25%)
III 77 (27%) 65 (23%)
IV 3 (1%) 1 (0%)

Pathological grade (n (%)) 1 25 (14%) 28 (16%) 0.8
2 86 (49%) 85 (48%)
3 59 (33%) 61 (34%)
4 7 (4%) 4 (2%)

AFP expression level (n (%)) ≤300 ng/mL 149 (58%) 132 (52%) 0.2
>300 ng/mL 106 (42%) 121 (48%)

HBV infection status (n (%)) Negative 124 (44%) 120 (43%) 0.9
Positive 160 (56%) 161 (57%)

HCV infection status (n (%)) Negative 146 (86%) 141 (83%) 0.5
Positive 24 (14%) 30 (18%)

Alcohol consumption (n (%)) Negative 113 (67%) 113 (66%) 1.0
Positive 57 (34%) 58 (34%)

NAFLD (n (%)) Negative 165 (97%) 156 (91%) 3.6 × 10−2

Positive 5 (3%) 15 (9%)
Hemochromatosis (n (%)) Negative 166 (98%) 169 (99%) 0.5

Positive 4 (2%) 2 (1%)
Hoshida’s subtypes (n (%)) S1—Stromal 64 (21%) 127 (41%) 1.9 × 10−7

S2—Stemness—Angiogenic 73 (24%) 59 (19%)
S3—Differentiated 167 (55%) 121 (39%)

DFS (Median (range), (months)) 19 (1–115) 40 (1–121)
5 years DFS rate (95% CI, range) 30% (24–37) 39% (32–46) 4.0 × 10−5

OS (Median (range), (months)) 53 (1–114) 81 (1–121)
5 years OS rate (95% CI, range) 47% (41–55) 58% (51–66) 1.2 × 10−4

3.4. PVRIG Gene Expression and Correlation with Survival Data

We then searched for correlations between PVRIG Low and High groups and DFS
data, available for 552 patients. In the whole population, the median DFS was 28 months
(range (0–121)) and the 5-year DFS was 34% (95% CI (30–40)). Coherent with the uni-
and multivariate analyses performed with the continuous values of PVRIG, PVRIG Low
and High groups showed different DFS values: the median DFS was 40 months (range
(0–121)) in the PVRIG High group and 19 months (range (0–114)) in the PVRIG Low group
(p < 0.0001), with a higher 5-year DFS rate in PVRIG High than in PVRIG Low samples
(p = 4.0 × 10−5) (Table 2, Figure 4A).
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In univariate analysis, in addition to PVRIG Low and High groups (p = 5.1 × 10−5),
the other variables associated with DFS were the TNM/UICC classification and the HBV
infection status (p = 1.9 × 10−3 and p = 1.8 × 10−6, respectively) (Table 3). In multivari-
ate analysis, PVRIG Low and High groups, the TNM/UICC classification, and the HBV
infection status remained significant (Table 3). Thus, the PVRIG gene expression level
is an independent prognostic factor for DFS in HCC patients (HR = 0.7, range [0.5–0.8],
p = 8.5 × 10−4).

Table 3. Univariate and multivariate prognostic analyses for DFS (n = 552).

Characteristics
Univariate Multivariate

HR (95% CI) p-Value HR (95% CI) p-Value
Age ≤50 years 1.0 (reference) - -

>50 years 1.1 (0.9–1.4)
0.3

- -
Sex Female 1.0 (reference)

0.6
- -

Male 1.1 (0.8–1.4) - -
TNM staging I 1.0 (reference) 1.0 (reference) -

II 2.0 (1.5–2.6) 2.0 (1.5–2.7) 4.6 × 10−6

III 2.9 (2.2–3.9) 2.9 (2.1–3.9) 2.6 × 10−12

IV 10.0 (3.2–33.0)

1.9 × 10−3

8.6 (2.7–28.0) 3.1 × 10−4

Pathological grade 1 1.0 (reference)

0.7

- -
2 1.3 (0.79–2.0) - -
3 1.4 (0.8–2.2) - -
4 1.3 (0.5–3.5) - -

AFP expression level ≤300 ng/mL 1.0 (reference) - -
>300 ng/mL 0.9 (0.7–1.1)

0.2
- -

HBV infection status Negative 1.0 (reference)
1.8 × 10−6

1.0 (reference)
1.5 × 10−4

Positive 0.6 (0.4–0.7) 0.6 (0.5–0.8)
HCV infection status Negative 1.0 (reference) - -

Positive 1.4 (0.9–2.0)
0.1

- -
Alcohol consumption Negative 1.0 (reference)

0.9
- -

Positive 1.0 (0.7–1.4) - -
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Table 3. Cont.

Characteristics
Univariate Multivariate

HR (95% CI) p-Value HR (95% CI) p-Value
NAFLD Negative 1.0 (reference) - -

Positive 1.1 (0.6–2.1)
0.8

- -
Hemochromatosis Negative 1.0 (reference)

0.7
- -

Positive 0.7 (0.2–3) - -
Hoshida’s subtype S1—Stromal 1.0 (reference) - -

S2—Stemness—Angiogenic 1.2 (0.8–1.6) - -
S3—Differentiated 0.8 (0.6–1.1)

0.1
- -

PVRIG Low 1.0 (reference)
5.1 × 10−5

1.0 (reference)
8.5 × 10−4

High 0.6 (0.5–0.8) 0.7 (0.5–0.8)

Similarly, we looked at how PVRIG Low or High expression influenced OS data, which
were available for 602 patients. In the whole population, the median OS was 69.5 months
(range [0–120.7]) and the 5-year OS was 52.7% (95% CI [47.8–58]). The median OS was
80.7 months (range [0–120.7]) in the PVRIG High group and 53.3 months (range [0–114.3])
in the PVRIG Low group (p < 0.001) with a higher 5-year OS rate in the PVRIG High group
than in the PVRIG Low group (p = 1.2 × 10−4) (Table 2, Figure 4B).

In univariate analysis the variables associated with OS were the PVRIG groups
(p = 1.4 × 10−4), the TNM/UICC classification (p = 1.5 × 10−12), HBV infection status
(p = 1.5 × 10−5), and the Hoshida’s subtypes classification (p = 4.2 × 10−4) (Table 4). In
multivariate analysis, all these variables remained significant, with the exception of the
HBV infection status. This confirmed the independent prognostic value of PVRIG gene
expression levels (HR = 0.6, range [0.4–0.8], p = 9.1 × 10−4) (Table 4).

Table 4. Univariate and multivariate prognostic analyses for OS (n = 602).

Characteristics
Univariate Multivariate

HR (95% CI) p-Value HR (95% CI) p-Value
Age ≤50 years 1.0 (reference) - -

>50 years 1.0 (0.8–1.3)
0.8

- -
Sex Female 1.0 (reference)

0.9
- -

Male 1.0 (0.7–1.4) - -
TNM staging I 1.0 (reference) 1.0 (reference) -

II 1.7 (1.2–2.5) 1.7 (1.1–2.5) 1.9 × 10−2

III 3.5 (2.5–5.0) 3.5 (2.4–5.2) 1.9 × 10−10

IV 7.3 (2.3–23.0)

1.5 × 10−12

7.3 (2.2–24.0) 1.1 × 10−3

Pathological grade 1 1.0 (reference)

0.7

- -
2 1.3 (0.7–2.3) - -
3 1.4 (0.8–2.5) - -
4 1.5 (0.5–4.7) - -

AFP expression level ≤300 ng/mL 1.0 (reference) - -
>300 ng/mL 1.3 (1.0–1.7)

0.1
- -

HBV infection status Negative 1.0 (reference)
1.5 × 10−5

1.0 (reference)
0.1

Positive 0.5 (0.4–0.7) 0.7 (0.5–1.0)
HCV infection status Negative 1.0 (reference)

0.6
- -

Positive 1.1 (0.7–1.9) - -
Alcohol consumption Negative 1.0 (reference) - -

Positive 0.9 (0.6–1.4)
0.7

- -
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Table 4. Cont.

Characteristics
Univariate Multivariate

HR (95% CI) p-Value HR (95% CI) p-Value
NAFLD Negative 1.0 (reference)

0.3
- -

Positive 0.6 (0.2–1.5) - -
Hemochromatosis Negative 1.0 (reference) - -

Positive 0.5 (0.1–3.4)
0.5

- -
Hoshida’s subtype S1—Stromal 1.0 (reference)

4.2 × 10−4

1.0 (reference) -
S2—Stemness—Angiogenic 1.3 (0.9–1.8) 1.2 (0.8–1.8) 0.4

S3—Differentiated 0.6 (0.5–0.9) 0.6 (0.4–0.9) 1.3 × 10−2

PVRIG Low 1.0 (reference) 1.0 (reference)
High 0.6 (0.5–0.8)

1.4 × 10−4
0.6 (0.4–0.8)

9.1 × 10−4

3.5. PVRIG Expression and Correlation with Biological Processes

To investigate the biological functions associated with PVRIG in HCC pathogenesis,
we applied a supervised analysis to search for the genes differentially expressed between
the PVRIG Low and PVRIG High groups. We first worked with a learning set (GSE14520,
n = 242 divided in PVRIG High (n = 121) and Low (n = 121) groups). The supervised
analysis identified 181 differentially expressed genes, including 15 genes downregulated
and 166 genes upregulated in the PVRIG High group (Figure 5A and Table S3). The
robustness of this gene signature was confirmed in the independent validation set (TCGA
dataset), including a total of 360 HCC samples, by comparing the metagene score of PVRIG
Low samples and PVRIG High samples using a Student t-test. As expected, the metagene’s
difference was not only significant in the learning set but, more importantly, also in the
360 samples from the independent validation set (Figure 5B), showing its robustness.

The ontology analysis of the 15 genes upregulated in PVRIG Low tumors high-
lighted oxidation-reduction processes (p = 1.8 × 10−2), a bile acid biosynthetic process
(p = 3.6 × 10−2), and a tricarboxylic acid cycle (p = 4.9 × 10−2). This number of genes
was however very small, and these data should be interpreted with caution. Inversely,
the functional enrichment analysis of the 166 genes upregulated in PVRIG High tumors
revealed pathways related to an immune response (p = 1.6 × 10−35), a T cell co-stimulation
(p = 1.1 × 10−13), an inflammatory response (p = 5.1 × 10−13), a chemokine-mediated sig-
naling (p = 6.7 × 10−13), a signal transduction (p = 3.1 × 10−12), and a defense in response
to virus (p = 3.6 × 10−10) (Figure 5C and Table S4). Immune response and inflammation
were the predominant pathways activated in PVRIG High tumor samples.

3.6. PVRIG Gene Expression Status and Correlation with Immune and Stromal Features

To explore further the quality of the immune response observed in PVRIG High
tumors, we determined if there was a difference in the quantity of immune or stromal cells
infiltrating PVRIG Low and PVRIG High tumors. For this we used the TILs score tool, which
provides not only scores for tumor cells’ purity but also for stromal, lymphoid, and myeloid
cells’ infiltration within the analyzed tumor. PVRIG High samples showed the highest
score for lymphoid cells, followed by myeloid cells and stromal infiltrates (respectively,
p = 1.1 × 10−31, p = 1.0 × 10−19, and p = 1.5 × 10−6). No difference was observed between
PVRIG Low and PVRIG High tumors regarding tumor cells. This identified PVRIG High
tumors as being more infiltrated by immune cells, notably lymphocytes, than PVRIG Low
tumors (Figure 6A, and Table S5).
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Figure 5. Correlations of PVRIG expression with biological processes: (A) Volcano plot of the
181 genes differentially expressed in the learning set (GSE14520, n = 242), with downregulated genes
in PVRIG Low tumors (left, blue) and upregulated genes in PVRIG High tumors (right, red). PVRIG
(x = 0.60; y = 38) is out of the scale. (B) Validation of robustness of the 181-gene list by comparing
the metagene scores of PVRIG Low samples and PVRIG High samples using a Student t-test in the
independent validation set (TCGA, n = 360). (C) Gene ontology (GO) enrichment analysis of 181 genes
differentially expressed between PVRIG Low and High groups in the learning set (GSE14520, n = 242).

We next looked at the detailed composition and functional orientation of these immune
infiltrates. As expected from the ontology, the analysis of the 24 Bindea’s immune cell
types, defined as the immunome [30], revealed that PVRIG High tumors differed from
PVRIG Low tumors by a higher infiltration with immune cell populations (p < 0.05).
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The top fifteen subsets infiltrating PVRIG High tumors were the lymphocytes (T cells:
p = 6.7 × 10−31; B cells: p = 3.4 × 10−28; Th1 cells: p = 4.3 × 10−22; γδT cells: p = 9.6 × 10−22;
Tem cells: p = 1.2 × 10−16; TfH cells: p = 2.4 × 10−16; CD8 T cells: p = 9.1 × 10−14; Tcm:
p = 6.3 × 10−11), the dendritic cells (aDC: p = 2.8 × 10−19; iDC: p = 1.9 × 10−13) and the
macrophages (p = 4.5 × 10−12). Notably, PVRIG High tumors showed a higher infiltration
with cytotoxic cell subsets (cytotoxic cells: p = 8.9 × 10−28; NK cells: p = 5.7 × 10−14;
NK CD56dim cells: p = 6.8 × 10−15; NK CD56bright cells: p = 4.4 × 10−11) (Figure 6B
and Table S5). This profile was strongly supportive of the presence of an anti-tumor or
anti-viral immune response from both innate and adaptive immune effector cells in PVRIG
High tumors.

Additional immune functional signatures re-enforced this observation at the functional
level, by showing a higher ICR score (p = 9.8 × 10−27) [31], TIS (p = 1.9 × 10−26) [32], TLS
signature (p = 1.2 × 10−25) [33], and immune cytolytic activity score (p = 7.7 × 10−25) [34]
in PVRIG High tumors. All these scores/signatures are biologically and clinically relevant
of cytotoxic activity from adaptive immune effector cells [32–34,42]. Some of them, such
as TIS and TLS, are also predictors of a response to ICIs [43–45]. Altogether, these data
suggested that PVRIG High tumors might be good responders to ICIs, thanks to pre-
infiltrated primed effectors cells. Of note, the antigen APM score [35] was also significantly
enhanced (p = 2.6 × 10−6) and in favor of a mounted acquired anti-tumor or anti-viral
immune response, but this signature was not among the top functional features associated
with PVRIG High tumors (Figure 6C and Table S5).

We then looked into the 166 genes upregulated in the PVRIG High tumors (Table S4)
and searched for signs of exhaustion, which would be coherent with tumor development
despite cytotoxic infiltration and activity. Except for IDO1, none of the classical markers
of exhaustion (PDCD1/PD-1, ENTPD1, LAG3, HAVCR2/TIM3, CTLA4, CD160, 2B4, BTLA,
TIGIT, TOX, EOMES, . . . ) were detected [46]. Inversely, the absence of key molecules
associated with a highly efficient anti-tumor immune response (IFNG, IL12A and IL12B,
IL18, TNF, GNLY, KLRC2, KLRC3, . . . ) suggested that the cytotoxic potential of infiltrated
immune cells was not totally unleashed despite expression of immune cell activation
markers (GZMA, GZMB, GZMK, PRF1, CD8A, NKG7, STAT1, IRF1, TARP, KLRK1, PTPRC,
CCL5, IL2RG, IL2RB, LCK, PIK3CD, CD69, CD52, CD53, TAP1, . . . ) (Table S4).
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Figure 6. Correlation of PVRIG expression levels with immune and stromal features: (A) Forest plot
representation of the correlations between PVRIG Low (left) and High (right) expression and the
TILs score tool. (B) Forest plot representation of the correlations between PVRIG Low (left from
the 0 value) and High (right from the 0 value) expression and the Bindea’s immunome (24 immune
populations). (C) Forest plot representation of the correlations between PVRIG Low (left) and
High (right) expression and immune functional signatures, including ICR, TIS, and TLS enrichment
signatures, the immune cytolytic activity score, and the APM signature. (D) Forest plot representation
of the correlations between PVRIG Low (left) and High (right) expression and CAFs subsets. The
p-values are for the logit link test.

Finally, we looked at the composition of stromal cells, and more especially of CAF. We
used the Givel et al., Kieffer et al., and Biffi et al. signatures to search for enrichment in spe-
cific CAF subsets. PVRIG High tumors were enriched with both CAF-S1 and CAF-S4 subsets
(p = 1.5 × 10−12, p = 1.5 × 10−9, respectively) [47]. Similarly, both inflammatory CAF (iCAF)
and myofibroblastic CAF (myCAF) subsets were detected in PVRIG High tumors. The iCAF
subset was slightly predominant, especially the IFNy-iCAF (p = 6.3 × 10−21), the IL-iCAF
(p = 6.3 × 10−15), and the detox-iCAF (p = 5.8 × 10−11) (Figure 6D and Table S5). These
subsets secrete immunomodulatory molecules that can elicit or maintain an anti-tumor
immune response. The pro-tumoral myCAF subsets (wound-, ecm-, and TGFb-myCAFs)
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were also well represented (wound-myCAF: p = 1.4 × 10−9, ecm-myCAF: p = 1.7 × 10−8,
TGFβ-myCAF: p = 3 × 10−8). These subsets are pro-tumoral cells (Figure 6D).

Altogether, these results suggest that cytotoxic immune cells are infiltrating PVRIG
High tumors, concomitant with a mixed anti-tumoral iCAF-like and pro-tumoral myCAF-
like stroma.

4. Discussion

Based on the gene expression analysis of the TIGIT/DNAM-1 axis in a large cohort of
HCC clinical samples, we showed that PVRIG is an independent biomarker predictive for
favorable clinical outcome. PVRIG expression was lower in HCC samples than in normal
hepatic tissues. Its expression was heterogeneous across tumors and allowed us to search
for correlations between PVRIG expression levels and clinicopathological variables. Using
PVRIG median as a cutoff enabled us to interrogate our database, avoiding time-consuming
immunohistochemistry development and analyses, while providing opportunities to work
on a relatively large series of samples. We were then able to search for association with
the expression of other genes and multigene signatures to investigate pathways associated
with PVRIG gene expression levels more in depth.

To our knowledge, this is the third study highlighting PVRIG expression as a new
potential target for immune therapy in HCC. PVRIG High expression has indeed been
associated with improved DFS and OS in HCC patients [48], and an eight-gene prognostic
signature was constructed to anticipate the HCC outcome, in which PVRIG was the most
important variable [49].

PVRIG is an immune checkpoint receptor with inhibitory function for cytotoxic CD8+

T cell and NK cells [50,51]. In murine models with solid tumors, PVRIG interaction with its
ligand NECTIN-2 on tumor or dendritic cells surface suppresses cytotoxic signals, cytokines
production, and triggers exhaustion [51,52].

To our knowledge, the correlation between PVRIG expression and immune variables
has never been explored further, and this is the first report characterizing the tumor immune
microenvironment and biological pathways in PVRIG High tumors. The HBV and HCV
infection status being equally distributed in PVRIG High or Low tumors, the background
immune response due to the viral infection can be considered as equivalent. Compared to
PVRIG Low tumors, several immune variables were enriched in PVRIG High tumors and
suggested: (i) higher infiltration of immune cells; (ii) higher infiltration of both adaptive and
innate immune cells, notably B cells, γδ T cells, T cells with a Th1 profile, cytotoxic CD8+

T cells, and activated NK CD56dim cells; and (iii) higher cytotoxic activity. Altogether,
these results suggested that PVRIG High tumors have a higher potential for anti-tumor
immune response than PVRIG Low tumors. Nonetheless, despite this apparent anti-tumoral
environment, the local immune cells did not prevent HCC occurrence and progression. The
high expression of NECTIN-2, the ligand of PVRIG, which has also been reported by others
in HCC tumors [53], might bridle anti-tumor response efficiency. Indeed, we did not find
major evidence for exhaustion, as often observed in highly immunogenic tumors [27,54,55].
The higher infiltration with both immunosuppressive and pro-tumoral CAF subsets in
PVRIG High tumors was also in line with the hypothesis of a poor anti-tumoral response.

An apparent contradiction in our results lies in the association of PVRIG High expres-
sion, which can trigger a strong immunosuppressive signal, with better disease-free and
overall survivals. We and others have previously reported similar results with expression
of PD-L1 [55–57] and IDO1 inhibitory molecules [58]. In these cases, our explanation is
that a very strong anti-tumoral immune response, associated with better clinical outcome,
also activates an inhibitory feedback loop, in the prospect of a return to homeostasis with
minimum tissue damages. IFN-γ was in part responsible for the overexpression of PD-L1
and the initiation of the negative feedback loop in these tumors [53]. Here, we did not
report major signs of exhaustion, except for IDO1, and we did not detect strong IFN-γ
production either, but there was evidence for general IFN and cytotoxic immune responses.
One hypothesis might be that the PVRIG/NECTIN-2 axis is a new negative feedback loop,
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either proper to the tumor liver microenvironment or associated with a specific context
of immune response. Indeed, the TIGIT-DNAM-1 axis, with all its receptors and ligands
expressed in normal tissues, is much more complex than the PD-1/PD-L1 axis.

The role of PVRIG as a potential regulator of HCC outcome however still remains to be
proven in functional and animal model studies. Whereupon this validation, ICIs targeting
PVRIG-NECTIN-2 interactions might be envisaged in HCC. For now, ICIs targeting the
CTLA-4 and/or PD-1/PD-L1 axes have shown promising results in HCC [59,60]. Our
observations suggest that the TIGIT/DNAM-1 axis, and notably the PVRIG/NECTIN-2
interaction, might be another interesting target for ICIs. This has never been considered
for HCC yet. However, clinical trials evaluating the safety, tolerability, and clinical activity
of COM701, an anti-PVRIG antibody, in monotherapy or in combination with a PD-1
inhibitor (NCT03667716) or an anti-TIGIT antibody (NCT04570839, BMS-986207), have
been initiated in subjects with advanced solid tumors. Overall, these trials suggest that
blocking the PVRIG/NECTIN-2 interaction to enhance anti-tumor cytotoxic function is a
new therapeutic opportunity for the treatment of solid tumors [51]. Based on our work, our
hypothesis is that immune cells, including cytotoxic cells, are recruited at the tumor site in
PVRIG High tumors. They receive an activation signal and become activated, but they also
receive negative signals from PVRIG, which is strongly engaged with NECTIN-2, which
might limit anti-tumor activation. In these tumors, precluding the PVRIG/NECTIN-2
interaction might unleash a cytotoxic anti-tumor immune response (Figure 7) and improve
the clinical outcome.
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Figure 7. Hypothetical evolution of HCC after treatment with an anti-PVRIG in PVRIG High tumors:
PVRIG High HCC are infiltrated with cytotoxic cells, whose activity is not fully unleashed. Our
hypothesis is that anti-PVRIG treatment might alleviate this inhibitory signal (one among others) in
innate and adaptive cytotoxic cells expressing PVRIG. This might favor anti-tumor activation and
lead to better tumor regression and better clinical outcome.

5. Conclusions

We showed that PVRIG expression is heterogeneous in HCC clinical samples and
higher expression is associated with better DFS and OS and with strong, although non-
optimal, local immune response. Our study displays several strengths: (i) its originality,
(ii) a relatively large size of series, and (iii) the biological and clinical relevance of PVRIG
expression. It also includes a few limitations: (i) its retrospective nature and associated
biases, and (ii) the mRNA assessment, rather than protein, analysis on bulk tissue samples.
Of course, analyses in larger series are warranted to confirm our observation, as well as
functional analyses on HCC preclinical models to validate PVRIG’s role in HCC progression.
However, and considering the inhibitory role of PVRIG, our results highlight the potential
value of anti-PVRIG immunotherapies to enhance the anti-tumoral immune local response
in HCC. Our data suggest that the microenvironment of PVRIG High samples (strong local
cytotoxic immune response) might be more favorable for ICIs efficiency than that of PVRIG
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Low samples. However, the link between the target expression level and tumor response to
ICIs remains unclear in many cancers. For example, in the CheckMate-040 trial dedicated
to patients with HCC [18,19], the responses to nivolumab occurred irrespectively of the
PD-L1 staining status. Clearly, the testing of anti-PVRIG ICIs in HCC is warranted at both
pre-clinical and clinical levels. In this setting, analysis of pre-treated tumor samples will
allow to assess PVRIG expression and to test if it can predict the therapeutic response.
Overall, our study also highlights the complexity behind immune checkpoints function,
revealing important roles for other potential candidates, such as here, with the members of
the TIGIT/DNAM-1 axis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15020447/s1, Figure S1: Survival in patients with HCC;
Figure S2: Distribution of PVRIG expression in HCC samples. Table S1: Datasets included in the
study; Table S2: Association between expression of members of TIGIT/DNAM-1 axis and PD-1/PD-
L1 axis related RNA expression and survival in HCC; Table S3: List of the 181 genes differentially
expressed between PVRIG High and Low groups in the learning set (GSE14520, n = 242); Table S4:
Ontology analysis of the 181 genes differentially expressed between PVRIG High and Low groups
in the learning set (GSE14520, n = 242); Table S5: Logistic regression results measuring association
between PVRIG groups and functional gene sets.
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