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Simple Summary: Non-small cell lung cancer (NSCLC) is a prevalent and lethal disease. Circulating
cell-free miRNA has the potential to serve as a biomarker for early detection as it reflects cancer
characteristics. Through global miRNA profiling in serum samples from NSCLC patients and non-
cancerous individuals, we identified 28 upregulated miRNAs in NSCLC and explored their relevance
to NSCLC-related pathways. Harnessing an advanced machine-learning algorithm, we successfully
developed a robust classifier capable of distinguishing NSCLC from non-cancerous cases. Our
findings suggest that serum miRNAs hold promise as a valuable tool for early NSCLC diagnosis and
offer valuable insights into NSCLC biology. To solidify these promising results, further validation in
diverse patient cohorts is essential.

Abstract: Non-small cell lung cancer is the predominant form of lung cancer and is associated with a
poor prognosis. MiRNAs implicated in cancer initiation and progression can be easily detected in
liquid biopsy samples and have the potential to serve as non-invasive biomarkers. In this study, we
employed next-generation sequencing to globally profile miRNAs in serum samples from 71 early-
stage NSCLC patients and 47 non-cancerous pulmonary condition patients. Preliminary analysis of
differentially expressed miRNAs revealed 28 upregulated miRNAs in NSCLC compared to the control
group. Functional enrichment analyses unveiled their involvement in NSCLC signaling pathways.
Subsequently, we developed a gradient-boosting decision tree classifier based on 2588 miRNAs,
which demonstrated high accuracy (0.837), sensitivity (0.806), and specificity (0.859) in effectively
distinguishing NSCLC from non-cancerous individuals. Shapley Additive exPlanations analysis
improved the model metrics by identifying the top 15 miRNAs with the strongest discriminatory
value, yielding an AUC of 0.96 ± 0.04, accuracy of 0.896, sensitivity of 0.884, and specificity of 0.903.
Our study establishes the potential utility of a non-invasive serum miRNA signature as a supportive
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tool for early detection of NSCLC while also shedding light on dysregulated miRNAs in NSCLC
biology. For enhanced credibility and understanding, further validation in an independent cohort of
patients is warranted.

Keywords: miRNA; non-small cell lung cancer; liquid biopsy; biomarkers; next-generation sequencing;
gradient-boosting decision tree classifier; Shapley Additive exPlanations

1. Introduction

Lung cancer (LC) is a major contributor to cancer-related mortality globally, and its
prognosis primarily depends on the stage of diagnosis. Unfortunately, a large proportion
of cases are diagnosed at locally advanced or advanced stages, when curative treatment is
not feasible. Consequently, enhancing the accuracy of early detection of LC is critical to
improve treatment outcomes, reduce mortality, and minimize healthcare costs and adverse
events associated with systemic therapies [1,2].

Non-small cell lung cancer (NSCLC) constitutes approximately 85% of all LC cases [3].
Current methods for NSCLC screening and diagnosis are often invasive, expensive, and
have low sensitivity and specificity [4]. For instance, chest X-rays are not capable of
distinguishing cancer from other conditions; sputum cytology, bronchoscopy, needle biopsy,
and thoracentesis are invasive procedures that may result in complications and discomfort;
and low-dose computed tomography (LDCT) has several limitations, including high false-
positive rates, radiation exposure, and overdiagnosis [5,6].

Histopathology serves as the conventional diagnostic modality for NSCLC; nonethe-
less, it exhibits inherent limitations. Insufficient tissue acquisition or distorted tissue archi-
tecture in small biopsies and cytologic specimens can impede early detection. Moreover,
the reliance on the pathologist’s expertise and experience introduces potential variability
and subjectivity in interpretation [7,8].

Biomarker testing represents a step towards personalized medicine, which aims to im-
prove diagnosis and provide tailored treatments based on individual patient characteristics
(e.g., EGFR, ALK, and PD-L1). However, biomarker testing also presents challenges, such
as requiring adequate and representative tissue or blood samples for analysis, variation
between and complexity of testing methods across different laboratories or platforms, and
lack of standardization and validation of some biomarkers across different populations
or settings [7,8]. Thus, new methods and biomarkers are urgently needed for early, non-
invasive diagnosis of NSCLC to improve the accuracy, sensitivity, and specificity of NSCLC
diagnosis and offer personalized treatment options.

MicroRNA (miRNA) testing is an emerging field advancing personalized medicine,
aiming to improve diagnosis and provide tailored treatments based on individual patient
characteristics [9]. MicroRNAs are small non-coding RNAs that regulate gene expres-
sion at the post-transcriptional level [10]. They are implicated in various biological pro-
cesses and diseases, including LC development and progression, as evidenced by in vitro
studies [11,12]. MiRNAs are detectable in various body fluids, such as blood, urine, saliva,
and cerebrospinal fluid. Circulating cell-free miRNAs (cf-miRNAs) have several advan-
tages as diagnostic biomarkers for NSCLC, including stability, abundance, and specificity.
Furthermore, cf-miRNAs can predict drug response by monitoring genetic profiles during
treatment, presenting significant potential for personalized therapy [13,14].

In our previous studies (2016–2023), we explored genetic and epigenetic changes
in NSCLC. We found hsa-miR-205 and hsa-miR-21 to be promising biomarkers for early
NSCLC diagnosis, distinguishing between adenocarcinoma (AC) and squamous cell carci-
noma (SCC) subtypes with 88% agreement [15]. Using microarray technology, we devel-
oped a 53-gene signature with 93% accuracy in distinguishing between AC and SCC [16].
Employing miRNA-Seq on NSCLC tissue, we crafted a 17-miRNA signature that effectively
differentiated NSCLC subtypes (AC vs. SCC) and demonstrated a remarkable area under
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the curve (AUC) value of 0.994 [17]. Additionally, a 14-lncRNA signature effectively de-
tected NSCLC and provided subtyping information (AUC values: 0.98 ± 0.01 for tumor
vs. non-tumor and 0.84 ± 0.09 for subtyping) [18].

Expanding upon the foundation established by our prior investigations, the main aim
of the present study was to explore the feasibility of serum circulating cell-free microRNAs
as non-invasive, cost-effective, and accurate biomarkers for early detection of NSCLC. To
accomplish this objective, we have undertaken the following tasks: (a) conducting global
miRNA profiling in liquid biopsy samples obtained from early-stage NSCLC patients
and non-cancerous patients with pulmonary conditions by employing next-generation
sequencing (NGS); (b) identifying the most relevant serum DEmiRNAs to differentiate
between NSCLC and non-cancer pulmonary conditions; (c) performing functional analysis
of the serum DEmiRNA profile to elucidate potential biological pathways and molecular
mechanisms involved in NSCLC development and progression.; and (d) establishing a
serum miRNA signature for early detection of NSCLC by using a gradient-boosting decision
tree classifier (GBDT) and Shapley Additive exPlanations (SHAP) analysis.

Our study presents a novel, comprehensive approach to miRNA analysis, setting it
apart from other NGS-based miRNA studies as it seamlessly integrates the capabilities of
NGS technology with advanced machine learning tools. This synergistic approach provides
an in-depth picture of serum miRNA expression profiling, enabling its potential use as a di-
agnostic tool for NSCLC. The successful realization of this achievement can be attributed to
the integration of several critical components, resulting in a robust and insightful method-
ology and statistical analysis. To begin, we prioritized the use of rigorously clinically
characterized groups. Through meticulous participant selection and thorough evaluation,
we ensured that the individuals included in our study met the specific research criteria.
This rigorous approach aimed to enhance the reliability and validity of our findings. Fur-
thermore, we implemented stringent controls at every stage of the analytical processes. By
closely monitoring and regulating each step, we effectively mitigated potential biases and
errors, reinforcing the reliability and robustness of our results. In our analysis, we adopted
a holistic approach, thoroughly examining the entire repertoire of microRNAs present in
the blood serum. By harnessing the power of NGS technology, we conducted a scrutinized
analysis to identify circulating miRNAs, including both established and potentially novel
ones. To develop a highly accurate serum miRNA signature for the early stage of NSCLC
detection, we employed advanced machine learning techniques. Specifically, we utilized
a gradient-boosting decision tree classifier and applied Shapley Additive exPlanations
(SHAP) analysis. Our research has the potential to be translated into practical applications,
such as the development of diagnostic tools for early diagnosis of NSCLC in blood serum.
This aspect emphasizes the translational nature of our work, bridging the gap between
scientific discoveries and their utilization in clinical practice.

2. Materials and Methods

This study was conducted within the framework of the Polish project titled “Develop-
ment of Personalized Diagnostic of Malignant Tumors based on tumor heterogeneity and
integrated genomic, transcriptomic, metabolomic, and imaging PET/MRI analysis. Getting
Ready for Individualized Therapy”. Prior to sample collection and clinicopathological
data processing, written informed consent was obtained from all participants. The study
protocol was reviewed and approved by the Bioethics Committee of the Medical University
of Bialystok, with ethical approval code R-I-002/357/2014.

2.1. Patients and Samples

Serum blood samples were obtained from a total of 118 individuals, comprising
71 early-stage NSCLC patients and 47 non-cancer patients (21 with chronic obstructive
pulmonary disease (COPD) and 26 without COPD) who were recruited from the 1st and
2nd Departments of Pulmonary Diseases and Tuberculosis of the Medical University of
Bialystok. It is worth noting that none of the NSCLC patients had previously received
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chemo- or radiotherapy. The NSCLC group comprised 71 patients, including 31 female and
40 male participants, with a mean age of 66 years. The histologic subtypes of NSCLC were
squamous cell carcinoma (SCC, n = 36), adenocarcinoma (AC, n = 32), large cell carcinoma
(LCC, n = 2), and NSCLC not otherwise specified (NSCLC-NOS, n = 1). The disease stages
were distributed as follows: 20 patients in stage IA, 19 in stage IB, 13 in stage IIA, 9 in stage
IIB, and 10 in stage IIIA. A total of 66 patients were smokers, and 5 were never smokers.
The control group consisted of 47 individuals, or 17 women and 30 men, with a mean age
of 64 years. The control group participants were either diagnosed with chronic obstructive
pulmonary disease (COPD, n = 21) or did not have COPD (noCOPD, n = 26). The No-COPD
group comprised patients diagnosed with various pulmonary non-neoplastic conditions,
including emphysema, bronchitis, pneumonia, fibroma, metabolically active proliferative
process, sarcoidosis, chronic cough, and lower respiratory symptoms. All participants in
the control group had a history of smoking. The detailed characteristics of the patients can
be found in Table 1.

In our study, the inclusion of both COPD samples and non-COPD samples in the
control group was driven by the objective of conducting a comprehensive evaluation of
miRNA profiles in early-stage NSCLC patients, comparing them to a diverse population
of smokers with non-cancerous lung diseases. However, it is important to acknowledge
that the control group was limited in size due to various challenges. The availability of
samples was constrained by the relatively low number of patients who had the pulmonary
non-neoplastic conditions under investigation at the clinics from which we collected the
material. Additionally, the willingness of eligible patients to participate in the study also
contributed to the constraint in the sample size. Despite these constraints, it is worth
noting that the sample size of our study group, consisting of 47 individuals, exceeded
those of control groups in other published works that utilized serum miRNA profiling
using NGS [19,20].

Aseptic collection of 9 mL of whole blood was performed on participants using S-
Monovette Serum Gel tubes (Sarstedt, Nümbrecht, Germany), followed by allowing the
samples to naturally clot for 30 min at room temperature. Exclusion criteria involved
samples displaying evident indicators of hemolysis, icterus, or lipemia. Subsequently, the
clotted blood underwent centrifugation at 2000× g for 20 min at zero acceleration and
deceleration within a refrigerated centrifuge. Careful transfer of the resulting supernatant
was executed into 2 mL Eppendorf tubes. To achieve purified serum, the supernatant
was subjected to a secondary centrifugation step at 20,000× g for 15 min in a refrigerated
centrifuge. Hemolysis in the resulting serum samples was assessed through visual exami-
nation and spectrophotometric analysis at a wavelength of 414 nm (Figure 1) [21]. In our
study, we focused on hemolysis in erythrocytes as an indicator of sample quality. Erythro-
cytes are more sensitive to degradation during coagulation compared to leukocytes due to
their higher surface area-to-volume ratio, lower osmotic resistance, and fewer protective
mechanisms [22,23]. Subsequently, the serum was divided into 0.5 mL aliquots and
promptly stored at −80 ◦C until the subsequent RNA extraction process.

To ensure precise categorization of cancer patients, confirmation of diagnosis was car-
ried out on formalin-fixed paraffin-embedded (FFPE) tissue specimens. Histopathological
assessment adhered to the latest World Health Organization (WHO) classification for lung
cancer and the International Multidisciplinary Classification of Lung Adenocarcinoma by
the International Association for the Study of Lung Cancer (IASLC), American Thoracic So-
ciety (ATS), and European Respiratory Society (ERS). In cases where uncertainty persisted,
specimens underwent immunohistochemical staining to assess the expression of thyroid
transcription factor-1 (TTF-1), a marker indicative of adenocarcinoma, and p63 protein, an
indicator of squamous cell immunophenotype.
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Table 1. Patient’s characteristics.

Patient’s Characteristics

Study group n 71

Age (years)
Mean ± SD * 65.59 ± 6.91

Median 65
Range 49–81

Sex
Female 31 (43.7%)
Male 40 (56.3%)

Tumor stage

IA 20 (28.2%)
IB 19 (26.8%)

IIA 13 (18.3%)
IIB 9 (12.7%)

IIIA 10 (14.1%)

Histology

SCC 36 (50.7%)
AC 32 (45.1%)

LCC 2 (2.8%)
NSCLC NOS 1 (1.4%)

Smoking 66 (93%)

Control group n 47

Age (years)
Mean ± SD * 64.19 ± 9.67

Median 65
Range 37–83

Sex
Female 17 (36.2%)
Male 30 (63.8%)

Diagnosis

COPD 21 (44.7%)
Emphysema 1 (2.1%)

Bronchitis 2 (4.3%)
Pneumonia 1 (2.1%)

Fibroma 1 (2.1%)

Metabolically active
proliferative process 1 (2.1%)

Sarcoidosis 1 (2.1%)
Chronic cough 1 (2.1%)

Lower respiratory symptoms 18 (38.3%)

Smoking 47 (100%)

All patients n 118

Age (years)
Mean ± SD * 65.03 ± 8.11

Median 65
Range 37–83

Sex
Female 48 (40.7%)
Male 70 (59.3%)

Smoking 113 (95.8%)
Legend: * SD (Standard Deviation).

2.2. RNA Extraction

Prior to RNA extraction, all serum samples were thawed completely on ice, followed
by centrifugation at 20,000× g for 15 min at 4 ◦C to eliminate residual cell debris. Total RNA,
including the small RNA fraction, was extracted from the serum samples using a modified
protocol of the mirVana miRNA Isolation Kit (Invitrogen, Waltham, MA, USA) [24]. To
monitor the efficiency of RNA extraction and the presence of nucleases or inhibitors of
enzymatic reactions, such as ligation and PCR amplification, a solution of exogenous
Spike-ins–52-synthetic 5′ phosphorylated microRNAs (Exiqon, Copenhagen, Denmark)
was added to each serum sample prior to isolation (Figure 2). The ExiSEQ NGS sample QC
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Kit–small RNA/microRNA (Exiqon, Denmark) was used for this purpose. Furthermore, the
expression levels of endogenous miRNAs indicative of hemolysis were assessed using this
kit to validate the findings from visual and spectrophotometric evaluations (Figures 1 and 2).
The quantity of RNA was measured fluorometrically using the Qubit RNA HS Assay Kit
(Thermo Scientific, Waltham, MA, USA). Additionally, to determine the concentration of
cell-free miRNA (cf-miRNA) in each individual sample, the Qubit microRNA Assay Kit
(Thermo Scientific, USA) was utilized. Moreover, small RNA microfluidic chips (Agilent
Small RNA kit, Agilent Technologies) were employed, and visual assessment of discernible
bands representing the fraction of small RNA was conducted on the capillary gel of
electropherograms.
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2.3. Next Generation Sequencing Analysis (NGS)

To ensure quality control throughout the study, samples were evaluated at each stage
prior to the actual next-generation sequencing (NGS) analysis. Outliers were identified
and excluded from the study using a decision tree (Figure 1) [21]. The cDNA libraries were
prepared using the NEXTflex Small RNA Sequencing Kit v3 (gel-free and low input options)
from BioScientific (Phoenix, AZ, USA), which is compatible with Illumina technology. The
structure and distribution of each library fraction, representing individual fractions of
molecules in the small RNA pool, were assessed using microcapillary electrophoresis with
High-Sensitivity DNA chips on the Bioanalyzer 2100 from Agilent Technologies (Santa
Clara, CA, USA). Agarose gel electrophoresis with specialized gel cassettes on the Blue
Pippin system from Sage Science (Beverly, MA, USA) was employed to select cDNA prod-
ucts of appropriate size corresponding to the miRNA fraction (Figure 3). The concentration
of cDNA libraries after fractionation was determined using the KAPA Library Quantifi-
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cation Kit for Illumina Platforms from Roche (San Jose, CA, USA) based on amplification
techniques. Sequencing was performed on a HiSeq 4000 instrument from Illumina (San
Diego, CA, USA). The detailed decision tree, encompassing hemolysis evaluation, RNA
purification, and cDNA synthesis, for the identification of outliers is presented in Figure 1.
The workflow for NGS analysis of blood serum samples, from material collection to data
analysis, along with quality control points, is depicted in Figure 2.
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2.4. Bioinformatics and Statistical Analyses

The analyses were performed using the R language version 3.4.1 and environment for
statistical computing, with several analyses utilizing the Bioconductor module version 3.5,
which provides a range of packages for analyzing biological data.

Data preprocessing involved the following steps: (a) aligning the transcriptome se-
quence reads with the reference genome; (b) counting the number of reads for each miRNA;
(c) evaluating mapping quality and sample relationships using various methods and visu-
alization techniques (including expression values, correlations, hierarchical clustering, and
principal component analysis); (d) excluding samples with low quality or data outliers at
this stage; and (e) performing normalization to reduce systematic noise from non-biological
sources and improve sample comparability (see more details: Supplementary Materials,
Serum miRNA-seq analyses, pages 2 and 3).

The filtered, differentially expressed (DE) miRNAs were identified based on statistical
significance and differences in mean expression levels between sample groups, using fold
change (FC) and p-values for loose and strict thresholds as filtering parameters (see more
details: Supplementary Materials, Serum miRNA-seq analyses, page 30).
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Furthermore, we conducted comparative analyses between distinct patient subgroups
to elucidate the presence of shared miRNAs across various comparisons, encompassing
AC vs. COPD, AC vs. no COPD, SCC vs. COPD, SCC vs. no COPD, AC vs. SCC, NSCLC
vs. COPD, NSCLC vs. no COPD, and COPD vs. no COPD.

Functional enrichment of DEmiRNA targets was performed using GO and KEGG
databases, which respectively organize genes into biological processes, molecular functions,
and cellular components, and list pathways for biological interactions. The enrichment
analysis examined whether miRNA target genes annotated to specific KEGG pathways or
GO terms were statistically overrepresented in a given comparison. The mirPath v.3 tool
was used for the analysis.

To construct the diagnostic signature of serum miRNAs, machine learning tools were
employed. The binary gradient boosting decision tree classifier was utilized to assess
the diagnostic value of all miRNAs. Subsequently, the established models underwent
evaluation and analysis using Shapley Additive exPlanations (SHAP) [25] to quantify the
significance of specific miRNA values in the model’s predictions. To improve the evaluation
scores of the original model, the top 5, 10, 15, 20, and 25 most important variables were
selected and tested as inputs. To ensure the robustness of the models, a fivefold stratified
cross-validation approach was implemented. Samples were randomly assigned to training
and test sets while maintaining balanced classes within each set. This random assignment
process was repeated 100 times. For each cross-validation step, accuracy, f1, receiver
operating characteristic (ROC) curve, the area under the ROC (AUC), specificity, sensitivity,
precision, and negative predictive value (NPV) were computed. The results were reported
as mean values accompanied by 95% confidence intervals (CI). The following Python
packages were employed to build and examine the models: scikit-learn v1.0.2 [26] for
model evaluation, xgboost v1.7.6 [27] for the gradient boosting decision tree classifier, and
shap v0.41.0 [25] for the explanatory model analysis.
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3. Results
3.1. Raw Data Preprocessing and Quality Control

The Supplementary Materials (Serum miRNA-seq analysis, pages 2–29) provide exten-
sive information about the analysis workflow (Figure S1), sample description (Table S1),
and data preprocessing and quality control steps. Preprocessing steps included alignment
metrics for spike-in reads (Table S2) and genomic reads (Table S3), as well as histograms
representing the distribution of reads in feature counting for each sample (Figures S2–S6)
and the distribution of TPM values in each sample (Table S4). Additionally, a snapshot from
the IGV Genome Browser was included (Figure S7). Quality control measures included the
expression value distribution across the sample set (Figure S8), groupwise correlation val-
ues for spike-ins (Table S5) and genomic reads (Table S6), Sample correlations for spike-in
reads (Figure S9), sample correlations for genomic reads (Figure S10), sample correlations
for genomic reads without tissue samples (Figure S11), hierarchical clustering for spike-in
reads (Figure S12) and genomic reads (Figure S13), as well as PCA plots for spike-in reads
(Figure S14) and genomic reads (Figure S15).

3.2. Differential Expression Analyses

Using loose filtering criteria, we identified 690 upregulated miRNAs and 2 downregu-
lated miRNAs (hsa-miR-32-5p and hsa-miR-3613-5p) in NSCLC compared to the control
group. After refining the filtering criteria, we found 28 upregulated miRNAs and no
downregulated ones. Detailed information regarding the characteristics of these 28 upregu-
lated miRNAs can be found in Table 2 and Figure 4A,B. Additionally, Table S7 provides
additional statistically significant parameters.

Table 2. List of 28 miRNAs that were upregulated in NSCLC vs. control.

ID logFC FDR adj.P.Val avgRank

hsa-miR-4488 4.28 0.00165 1
hsa-miR-205-5p 3.65 0.00165 2

hsa-miR-6819-3p 3.53 0.00165 3
hsa-miR-92a-1-5p 3.56 0.00295 4
hsa-miR-3180-3p 3.64 0.00463 5
hsa-miR-6734-5p 3.72 0.00665 6

hsa-miR-4492 3.69 0.00665 7
hsa-miR-551b-3p 3.61 0.00665 8

hsa-miR-3178 3.24 0.00295 9
hsa-miR-3180 3.48 0.00537 10

hsa-miR-6821-5p 3.16 0.00399 11
hsa-miR-8072 3.13 0.00665 13

hsa-miR-491-5p 2.97 0.00665 15
hsa-miR-873-3p 2.90 0.00665 16

hsa-miR-200a-5p 2.75 0.00295 17
hsa-miR-3173-3p 2.77 0.00455 18

hsa-miR-6087 2.76 0.00295 19
hsa-miR-4516 2.93 0.00744 20

hsa-miR-766-3p 2.90 0.00862 22
hsa-miR-4532 2.72 0.00665 27

hsa-miR-135a-5p 2.69 0.00665 31
hsa-miR-6772-3p 2.68 0.00945 35
hsa-miR-143-5p 2.59 0.00665 36

hsa-miR-6876-5p 2.57 0.00665 39
hsa-miR-6837-3p 2.55 0.00665 40
hsa-miR-6828-3p 2.54 0.00665 41
hsa-miR-135b-5p 2.49 0.00665 43
hsa-miR-6809-5p 2.55 0.00665 44

Legend: Average ranking value based on both p value and fold change; value 1 is the strongest DE feature.
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Furthermore, comprehensive comparative analyses were conducted among subgroups
of both cancer and non-cancer patients. A comprehensive summary of the results obtained
from these individual comparisons, considering the differentially expressed (DE) miRNAs,
can be found in Table S9.

Multiple pairwise comparisons revealed the presence of shared differentially expressed
(DE) miRNAs among different subgroups. Specifically, nine miRNAs (hsa-let-7a-2-3p,
hsa-miR-103a-2-5p, hsa-miR-105-5p, hsa-miR-1178-3p, hsa-miR-1180-5p, hsa-miR-1208,
hsa-miR-1225-3p, hsa-miR-1225-5p, hsa-miR-1227-3p) were found to be upregulated in
three comparisons: AC vs. COPD, AC vs. noCOPD, and AC vs. SCC. In addition, hsa-
miR-202-3p was found to be upregulated in both NSCLC vs. noCOPD and COPD vs.
noCOPD, and three miRNAs (hsa-miR-3173-3p, hsa-miR-6819-3p, and hsa-miR-6821-5p)
were upregulated in both NSCLC vs. COPD and NSCLC vs. noCOPD. These shared DE
miRNAs are listed in Table S10.

3.3. Enrichment Analysis for the Differentially Expressed miRNA

Functional enrichment analysis revealed that the differentially expressed (DE) miR-
NAs in the NSCLC group were significantly enriched in various biological processes,
molecular functions, cellular components, and pathways involved in biological interactions.
Several overrepresented GO terms potentially implicated in the pathogenesis of NSCLC
were identified, including the cellular nitrogen compound metabolic process, gene expres-
sion, and biosynthetic process. In addition, KEGG pathway analysis identified potentially
carcinogenesis-related pathways, such as fatty acid biosynthesis, adherens junctions, and
the p53 pathway. The enrichment test results are ranked by p–value for each GO term
and KEGG pathway and are presented in Table 3, which shows GO biological processes,
molecular functions, and cellular components, as well as KEGG pathways for biological in-
teractions. Additional comprehensive details and supplementary analyses can be accessed
in Tables S11–S14.

3.4. Gradient Boosting Decision Tree to Determine Diagnostic Value of Serum miRNAs in
NSCLC Patients

We utilized the TMM normalization method to obtain normalized gene counts, which
served as the basis for constructing a gradient boosting decision tree classifier (Table S15).
This classifier represents an advanced machine learning algorithm that holds immense
promise in the field of medical science. Our predictive model demonstrated high diagnostic
potential in distinguishing NSCLC from non-cancerous patients, achieving an AUC value of
0.91 ± 0.05, sensitivity of 0.806, and specificity of 0.859, based on the analysis of 2588 serum
miRNA values (Figure 5). Using Shapley Additive exPlanations (SHAP), we identified the
25 miRNAs with the strongest impact on the model (Figure 6). We further developed five
simplified models based on SHAP, using the top 5, 10, 15, 20, and 25 miRNAs. Among
these models, the best performance was observed with the top 15 impacted miRNAs (AUC
= 0.9625 ± 0.04; Figures 7 and 8). This group consists of eight downregulated miRNAs
(hsa-let-7i-5p, hsa-miR-3613-5p, hsa-miR-126-3p, hsa-miR-145-5p, hsa-miR-136-3p, hsa-
miR-7-5p, hsa-miR-320a, hsa-miR-32-5p) and seven upregulated miRNAs (hsa-miR-6087,
hsa-miR-877-5p, hsa-miR-4429, hsa-miR-1297, hsa-miR-205-5p, hsa-miR-6828-3p, hsa-miR-
200a-5p). These results suggest that the selected panel of 15 miRNAs holds promise
as a novel and valuable diagnostic tool for distinguishing between lung malignant and
non-malignant patients (Figure 8).
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Figure 4. (A) Heatmap comparing NSCLC with the control group. Hierarchical clustering of samples
was performed using the Pearson correlation coefficient, and features were filtered based on the
similarity of their expression patterns. In the heatmap, high expression is indicated by red color while
low expression is indicated by yellow color. Each row represents a differentially expressed feature,
and each column represents a sample. The heatmap exhibits a wide range of values in the TMP
(normalized values) cells, ranging from 0 to, on some occasions, a few thousand. Scaling the data
further poses a challenge, given the existing row scaling. The data table used to generate the heatmap
is included as a supplementary resource (Table S8). (B) Volcano plot comparing NSCLC vs. control.
The y–axis represents the log10 of the p–values, while the x–axis represents the logFC calculated for
the comparison group vs. the baseline group. The plot illustrates the behavior of the reliability values
of the measurement characteristics in relation to the fold change. The filtering thresholds used are
marked with dashed lines in the plot, and upregulated genes are colored red while downregulated
genes are not detected.
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Table 3. Gene Ontology (GO) and KEGG pathway enrichment analysis results for differentially
expressed miRNAs in NSCLC vs. control.

GO Category—Biological Processes p-Value No. of Genes No. of miRNAs

Cellular nitrogen compound metabolic process 4.23 × 10−132 971 14

Gene expression 4.60 × 10−101 229 13

Biosynthetic process 5.66 × 10−93 806 15

Viral process 1.60 × 10−58 159 14

Symbiosis, encompassing mutualism through
parasitism 5.42 × 10−58 171 14

Cellular protein modification process 6.23 × 10−51 463 15

Biological process 2.92 × 10−44 2423 16

Catabolic process 6.18 × 10−43 393 14

Small molecule metabolic process 2.38 × 10−39 433 14

GO Category—Molecular Functions p-Value No. of Genes No. of miRNAs

Ion binding 7.11 × 10−65 995 15

Molecular function 2.91 × 10−57 2486 16

RNA binding 1.33 × 10−50 427 15

Enzyme binding 8.85 × 10−45 302 15

Protein binding transcription factor activity 6.63 × 10−29 130 14

poly(A) RNA binding 1.49 × 10−25 353 15

Nucleic acid binding transcription factor activity 1.77 × 10−14 177 14

GO Category—Cellular Components p-Value No. of Genes No. of miRNAs

Organelle 6.50 × 10−269 1890 15

Nucleoplasm 2.07 × 10−70 338 13

Protein complex 9.83 × 10−64 749 15

Cytosol 1.30 × 10−56 574 15

Cellular component 1.75 × 10−49 2490 16

Focal adhesion 4.33 × 10−7 117 13

KEGG Pathway p-Value No. of Genes No. of miRNAs

Fatty acid biosynthesis 4.74 × 10−9 2 3

Adherens junction 2.23 × 10−6 29 12

p53 signaling pathway 2.23 × 10−6 34 13

Oocyte meiosis 6.46 × 10−6 39 10

Cell cycle 1.25 × 10−5 46 11

Central carbon metabolism in cancer 1.25 × 10−5 27 11

Protein processing in endoplasmic reticulum 1.25 × 10−5 60 12

Hippo signaling pathway 1.73 × 10−5 46 14

Viral carcinogenesis 1.87 × 10−5 59 12
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patients serum.
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axis indicates a ranking of variables, values of miRNA, sorted from the most important in the model 
(top) to the least important (bottom). In the figure, we named the 25 most important miRNA in the 
model. The x–axis indicates an impact of a given variable on the model’s predictions; the SHAP 
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Figure 6. Shapley Additive Explanation for the Gradient Boosting Decision Tree Classifier. The y–axis
indicates a ranking of variables, values of miRNA, sorted from the most important in the model (top)
to the least important (bottom). In the figure, we named the 25 most important miRNA in the model.
The x–axis indicates an impact of a given variable on the model’s predictions; the SHAP values are
sorted from the negative impact leading towards the cancer (class 0 on the left) to the positive impact
leading towards the non-cancer (class 1 on the right). There are 118 points per row, one point per
patient, where each indicates an attribution of a given variable to the probability model output. The
color–axis indicates the variables’ values from low with blue to high with red. The visible distinction
in colors between negative and positive SHAP values might be viewed as indicating a significant
expression profile (up or down).
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Figure 8. Metrics for gradient boosting decision tree classifier based on the 15 miRNA that were
the most important in the model. (A) mean ROC ± SD curve, and mean AUC for classifier
(B) mean and 95% CI of accuracy, f1–score metrics, AUC, specificity, sensitivity, precision and
NPV for differentiating cancerous and noncancerous patients serum.

4. Discussion

In this study, we conducted a global miRNA profiling analysis on liquid biopsy sam-
ples from early-stage NSCLC patients and non-cancerous pulmonary controls using NGS.
Our objective was to identify a serum miRNA signature with high accuracy for discriminat-
ing NSCLC from non-cancer patients and to investigate the functional implications of the
serum miRNA expression profile for understanding the biological pathways and molecular
mechanisms involved in NSCLC development and progression.

Serum miRNAs have several advantages over other biomarkers, such as tissue biop-
sies or circulating tumor cells (CTCs), for cancer detection and monitoring. They are stable,
abundant, and easily accessible in blood samples, and can reflect the heterogeneity and
dynamics of tumor cells and their microenvironment [28,29]. Previous studies have re-
ported various serum miRNA signatures for NSCLC diagnosis, prognosis, and response to
therapy. However, most of these studies used small sample sizes, different platforms, or
different normalization methods, which may limit the reproducibility and comparability of
the results [13,30–32].

To address these limitations, we utilized a well-characterized cohort of 71 early-
stage NSCLC patients and 47 non-cancerous controls and performed global miRNA
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profiling using NGS, a highly sensitive and accurate method for miRNA detection and
quantification [24]. Additionally, we implemented stringent quality control steps during
serum processing to assess hemolysis, RNA purification, and cDNA synthesis in order to
identify and exclude any outliers. Furthermore, we applied rigorous statistical analysis and
preprocessing steps to ensure the reliability and robustness of our findings.

We constructed a gradient-boosting decision tree classifier that accurately distin-
guishes NSCLC from non-cancerous patients. The analysis of 2588 serum miRNA values
revealed their significant discriminatory capabilities achieving an AUC value of 0.91 ± 0.05
(sensitivity 0.806, specificity 0.859). Employing SHAP, we identified the top 25 miRNAs,
and the 15 exhibited the strongest discriminatory potential were used to create a simplified
GBDT model, resulting in an AUC value of 0.96 ± 0.04 (sensitivity 0.884, specificity 0.903).
Among the selected 15 miRNAs, 8 were downregulated and 7 were upregulated in NSCLC.
These findings underscore the promise of our approach in uncovering miRNA biomarkers
for diagnosing NSCLC and open avenues for further exploring the functional relevance
of these identified miRNAs in the context of lung cancer. The diagnostic performance of
our model was comparable or even better than those presented in the literature of the
last years.

Numerous studies have assessed the diagnostic potential of individual miRNAs
included in our signature, specifically miR-126-3p, miR-145-5p, miR-7-5p, miR-6087,
miR-4429, and miR-205-5p. Moving on to Wang et al.’s findings [28], they reported that
serum miR-126-3p exhibits early detection capabilities for NSCLC patients, with sensitivity
and specificity comparable to traditional tumor markers. Moreover, Soliman et al. [33]
found that miR-126-3p is significantly downregulated in the serum of NSCLC patients
compared to healthy controls, offering high sensitivity and specificity (AUC: 0.90) in distin-
guishing NSCLC patients from controls. Furthermore, Gan et al. [34] demonstrated that
miR-145-5p is markedly downregulated in NSCLC tissues and serum compared to healthy
tissues and serum, with high sensitivity and specificity (AUC: 0.88) in distinguishing
NSCLC patients from healthy controls. Additionally, low miR-145-5p expression correlated
with poor overall survival and disease-free survival in NSCLC patients. Shifting focus
to Petkova et al.’s research [35], they showed that miR-7-5p is upregulated in both lung
adenocarcinoma and squamous cell lung cancer compared to normal tissues, suggesting its
potential as a diagnostic biomarker for NSCLC due to its association with clinical outcomes
and tumor subtypes. Similarly, Kumar et al. [36] reported significantly lower miR-320a
expression in the serum of NSCLC patients compared to controls, with miR-320a exhibiting
high diagnostic performance for NSCLC, featuring an AUC of 0.844. In addition, Liu
et al. [37] demonstrated significantly higher miR-6087 expression in the serum of NSCLC
patients compared to controls, with a high diagnostic performance for NSCLC (AUC: 0.780)
when combined with miR-4687-3p using a logistic regression model. Turning to Ruan
et al.’s investigation [38], they showed that miR-4429 expression was significantly lower
in the serum of NSCLC patients compared to controls and correlated with tumor size,
EGFR mutation, lymph node metastasis, and TNM stage. Remarkably, miR-4429 exhibited
high diagnostic performance for NSCLC, featuring an AUC of 0.918, with sensitivity and
specificity of 89.34% and 84.72%, respectively. Additionally, Wang et al. [39] reported that
miR-4429 expression was significantly lower in the serum of NSCLC patients compared
to controls, with a high diagnostic performance (AUC: 0.898), sensitivity of 87.5%, and
specificity of 82.81%. Furthermore, Zhao et al. [40] highlighted miR-205-5p’s overexpression
in NSCLC tissues and serum, suggesting its potential as a biomarker for NSCLC diagnosis
(AUC: 0.8250). Lastly, Jiang et al. [41] demonstrated that miR-205-5p is highly expressed in
NSCLC tissues and serum, particularly in the squamous cell carcinoma subtype, and can
effectively differentiate NSCLC from benign lung diseases and healthy controls.

Serious of studies have underscored the diagnostic potential of specific miRNAs,
including miR-126-3p, miR-145-5p, miR-7-5p, miR-6087, miR-4429, and miR-205-5p, within
our signature. These miRNAs exhibit promise as valuable biomarkers for the early detection
and differentiation of NSCLC from healthy controls. Their high sensitivity and specificity, as
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demonstrated in various research studies, highlight their potential to enhance the accuracy
of NSCLC diagnosis and contribute to improved patient outcomes. Further research and
validation are warranted to solidify their clinical utility in NSCLC diagnostics.

Prior to our studies, other researchers had been working to develop miRNA-based
diagnostic signatures for NSCLC. Using qPCR, Yang et al. [32] tested the potential of
a panel of four circulating miRNAs (hsa-miR-146b, hsa-miR-205, hsa-miR-29c, and hsa-
miR-30b) as biomarkers for early diagnosis of NSCLC. They found that these miRNAs
were significantly elevated in serum samples of NSCLC patients compared to healthy or
cancer-free controls, and that they had high accuracy (AUC = 0.96) and sensitivity (0.92)
for distinguishing NSCLC from controls. The panel also showed better performance for
detecting adenocarcinoma than squamous cell carcinoma and reflected the tumor stage
and load. Moreover, two of the miRNAs (hsa-miR-146b and hsa-miR-29c) were associated
with poor survival outcomes, especially for squamous cell carcinoma patients. The authors
concluded that the 4-miRNA panel is a novel, sensitive and non-invasive serum marker for
the early diagnosis of NSCLC.

Additional studies have also explored the diagnostic potential of miRNAs signature in
NSCLC. Using qPCR, Ying et al. [42] identified a panel of five miRNAs with high sensitivity
(83.0%) and specificity (90.7%) for detecting NSCLC regardless of smoking status, gender,
and ethnicity. Zhu et al. [43] examined miRNA by using qPCR and developed a classifier
based on four miRNAs that could distinguish lung cancer from other conditions with
high AUC (0.885). Using NGS, Duan et al. [44] identified a set of three miRNAs that were
significantly increased in NSCLC patients and had an AUC of 0.828, sensitivity of 86.7%,
and specificity of 71.7%. Wang et al. [45] using the TaqMan Low Density Array and qPCR
identified a panel of five serum miRNAs that exhibited high AUC values (0.976 and 0.823)
for detecting NSCLC, particularly in early stages. Masayasu et al. [46] used automated
machine learning on NGS results to construct and screen 1123 miRNA-based diagnostic
models for lung cancer detection. The best model showed an AUC of 0.98, sensitivity of
85.7%, and specificity of 92.9%. They also compared their model with CEA, a conventional
blood biomarker for adenocarcinoma, and found that their model had higher sensitivity
for early-stage lung adenocarcinoma.

When evaluating the diagnostic efficacy of our miRNA panel in comparison to the
presently employed clinical biomarkers for NSCLC, our panel exhibits remarkable per-
formance metrics, showcasing a high level of accuracy (0.896), sensitivity (0.884), and
specificity (0.903). These results not only meet but frequently surpass the performance of
established diagnostic biomarkers commonly utilized in this field, including carcinoembry-
onic antigen (CEA) [47], cytokeratin 19 fragment (CYFRA 21-1) [48], neuron-specific enolase
(NSE), squamous cell carcinoma antigen (SCC) [49], tissue polypeptide antigen (TPA) [50],
and matrix metalloproteinase (MMP-9) [51]. In contrast to our miRNA panel, conventional
biomarkers such as CEA, NSE, and MMP-9 exhibit multiple limitations. They suffer from
suboptimal sensitivity and specificity, typically ranging from 50% to 80% [52–54]. Further-
more, they lack standardization and validation, resulting in variability across different
laboratories and methodologies. These biomarkers are also susceptible to confounding
factors, including smoking, inflammation, tumor stage, histology, smoking status, and
comorbidities. Additionally, they lack specificity for NSCLC, often showing elevated levels
in other cancer types or benign conditions. For example, a study conducted by Xu et al. [54]
reported diagnostic sensitivity, specificity, and AUC of 80.0%, 72.2%, and 0.84, respectively,
for serum CEA, 71.0%, 83.3%, and 0.80 for NSE, respectively, and 87.1%, 80.56%, and 0.89 for
MMP-9, respectively. While these biomarkers may demonstrate elevated levels in NSCLC
patients, their diagnostic performance falls short of the capabilities of our miRNA panel.
Moreover, Ajona et al. [55] introduced a diagnostic model based on the quantification of
complement-derived fragment C4c, CYFRA 21–1, and C-reactive protein (CRP) in plasma.
Their model exhibited commendable specificity (92%) in distinguishing between benign
and malignant pulmonary nodules with an AUC of 0.86. Our miRNA panel exhibited a
specificity level akin to theirs, registering at 0.903.
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As demonstrated, our miRNA panel equals or surpasses the currently employed
clinical biomarkers for NSCLC diagnosis, offering a promising opportunity to establish
a reliable and efficient diagnostic tool for detecting NSCLC that effectively addresses the
limitations associated with traditional biomarkers and holds the possibility of enhancing
patient outcomes.

The potential value of miRNAs as biomarkers for the early detection of NSCLC is
underscored by existing literature and our own investigations. The diagnostic test based on
miRNAs offers a promising complement to histopathological evaluation with the potential
to enhance the accuracy and efficiency of NSCLC screening. This improvement in screening
efficacy holds the promise of enabling earlier interventions and ultimately improving
patient outcomes. However, to fully integrate the miRNA-based diagnostic model into
routine clinical practice, additional research and validation are necessary.

Furthermore, we identified a set of 28 significantly upregulated DEmiRNAs in NSCLC
samples when compared to controls. Among the top 10 upregulated miRNAs, some have
been previously reported to be associated with NSCLC or other cancers, while others
have not been extensively studied. Our findings are consistent with some previous re-
ports, such as the upregulation of hsa-miR-4488, hsa-miR-205-5p, hsa-miR-92a-1-5p, and
hsa-miR-551b-3p [37,40,56–62]. However, our results differ from previous studies regard-
ing hsa-miR-3180-3p and hsa-miR-3178, which were found to be downregulated [63–67].
Furthermore, expression of hsa-miR-6819-3p, hsa-miR-6734-5p, hsa-miR-4492, and hsa-
miR-3180 in NSCLC has not been thoroughly investigated.

Liu et al. [37] previously identified hsa-miR-4488, which was the most upregulated
miRNA in our study, as one of the six differentially expressed miRNAs in serum NSCLC.
Additionally, hsa-miR-4488 was found to be a potential biomarker for breast cancer progres-
sion and metastasis, as well as a suppressor of angiogenesis by directly targeting CX3CL1 in
a study by Zheng et al. [56]. Zhao et al. [40] demonstrated that hsa-miR-205-5p, which was
the second most upregulated miRNA in our study, was overexpressed in NSCLC tissues
and cell lines and promoted lung cancer cell growth and invasion by downregulating
TP53INP1, consequently modulating the levels of P21, RB1, and cyclin D1. Furthermore,
Zhu et al. [57] showed that hsa-miR-205-5p increased cancer cell proliferation, migration,
invasion, and cell cycle progression by activating the PTEN/PI3K/AKT signaling pathway.
Hsa-miR-92a, which was the fourth most upregulated miRNA in our study, was found to
be overexpressed in NSCLC tissues and cell lines, and implicated in promoting epithelial–
mesenchymal transition (EMT) by activating the PTEN/PI3K/AKT signaling pathway,
according to a study by Liu et al. [58]. Additionally, Yu et al. [59] reported that hsa-miR-92a-
1-5p was overexpressed in extracellular vesicles of prostate cancer patients and promoted
osteoclast differentiation by reducing MAPK1 and FoxO1 expression. Hsa-miR-551b-3p,
which was the eighth most upregulated miRNA in our study, was found to be overex-
pressed in extracellular vesicles (EVs) released by multidrug-resistant (MDR) NSCLC cells,
as reported by Sousa et al. [60]. Furthermore, Karanam et al. [61] showed that hsa-miR-551b-
3p promoted tumor growth, invasion, and metastasis by targeting GLIPR2 in high-risk head
and neck cancer, and Chang et al. [62] reported that hsa-miR-551b-3p targeted cyclin D1 and
inhibited tumor growth in cholangiocarcinoma. Based on the aforementioned evidence, we
hypothesize that hsa-miR-4488, hsa-miR-205-5p, hsa-miR-92a-1-5p, and hsa-miR-551b-3p
may act as oncogenic miRNAs in NSCLC by targeting tumor suppressor genes or pathways,
although their role may vary among different cancers.

In a previous study, Chen et al. [63] found that hsa-miR-3180-3p, the fifth most up-
regulated miRNA in our study, was downregulated in exosomes derived from A549 cells.
Moreover, they demonstrated that hsa-miR-3180-3p inhibited proliferation and metastasis
of NSCLC by downregulating FOXP4, a transcription factor that promotes tumor growth
and invasion [63]. In another study, Jin et al. [64] found that serum hsa-miR-3180-3p was
downregulated in gastric cancer patients with cisplatin resistance, suggesting that it may
function as a prognostic biomarker. Similarly, He et al. [65] found that hsa-miR-3178, the
ninth most upregulated miRNA in our study, was downregulated in the plasma of NSCLC
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patients compared to healthy controls. Interestingly, Wang et al. [66] reported that overex-
pression of hsa-miR-3178 inhibited migration and invasion of highly metastatic prostate,
lung, and breast cancer cells under in vitro conditions, whereas antagonizing hsa-miR-3178
promoted those events in their lowly metastatic counterparts. Furthermore, their findings
revealed a significant decrease in hsa-miR-3178 expression in cancer cell lines with high
metastatic capacity compared to their lowly metastatic counterparts. Wu et al. [67] found
that hsa-miR-3178 was downregulated in gastric cancer tissues and cells, which was sig-
nificantly associated with the TNM stage and lymph node metastasis of patients and a
poor prognosis. Therefore, we hypothesize that hsa-miR-3180-3p and hsa-miR-3178 may
exhibit distinct roles in the same cancer depending on the stage and the biological material
or have diverse roles and targets in various types of cancer cells. Although the biological
function and expression levels of hsa-miR-3180-3p and hsa-miR-3178 in NSCLC have not
been extensively investigated and fully elucidated, the available findings and existing
knowledge regarding the behavior of miRNAs in cancer provide a basis for our hypothesis.
We suggest that hsa-miR-3180-3p and hsa-miR-3178 may display distinct roles within the
same cancer type, potentially functioning as either tumor suppressors or oncogenes. These
roles could vary depending on the specific stage of the cancer, metastatic potential of the
cells, and the nature of the biological material under investigation, such as liquid biopsy,
tissue samples, or cell cultures [68]. However, further research is imperative to validate
these hypotheses and to establish a comprehensive understanding of the precise functions
and underlying mechanisms of these miRNAs in the context of NSCLC.

The mechanisms and functions of hsa-miR-6819-3p, hsa-miR-6734-5p, hsa-miR-4492,
and hsa-miR-3180 in NSCLC remain unknown. Gao et al. [69] predicted that hsa-miR-
6819-3p, the third most upregulated miRNA in our study, may promote tumor growth by
targeting ACTG1 and being upregulated in alcohol-associated hepatocellular carcinoma
(HCC) tissues compared to non-alcohol-associated HCC tissues. Muwonge et al. [70]
found that hsa-miR-6819-3p was significantly upregulated in the serum of patients with
epidemic Kaposi’s sarcoma (KS) compared to HIV-positive patients without KS, indicating
its potential as a biomarker for KS. Wan et al. [71] reported that hsa-miR-6734-5p, the
sixth most upregulated miRNA in our study, is associated with high-grade serous ovarian
cancer. Additionally, hsa-miR-4492, the seventh most upregulated miRNA in our study,
is frequently silenced by lncRNAs in ovarian and bladder cancer, specifically FOXD2-
AS1 and LINC00319, respectively, which thus promotes proliferation, migration, and
invasion [72,73]. Meanwhile, hsa-miR-3180, the tenth most upregulated miRNA in our
study, is modulated by lncKRT16P6 in tongue squamous cell carcinoma [74] and by
SNHG17 in hepatocellular carcinoma [75]. Furthermore, hsa-miR-3180 has been shown to
be a critical regulator involved in de novo fatty acid synthesis and uptake in HCC [76].

There are several reasons why our findings for miRNA expression (e.g., hsa-miR-3180-
3p and hsa-miR-3178) may not be consistent with those reported in previous studies. First,
different sources and types of samples, such as tissues, blood, plasma, serum, exosomes,
and other body fluids, may yield varying miRNA profiles. Each of these sample types
may yield different miRNA profiles due to variations in miRNA release mechanisms [77].
Furthermore, it is crucial to acknowledge that miRNAs, which target proto-oncogenes
and tumor suppressor genes, undergo regulation within cancer cells based on the specific
context imposed by the ongoing process of carcinogenesis. This implies that the expression
patterns of miRNAs in tumor tissue may carry a distinct connotation compared to the
profiles observed in the cell-free circulating miRNAs we analyzed from blood serum [78,79].
Additionally, different subtypes of NSCLC, such as adenocarcinoma or squamous cell
carcinoma, may also exhibit distinct miRNA expression patterns [78,79]. Second, different
detection methods and platforms, including microarray, qRT-PCR, and sequencing, can
affect the sensitivity, specificity, and reproducibility of miRNA measurement [78,79]. Third,
patient characteristics and clinical factors, such as age, gender, smoking status, ethnicity,
stage, grade, histology, treatment, and prognosis, may impact the biogenesis, stability, and
function of miRNAs [78–80]. Finally, environmental and lifestyle factors, such as carcino-
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gens, pollutants, diet, exercise, stress, and infection, may also alter miRNA expression
through epigenetic mechanisms, directly or indirectly [80]. Therefore, consideration and
validation of these factors are essential for interpreting and comparing miRNA expression
data across studies.

To identify the biological processes and pathways associated with NSCLC develop-
ment and progression regulated by the serum miRNAs, we conducted a pathway enrich-
ment analysis based on the target genes of the 28 serum miRNAs. Our analysis revealed
that some of the serum miRNAs were involved in key metabolic, structural, and signaling
pathways in NSCLC, including fatty acid biosynthesis (regulated by 3 miRNAs), adherens
junctions (regulated by 12 miRNAs), and the p53 pathway (regulated by 13 miRNAs).
These pathways play critical roles in the regulation of fundamental cellular events in
NSCLC pathogenesis, such as cell cycle, apoptosis, differentiation, stemness, EMT, and
inflammation [81–84]. For example, fatty acid biosynthesis is crucial for providing en-
ergy and membrane components for cancer cell growth and survival. Fatty acid synthase
(FASN), the key enzyme in this pathway, is overexpressed in NSCLC, and inhibiting its
expression can suppress tumor growth and induce apoptosis [81]. Adherens junctions are
essential for maintaining cell–cell adhesion and polarity, and their disruption can facilitate
EMT and metastasis. In NSCLC, E-cadherin, a major component of adherens junctions, is
downregulated, and its expression correlates with tumor differentiation and prognosis [82].
The p53 pathway is a significant tumor suppressor pathway that mediates DNA damage
response and apoptosis in cancer cells [83]. Mutations or inactivation of the p53 path-
way are common in NSCLC, leading to resistance to chemotherapy and radiotherapy [84].
However, it is important to note that our findings are currently based solely on statistical
associations. To confirm and strengthen our results, validation is required.

Our study has illuminated the potential value of a non-invasive serum miRNA signa-
ture as a supplementary tool for early NSCLC detection. However, it is vital to recognize
the limitations that call for attention in future research endeavors. Firstly, our study’s sam-
ple size was relatively modest, potentially lacking the ability to fully capture the diverse
NSCLC patient population. Secondly, our control group consisted of individuals affected
by non-cancerous pulmonary conditions, including chronic obstructive pulmonary disease,
pneumonia, and bronchitis. It is noteworthy that such conditions can influence serum
miRNA expression. Therefore, a more appropriate approach would involve comparing our
miRNA panel against healthy individuals. Thirdly, our miRNA panel was developed using
data solely from a single next-generation sequencing platform. This singular platform
approach may introduce technical biases and unwarranted variability. To mitigate these
concerns, it is imperative to validate our miRNA panel using diverse platforms or method-
ologies, such as quantitative real-time PCR or microarray analysis. Lastly, the development
of our miRNA panel relied on a supervised machine learning algorithm, which carries the
risk of overfitting data and potentially compromising the model’s generalizability. Conse-
quently, it is advisable to incorporate cross-validation techniques or utilize independent
test sets to thoroughly assess the robustness and stability of our miRNA panel in future
investigations. To address these concerns, we are actively engaged in the recruitment of
additional patients and have plans to include a larger and more representative control
group. Furthermore, we intend to perform validation using quantitative real-time PCR
(qPCR). These steps are vital to ensure the reliability and generalizability of our findings,
thereby strengthening the overall robustness of our study.

Circulating miRNAs have garnered substantial attention from the scientific and clinical
communities due to their relevance in various ongoing clinical investigations, particularly
within the context of cancer, including non-small cell lung cancer (NSCLC). A notable study,
registered under the identifier NCT04427475, is focused on elucidating the diagnostic po-
tential of plasma exosomal miRNAs, both prior to and following immunotherapy targeting
PD-1 or PD-L1 in NSCLC patients. The primary objectives of this investigation are to unveil
alterations in the PD-L1 and miRNA expression profiles within exosomes in response to
immunotherapeutic interventions, as well as to assess the viability of plasma exosomal
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PD-L1 and miRNAs as prospective biomarkers for predicting the therapeutic efficacy of
anti-PD-1/PD-L1 treatment in NSCLC patients [85]. Furthermore, an additional study, reg-
istered as NCT02247453, aims to identify novel diagnostic miRNAs within plasma samples
sourced from individuals afflicted with lung cancer, utilizing advanced next-generation
sequencing techniques. The overarching goal of this study is to demonstrate the efficacy
of plasma miRNA profiling as a primary screening method for the early detection of lung
cancer. By doing so, it aspires to reduce the unnecessary utilization of low-dose computed
tomography scans, thus optimizing the diagnostic process for this malignancy [85].

The utilization of liquid biopsy-based miRNA profiling presents a compelling ap-
proach that offers a non-invasive and real-time method for detecting and characterizing
early-stage NSCLC. This approach has the potential to effectively complement routine
histopathology, especially in cases with diagnostic ambiguity. Furthermore, it holds the
promise of not only complementing but also potentially replacing existing imaging-based
methods, which are often costly and time-consuming. Given the prevalent late-stage diag-
nosis of NSCLC, which severely limits treatment options and compromises overall survival
rates, early detection becomes crucial. Furthermore, our findings could have the potential
to serve as a step towards conducting comprehensive investigations into the specific roles
of selected miRNAs in NSCLC carcinogenesis under tightly controlled in vitro conditions.
This foundational research can pave the way for subsequent efforts aimed at precisely iden-
tifying promising therapeutic targets, which in turn can contribute to the development of
more effective treatments. Nonetheless, to ensure the clinical applicability and significance
of our findings, it is crucial to conduct validation studies involving independent cohorts of
patients; a course of action that is already planned for the near future.

5. Conclusions

In this study, we utilized NGS technology to perform global miRNA profiling analysis
on liquid biopsy samples obtained from early-stage NSCLC patients and controls (non-
cancerous pulmonary patients). The primary objectives were to identify a diagnostic
serum miRNA signature for NSCLC and to establish differentially expressed miRNAs
(DEmiRNAs). Additionally, we explored the functional implications of the serum miRNA
expression profile in the development and progression of NSCLC. To ensure the reliability
and robustness of our findings, our study employed a well-characterized cohort and
implemented stringent quality control measures.

We demonstrated the effectiveness of the gradient-boosting decision tree classifier,
an advanced machine-learning algorithm, in accurately distinguishing NSCLC from non-
cancerous patients using the top 15 miRNAs with the strongest discriminatory potential,
yielding significant AUC values of 0.96 ± 0.04. Additionally, our study showed 28 sig-
nificantly upregulated miRNAs in NSCLC samples compared to controls. Notably, some
of these miRNAs have been previously associated with NSCLC and other cancers, while
others remain relatively unexplored. To gain deeper insights, we performed pathway
enrichment analysis, revealing the involvement of miRNAs in key metabolic, structural,
and signaling pathways in NSCLC, such as fatty acid biosynthesis, adherens junctions, and
the p53 pathway. These pathways play critical roles in NSCLC pathogenesis and provide
potential targets for therapeutic interventions. While the findings were consistent with
some previous reports, they also differed from others, emphasizing the need for further
investigation and validation.

The identification of serum miRNAs signature for detection of early-stage NSCLC
patients holds significant implications for the diagnosis and potential treatment of the
disease. Liquid biopsy-based miRNA profiling offers a non-invasive and real-time ap-
proach for early detection that complements existing histopathology and imaging meth-
ods. This integrated approach has the potential to enhance diagnostic accuracy, facilitate
timely interventions, and ultimately improve patient outcomes by enabling personalized
treatment strategies.
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