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Simple Summary: This paper is one in a series of articles that investigate the functional forms of
autophagy induced in tumor cells in response to various chemotherapeutic modalities, with the
overarching goal of determining whether autophagy targeting or modulation could serve as an
effective adjuvant therapy. In this review, we focus on androgen-targeted therapies in prostate cancer,
including androgen biosynthesis inhibitors and androgen receptor antagonists.

Abstract: Androgen receptor targeting remains the primary therapeutic strategy in prostate can-
cer, encompassing androgen biosynthesis inhibitors and androgen receptor antagonists. While
both androgen-receptor-positive and “castration-resistant” prostate cancer are responsive to these
approaches, the development of resistance is an almost inevitable outcome leading to the castration-
resistant form of the disease. Given that “cytoprotective” autophagy is considered to be a predominant
mechanism of resistance to various chemotherapeutic agents as well as to radiation in the cancer
literature, the purpose of this review is to evaluate whether autophagy plays a central role in limiting
the utility of androgen deprivation therapies in prostate cancer. Unlike most of our previous reports,
where multiple functional forms of autophagy were identified, making it difficult if not impossible to
propose autophagy inhibition as a therapeutic strategy, the cytoprotective form of autophagy appears
to predominate in the case of androgen deprivation therapies. This opens a potential pathway for
improving the outcomes for prostate cancer patients once effective and reliable pharmacological
autophagy inhibitors have been developed.
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1. Introduction

This manuscript is one of a series of papers that were designed to evaluate the role(s)
of autophagy in response to various cancer therapeutic modalities. Our previous publi-
cations assessed the influence of autophagy in tumor cells on the response/sensitivity to
radiation [1], cisplatin [2], microtubule poisons [3], hormonal therapies in estrogen positive
breast cancer [4], PARP inhibitors [5], topoisomerase I poisons [6], temozolomide [7], BET
family inhibitors [8] and, most recently, BRAF-targeted therapies [9]. This series of papers
will ultimately delineate whether there are particular therapeutic modalities where the
preclinical data, and where available, clinical trials, support the inclusion of autophagy
inhibition or modulation as an adjuvant approach.

2. Androgen Receptor Antagonists and Autophagy

Prostate cancer is second only to lung cancer as the most common cancer in men and is
considered to be the fifth leading cause of cancer-related deaths among men worldwide [10].
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Prostate cancer diagnosis depends on multiple analyses and procedures including prostate-
specific antigen (PSA) testing, prostate biopsy and analysis, digital rectal examination, and
magnetic resonance imaging, as well as health screening [11]. Generally, prostate cancer can
be classified as androgen sensitive or androgen insensitive, an indication of testosterone
stimulation and the possible treatment options [12], which include surgery, hormonal
therapy, chemotherapy, and radiation therapy. Treatment is based upon the nature of the
tumor, PSA level, grade and stage, and the likelihood of disease recurrence [11].

The primary factor promoting prostate tumor cell growth is circulating androgen,
particularly dihydrotestosterone (DHT) [13]. Androgen production is initiated with the
conversion of cholesterol into pregnenolone, which, upon 3β hydroxysteroid dehydro-
genase action, is transformed into progesterone [14,15]. Subsequently, 17α hydroxylase
converts progesterone into 17α hydroxyprogesterone, while converting pregnenolone into
17α hydroxypregnenolone. The C17,20 lyase enzyme (CYP17A1) transforms 17α hydrox-
yprogesterone into androstenedione, as well as converting 17α hydroxypregnenolone into
dehydroepiandrosterone [14]. Androstenedione and dehydroepiandrosterone are then
converted via enzymatic pathways into testosterone, which is further converted via 5α
reductase into dihydrotestosterone [14,16]. These androgens then bind to the androgen
receptor(s) on the prostate tumor cells, promoting and maintaining tumor growth.

The androgen receptor (AR) is a nuclear, steroid hormone receptor, for which the
gene is located on chromosome Xq11-12. The AR consists of three functional domains:
the N-terminal transactivation domain (NTD, exon 1), a DNA-binding domain (DBD,
exons 2 and 3), and a C-terminal ligand-binding domain (LBD, exons 5–8) [17,18]. In the
absence of androgens, the AR associates with heat shock protein (HSP-90) in a complex
that prevents AR degradation and maintains the ligand-binding conformation. DHT binds
to the C-terminal LBD of the AR, causing AR dissociation from HSP-90, and resulting
in a conformational change and homodimerization of the receptor. Subsequently, the
AR translocates to the nucleus binds to DNA via the DBD, recruiting various cofactors
and ultimately causing the transcription of androgen-dependent genes that drive tumor
growth [19–22].

AR signaling can be driven by genomic amplification and overexpression of AR [23,24],
gain of function mutations allowing AR to be persistently activated, alterations in AR tran-
scriptional programs such as enhancer elements [25], co-activators and co-regulators [26],
enzyme overexpression [27], and alterations in androgen transport [22,28]. Aside from
AR signaling, the tumor may eventually adapt to the low levels of androgen resulting
from androgen lowering therapeutic strategies, activating alternative mechanisms for acti-
vating AR or by bypassing AR, developing into the castration-resistant form of prostate
cancer [29,30].

Androgen deprivation remains the primary approach for the treatment of both
androgen-dependent and castration-resistant prostate cancer; the effectiveness of this
therapeutic approach in the latter case is indicative of residual dependence of these tumors
on androgen stimulation. The principal androgen biosynthesis inhibitor being utilized in
clinical settings is abiraterone. Abiraterone selectively blocks androgen biosynthesis via
17α-hydroxylase/C17,20 lyase (CYP17A1), in addition to antagonizing the AR. Regarding
androgen receptor antagonists, first-generation agents include bicalutamide, nilutamide,
and flutamide while second-generation agents include enzalutamide, apalutamide and
darolutamide. These drugs are utilized in the treatment of different stages of prostate
cancer; however, as is the case with other antineoplastic agents, the ultimate development
of resistance limits their utility.

In addition to independence from the AR, resistance has been ascribed to genomic
alterations, modifications to intracellular signaling pathways, metabolic switches, and
possibly autophagy, the topic of this review [27]. Autophagy is a cellular self-digestive
machinery that contributes to the maintenance of cellular homeostasis as well as to energy
production via controlling degradation of damaged proteins and organelles [3,4,6]. We
and others have identified different functional forms of autophagy [4,31,32]. However, as
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indicated in the studies presented below, the cytoprotective form of autophagy appears
to be the exclusive form observed in response to androgen deprivation therapies in pre-
clinical models of prostate cancer (Figure 1), suggesting that autophagy modulation or
targeting could be an effective strategy to increase the effectiveness of androgen receptor
antagonists [33,34].
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Figure 1. Autophagy induced in response to androgen-targeted therapies. Androgen-targeted
therapies (abiraterone, bicalutamide, enzalutamide, apalutamide, and flutamide) exert their effects
on prostate cancer cells via androgen receptor blocking and/or targeting the CYP17A1 enzyme.
These agents, however, induce a cytoprotective form of the autophagic machinery (autophagy steps:
formation of phagophore, then autophagosomes, fusion between autophagosomes and lysosomes,
forming autolysosomes in which the cargo is degraded), which protect the prostate cancer cells from
undergoing cell death.

3. Abiraterone and Autophagy

Abiraterone is an inhibitor of androgen biosynthesis that is commonly utilized in
combination with chemical castration and prednisone for metastatic castration-resistant
and metastatic castration-sensitive prostate cancer [35,36]. In addition to the antago-
nism of AR, which mediates the actions of abiraterone in CYP17A1 low-expressing cells
(ex: LNCap) [37,38], the primary mode of action for abiraterone is the selective inhibition
of androgen biosynthesis via a blockade to 17α-hydroxylase/C17,20 lyase (CYP17A1) [39].
By blocking the action of CYP17A1, abiraterone suppresses androgen production not only
in the testes but also in other androgen-producing tissues including the adrenal glands and
the prostate tumor [40]. Although abiraterone demonstrates a robust antineoplastic activity,
variable responses in prostate cancer patients and the development of resistance limits its
clinical efficacy [41].
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Mortezavi et al. [42] studied autophagy targeting as a potential strategy in combination
with abiraterone in prostate cancer, using the standard LNCaP, DU145, and PC3 cell lines.
Here, it should be noted that these are human-derived cell lines, where the LNCaP cells
express the AR and are androgen dependent, whereas the DU145 and PC 3 cells do not
express the AR and are androgen independent. What must be emphasized additionally is
that the DU145 and PC3 cells do not actually reflect the clinical castration-resistant pheno-
type, wherein androgen deprivation is an effective strategy, at least initially. Furthermore,
being human derived, these tumor cells cannot generally be studied in immune-proficient
animals, except in the case where immune deficient mice have been humanized [43].

Abiraterone treatment, at concentrations of 5, 10, and 15 µM for 1 and 4 days, re-
duced the proliferation of the LNCaP cells in a concentration-dependent manner, without
affecting the DU145 and PC3 cell lines, consistent with abiraterone effectiveness requir-
ing androgen sensitivity. Of note, the concentrations being utilized are not reflective
of the clinical concentration as the Cmax reported in patients’ plasma is approximately
between (3.3 µM) 1173ng/mL and (0.64 µM) 226 ng/mL and may be lower [44–46]. Abi-
raterone induced autophagy in the LNCaP cells, as assessed by elevated levels of ATG5 and
Beclin 1 proteins, together with increasing the conversion of LC3 I to LC3 II [47]. The
induction of autophagy was further validated by reduced p62/SQSTM1 protein expression
by Western blot analysis [48]. Autophagosome formation was also monitored by AUTOdot
as well as by immunofluorescence, where LNCaP cells treated with abiraterone exhibited
cytoplasmic elevation in ATG5 expression and a punctuated pattern for LC3, confirming
the accumulation of autophagosomes [42].

The role of the autophagy induced in the LNCaP cells upon abiraterone treatment was
evaluated utilizing pharmacological and genetic inhibition of autophagic flux
(i.e., autophagy completion with degradation of the autophagosomal substrates). Com-
bining abiraterone with either of the pharmacologic autophagy inhibitors, CQ or 3-MA,
increased the rate of cell death, reducing the viability of LNCaP cells as compared to
either treatment alone. Increased cell death caused by the combination treatment was
accompanied by increased levels of apoptosis as assessed by annexin V/PI staining, all of
which is consistent with a cytoprotective role of autophagy. This cytoprotective function of
autophagy was further confirmed using ATG5-directed siRNA in the LNCaP cells. As was
the case with pharmacologic inhibition of autophagy, ATG5-deficient LNCaP cells exhibited
a significantly increased sensitivity towards the cytotoxicity of the abiraterone treatment.

Ma et al. [49] also studied autophagy inhibition in combination with abiraterone in
the PC3 and LNCaP cell lines. Comparing the androgen-sensitive LNCaP cells and the
castration-resistant PC3 cells, the PC3 cells were found to have higher levels of basal au-
tophagy based on TEM-detected autophagic vacuoles, and increased ATG5, LC3II, and
Beclin1 levels. Abiraterone treatment at 10 µM for 48 and 72 h reduced the viability of
both the PC3 and LNCaP cells, as shown by a CCK-8 assay, together with the promo-
tion of apoptosis, based on the expression of cleaved caspase-3 and a decrease in the
anti-apoptotic protein, BCL-2. Moreover, abiraterone caused G2/M cell cycle arrest in
both cell lines after treatment for 48 h. Unexpectedly, and in contrast to the findings by
Mortezavi et al. [42], abiraterone treatment significantly inhibited autophagic flux in both cell
lines, as confirmed by reduced levels of TEM-detected autophagic vacuoles, and reduced
levels of ATG5, Beclin1, and LC3II, which was further confirmed by immunofluorescence.
However, upon combining abiraterone with 3-MA, an enhanced reduction in cell viability
and the promotion of apoptosis, as well as G2/M arrest, were evident. The inhibition of
autophagy in response to the combination of 3-MA and abiraterone was confirmed by a
decrease in autophagic vacuoles, reduced ATG5, LC3II, and Beclin1 levels, and a reduced
positive staining of LC3II in the two cell lines. These data suggested that castration-
resistant cells have an intrinsic protective autophagy that is inhibited by abiraterone. This
is in contrast to the studies by Mortezavi et al. [42], which showed that abiraterone induced
autophagy in LNCaP cells. However, additional experiments that include the genetic
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inhibition of autophagy in these cell lines would be necessary to further confirm the role of
the autophagic machinery [50].

Recently, Feng et al. [51] studied Qi Ling decoction (QLD), a Chinese herb, in combina-
tion with abiraterone using PC-3 and DU145 cells that were developed to be abiraterone
resistant. Using flow cytometry and CCK-8 assays, QLD in combination with abiraterone
resulted in decreased cell survival together with robust apoptosis in the resistant cell lines
as compared to each drug alone. Importantly, as shown by a GFP-LC3 fluorescence assay,
the autophagic levels were higher in abiraterone-treated cells as compared to either QLD
alone or QLD in combination with abiraterone. These results were further confirmed by
studies demonstrating that abiraterone induced a significant elevation in the LC3II/LC3I
ratio as well as in Beclin1 protein levels. QLD addition to abiraterone-treated cells par-
tially suppressed the abiraterone effect on LC3-II/LC3-I ratios and Beclin1 expression,
suggesting that QLD reduced the autophagic flux induced by abiraterone in both the PC3
abiraterone-resistant and DU145 abiraterone-resistant cells. The cytotoxicity induced by
abiraterone in combination with QLD was mirrored in vivo using PC3 abiraterone-resistant
or DU145 abiraterone-resistant tumor-bearing mice models, where QLD combined with abi-
raterone produced a significant tumor inhibition activity as compared to each drug alone.
These results strongly suggest a cytoprotective role of abiraterone-induced autophagy,
but still require further verification using pharmacologic as well as genetic autophagy
inhibition studies [50].

Collectively, only limited information relating to abiraterone and its possible relation-
ship with autophagy is available in the literature, with contradictory findings as to whether
autophagy is induced or suppressed in response to abiraterone. Furthermore, it is critical
to highlight the contradictory results regarding whether abiraterone has an effect in the
AR-deficient PC3 and DU145 cell lines. However, based on the studies described above,
autophagy seems to play a cytoprotective role in prostate cancer, regardless of whether
abiraterone itself induces or suppresses autophagy.

4. Bicalutamide and Autophagy

Bicalutamide is a potent, first-generation, nonsteroidal antiandrogen with a long
plasma half-life, consistent with its administration once daily [52]. Bicalutamide demon-
strates significant activity in prostate cancer, with a tolerable safety profile, offering a better
choice than flutamide. Bicalutamide represents a valid first choice for antiandrogen therapy
in combination with chemical castration, or a GnRH agonist for the treatment of patients
with advanced prostate cancer [52,53]. A number of studies have investigated the possible
targeting of autophagy either to increase the effectiveness of bicalutamide or to overcome
the development of resistance. For example, Nguyen et al. [33] reported that bicalutamide
induced autophagy in both LNCaP cells and the C4-2B, AR-positive cell line derived from
LNCaP cells [54], as shown by the transition of LC3I to LC3II. Mechanistically, AMPK
activation, an upstream promoter of autophagy, was reported to be significantly increased
in cells treated with bicalutamide.

Consistent with the findings of Nguyen et al. [33], Boutin et al. [55] showed that
bicalutamide treatment or androgen deprivation induced autophagy in LNCaP cells, as
indicated by GFP-LC3 accumulation into vacuoles. The induction of autophagy was further
confirmed by the detection of autophagosomes and autophagolysosomes by TEM and in-
creased fluorescence with a Cyto-ID autophagy detection assay, as well as by p62/SQSTM1
degradation. Androgen deprivation or bicalutamide treatment in an AR-devoid U-145 cell
line failed to promote autophagy, suggesting that autophagy induction is directly associated
with AR signaling inhibition.

To determine the role of bicalutamide-induced autophagy, the ATG5 gene was targeted
using siRNA in LNCaP cells. ATG5 depletion increased apoptosis upon bicalutamide treat-
ment, suggesting a cytoprotective role of autophagy. The cytoprotective role of autophagy
was confirmed pharmacologically in that CQ in combination with either androgen depri-
vation or bicalutamide increased the level of apoptosis, as assessed by sub-G1 detection,
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and the plasma membrane permeabilization measurement. Similar results were obtained
using concanamycin A, an autophagy inhibitor that blocks vacuolar H+-ATPase [56], which
enhanced the toxicity of the androgen deprivation and bicalutamide treatment.

Mechanistically, androgen deprivation or bicalutamide treatment reduced the phos-
phorylation of AktS473, the upstream kinase of mTOR, as well as of p70S6kT389 and 4EBP-1,
the substrates of mTOR. Interestingly, autophagy induction was shown to be associated with
AR/PI3-K interaction in LNCaP cells, based on the association (by co-immunoprecipitation)
between AR and p85, the regulatory sub-unit of class Ia PI3-K. Therefore, it was proposed
that androgen ablation, by decreasing AR expression, increased the cytosolic free p85 that in
turn inhibits PI3-K activity, which, in turn, further inhibits the PI3-K/Akt/mTOR pathway,
a master regulator of multiple forms of autophagy [57].

Collectively, these data support a cytoprotective role of autophagy in response to
bicalutamide treatment in AR-dependent prostate tumor cells as AR-devoid cell lines did
not demonstrate an autophagic response [55,58].

5. Enzalutamide and Autophagy

Enzalutamide is a second-generation, nonsteroidal AR inhibitor that is widely used
to treat prostate cancer, especially the metastatic castration-resistant form of the
disease [59,60]. Enzalutamide belongs to the class of direct androgen receptor inhibitors,
such as apalutamide [10]. Enzalutamide targets the AR pathway at multiple stages, specifi-
cally blocking AR binding to androgen, blocking AR transcriptional activity by preventing
AR from translocating to the nucleus, inhibiting DNA transactivation via binding to DNA
and recruiting cofactors [59,60], and consequently suppressing the expression of androgen-
responsive genes [59,61]. The multiple effects exerted by enzalutamide on AR pathways are
considered the primary basis for its superior clinical efficacy over flutamide, bicalutamide,
or other antiandrogen drugs [62–64]. However, due to prostate cancer heterogeneity, the
response to enzalutamide treatment varies between patients [65]. In addition, the develop-
ment of resistance is widely recognized as a major drawback to therapy efficacy.

Nguyen et al. [33] investigated the potential utilization of autophagy targeting to
overcome enzalutamide resistance using LNCaP, C4-2B, enzalutamide-resistant C4-2B,
CWR22Rv1, and PC-3 prostate cancer cell lines. Enzalutamide, at 10µM for 48 h, induced
autophagy in both androgen-responsive LNCaP and androgen-insensitive, AR-positive,
CWR22Rv1 cells, as evidenced by the emergence of bright punctate fluorescence in au-
tophagosomes using an LC3-eGFP assay. The induction of autophagy was further con-
firmed by an increase in the ratio of LC3II/LC3I as well as the upregulation of ATG5.
The increase in autophagosome formation was further validated by Flow cytometry. In-
terestingly, enzalutamide-resistant C4-2B cells were shown to have a high level of basal
autophagy, based on acridine orange staining and an increased LC3II/LC3I ratio, consis-
tent with the possibility that autophagy could be contributing to enzalutamide resistance.
Furthermore, the genes involved in autophagosome formation, ULK1, ATG12, ATG16L2,
DRAM1, and DRAM2, were found to be upregulated in the resistant cell lines. In addition,
several mTOR signaling genes were differentially downregulated in the resistant cells
when compared with the parental cells, where suppression of mTOR is known to promote
autophagy [57]. Enzalutamide was unable to induce autophagy in AR-negative PC3 cells,
as shown by the unaltered levels of LC3I and LC3II, again suggesting that autophagy
occurs in parallel with AR inhibition.

To determine the role of the autophagy induced by enzalutamide, autophagy was
inhibited using CMI, an FDA-approved drug to treat depression, which has been shown to
be a potent inhibitor of autophagy with minimal toxicity both in vitro and in vivo [66,67].
The combination of enzalutamide and CMI reduced the colony-forming ability of C4-2B
cells as compared to each drug alone. Furthermore, in an in vivo model of SCID mice or-
thotopically implanted with enzalutamide-resistant cells, the combination of enzalutamide
with CMI produced a more pronounced reduction in tumor size as compared to each drug
alone. The replacement of CMI with metformin as an autophagy modulator [68] resulted in
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similar results in vivo, with a significantly greater reduction in tumor size than each drug
alone. These results strongly suggest a cytoprotective role of enzalutamide-induced au-
tophagy in this model; however, genetic inhibition of autophagy studies would be needed
to further confirm this proposed cytoprotective function of autophagy [50].

Mechanistically, Nguyen et al. [33] reported that AMPK activation, which is association
with the promotion of autophagy [69], was significantly increased in LNCaP and C4-2B
cells treated with enzalutamide. Similarly, enzalutamide-resistant C4-2B cells showed an
upregulation of AMPK, suggesting a primary role for AMPK in the induced autophagic
machinery. This role of AMPK was further confirmed using siRNA suppression of AMPK
in C4-2B cells, where enzalutamide treatment then failed to induce autophagy, as evidenced
by LC3-eGFP analysis. Upon AMPK knockdown using siRNA in LNCaP and C4-2B
cells, enzalutamide increased cell death. Furthermore, AMPK knockdown sensitized
enzalutamide-resistant C4-2B cells, as shown by enhanced cell death, suggesting the crucial
role of AMPK in the development of resistance that is maintained by autophagy.

The AMPK pathway directly interacts with the TSC2/Raptor/mTOR complex to in-
hibit mTOR/S6K/4EBP signaling and to subsequently induce autophagy [70–72].
Nguyen et al. [33] showed that enzalutamide treatment was coupled with AMPK ac-
tivation and increased the phosphorylation of Raptor, resulting in increased LC3-I to
LC3-II conversion, whereas p-AKT remained unaffected. However, upon AMPK knock-
down, enzalutamide treatment did not affect the phosphorylation of Raptor, while it
did reduce ATG5 expression and reduced the conversion of LC3-I to LC3-II. Therefore,
Nguyen et al. [33] proposed the potential interaction between AMPK activation and the sup-
pression of mTOR via the phosphorylation of Raptor upon the induction of enzalutamide-
mediated autophagy. This hypothesis was further tested by a co-immunoprecipitation
analysis, where, upon knockdown of the mTOR complex, phospho-Raptor appeared when
AMPK was activated by enzalutamide treatment; conversely phospho-Raptor was unde-
tectable when AMPK expression was knocked down.

Although there are limited publications available assessing the relationship between
autophagy and enzalutamide, as is the case with bicalutamide, the available studies collec-
tively strongly suggest that enzalutamide induces autophagy in prostate tumor models.
Furthermore, the autophagy induced has a direct relationship to the development of en-
zalutamide resistance, suggesting a cytoprotective role of autophagy. As is the case with
bicalutamide, it is important to highlight what Nguyen et al. [33] reported regarding the
relationship between AR inhibition and autophagy induction, with no autophagy induced
in the AR-devoid PC-3 cell line.

6. Apalutamide and Autophagy

Apalutamide is a novel, potent, second-generation AR antagonist that binds the AR
with 7- to 10-fold greater affinity than bicalutamide [73]. Apalutamide exerts its action by
directly inhibiting the AR at the ligand-binding domain, thereby suppressing AR nuclear
translocation, DNA binding, and AR-mediated transcription [74]. Apalutamide showed
superior efficacy in phase I and II trials in patients with non-metastatic castration-resistant
prostate cancer by Rathkopf et al. [75] and Smith et al. [76], respectively. These clinical trials,
together with the data from the SPARTAN trial by Smith et al. [77], in which apalutamide
showed a significant antitumor activity, led to the approval of apalutamide for treating
non-metastatic castration-resistant prostate cancer. However, some patients do not respond
to this therapy, and eventually become resistant. Recently, Eberli et al. [78,79] studied the
potential targeting of autophagy to increase the effectiveness of and possibly overcome
resistance to apalutamide both in vitro and in vivo.

Eberli et al. [78] investigated the relationship between autophagy inhibition and apa-
lutamide in prostate cancer using the LNCaP cell line. Apalutamide reduced proliferation
of the LNCaP cells in a dose-dependent manner. Apalutamide also induced autophagic
flux, as confirmed by increased ATG5 and Beclin-1 expression, as well as the punctuated
pattern for LC3, using immunofluorescence analysis. In addition to the reported increase
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in ATG5 and Beclin-1, reduced p62/SQSTM1 levels as well as the conversion of cytosolic
LC3-I to membrane-bound LC3-II were detected. The induction of autophagy was fur-
ther validated using AUTOdot fluorescence staining, in which the characteristic features
of autophagy, such as increased cell size and autophagic vacuoles, were revealed upon
apalutamide treatment.

The pharmacological inhibition of autophagy using CQ or 3-MA in combination
with apalutamide significantly reduced cell proliferation as compared to each treatment
alone, suggesting a cytoprotective role of autophagy in this experimental system. The
enhanced efficacy of autophagy inhibitors combined with apalutamide was further demon-
strable by a reduction in cell viability, using ethidium bromide and detected by flow
cytometry, as well as elevated levels of apoptosis, as shown by an annexin V assay. The
depletion of ATG5 utilizing a siRNA strategy also significantly increased cell death and
increased apoptosis.

In vivo, Eberli et al. [79] studied the possibility of autophagy targeting in combination
with apalutamide, using LNCaP-injected castrated nude mice models. The apalutamide-
treated mice showed signs of autophagy induction, as evidenced by the increased expres-
sion of ATG5 and a punctuated pattern for LC3 by immunofluorescence. The induction of
autophagy was further confirmed based on increasing levels of ATG5 and Beclin-1 detected
by immunoblotting. Furthermore, treatment with the combination of apalutamide and CQ
significantly reduced tumor Ki-67 fluorescence intensity and tumor weights and increased
cleaved caspase-3 levels as compared to each drug alone.

These results from Eberli et al. [78,79] strongly suggest the cytoprotective autophagy
is being induced by apalutamide in LNCaP cells either in vitro, or after being implanted in
mice models, highlighting the possible targeting of autophagy to increase the effectiveness
of apalutamide. Although promising, a major limitation for these studies, as well as that of
Boutin et al. [55], is the utilization of a single cell line, LNCaP cells, which may limit the
generalization of these results to other prostate cancer cell lines and the clinical situation.

7. Conclusions

Androgen-targeted therapies are currently utilized in clinical settings in the treatment
of various stages of prostate cancer; however, as is the case with other chemotherapeutic
agents [3,80], the development of resistance constrains their clinical efficacy. Whereas
four different functions of autophagy have been identified in the scientific literature [32],
with the recent advent of additional subforms such as mitophagy [81], ER-phagy [82], pex-
ophagy [83], and aggrephagy [84], the literature relating to androgen deprivation strategies
in prostate cancer appears to consistently demonstrate the promotion of the cytoprotective
form that could potentially be suppressed for therapeutic benefit. In this context, HCQ and
CQ are widely used in pre-clinical and clinical trials as autophagy inhibitors to increase the
effectiveness of various chemotherapeutic modalities [3,7]. However, it remains uncertain
whether the doses of these agents that are tolerable in patients actually suppress autophagy
in the tumors.

As summarized in Table 1, the data relating to whether abiraterone induces or suppress
autophagy in prostate cancer cells is somewhat inconsistent. There are also somewhat
contradictory findings reported regarding whether abiraterone has an effect in PC3 and
DU145 cell lines. Mortezavi et al. [41] and Fragni et al. [85] reported that abiraterone
did not affect the viability of PC3 and DU145 cells; in contrast, both Ma et al. [49] and
Giatromanolaki et al. [86] showed that abiraterone treatment suppressed the viability
and/or inhibited the growth of PC3 cells, with the latter suggesting that the attenuation
of AR signaling is not the only rationale to explain the abiraterone anticancer activity.
However, bicalutamide, enzalutamide, and apalutamide induced autophagy in different
tumor models, while one study by Boutin et al. [55] showed that flutamide induced
autophagy in LNCaP cells. No information is currently available as to whether nilutamide
or darolutamide promote autophagy.
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Table 1. Autophagy roles in response to androgen-targeted therapies.

Androgen Receptor Blocker Tumor/Cell Type Autophagy Induction Role of Autophagy References

Abiraterone LNCaP, DU145, and PC3 cell lines Autophagy induced in
LNCaP cells cytoprotective [42]

Abiraterone PC3 and LNCaP cells Autophagy supressed - [49]

Abiraterone

PC3 abiraterone-resistant and
DU145 abiraterone-resistant
In vivo, using PC3
abiraterone-resistant or DU145
abiraterone- resistant
tumor-bearing mice models

Autophagy induced cytoprotective [51]

Bicalutamide LNCaP and C4-2B prostate cancer
cell lines Autophagy induced - [33]

Bicalutamide LNCaP and AR-devoid U-145
cell line

Autophagy induced in
LNCaP cells but not in
U-145 cells.

cytoprotective [55]

Enzalutamide

LNCaP, C4-2B,
enzalutamide-resistant C4-2B,
CWR22Rv1, and PC-3 prostate
cancer cell lines
In vivo model; SCID mice and
orthotopically implanted
enzalutamide-resistant cells into
the prostate

Autophagy induced
but not in AR-devoid
PC-3 cells

cytoprotective [33]

Apalutamide
LNCaP cell line
In vivo, using LNCaP-injected
castrated nude mice models

Autophagy induced cytoprotective [78,79]

Flutamide LNCaP cell line Autophagy induced - [55]

Although the evidence for the cytoprotective autophagy associated with androgen
deprivation needs to be further validated via the pharmacologic and genetic inhibition of
autophagy in different cell lines, and importantly, in vivo, using different tumor models [50]
and physiologically relevant concentrations (in contrast to some studies mentioned earlier
that used supraphysiological concentrations of AR antagonists), autophagy inhibition in
prostate cancer likely has the potential to increase the efficacy of androgen antagonists.
These studies highlight the possible translation of autophagy inhibition as a strategy to
increase the clinical response to androgen deprivation strategies in prostate cancer.
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