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Simple Summary: Chromosomal translocations involving the mixed lineage leukemia (MLL) gene
generate potent fusion oncogenes and cause acute myeloid leukemia or lymphocytic leukemia, which
account for ~75% infant and 5–10% child/adult acute leukemia cases with a poor prognosis (5-year
survival rates < 45%). Protein–protein interactions between the most frequent MLL fusion partner
proteins AF9/ENL and AF4 or histone methyltransferase DOT1L are critical to malignant gene expres-
sion and are therefore a potential drug target for cancer. Compound screening followed by medicinal
chemistry studies identified several novel small-molecule inhibitors showing strong inhibition of
these protein–protein interactions, significant suppression of characteristic gene expression, and
robust cellular anticancer activities with negligible cytotoxicity. These compounds are useful chemical
probes for biological studies of these protein–protein interactions, as well as pharmacological leads
for further drug development against MLL-rearranged and other leukemias.

Abstract: Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause
5–10% acute leukemias with poor clinical outcomes. Protein–protein interactions (PPI) between
the most frequent MLL fusion partner proteins AF9/ENL and AF4 or histone methyltransferase
DOT1L are drug targets for MLL-rearranged (MLL-r) leukemia. Several benzothiophene-carboxamide
compounds were identified as novel inhibitors of these PPIs with IC50 values as low as 1.6 µM.
Structure–activity relationship studies of 77 benzothiophene and related indole and benzofuran
compounds show that a 4-piperidin-1-ylphenyl or 4-pyrrolidin-1-ylphenyl substituent is essential for
the activity. The inhibitors suppressed expression of MLL target genes HoxA9, Meis1 and Myc, and
selectively inhibited proliferation of MLL-r and other acute myeloid leukemia cells with EC50 values
as low as 4.7 µM. These inhibitors are useful chemical probes for biological studies of AF9/ENL, as
well as pharmacological leads for further drug development against MLL-r and other leukemias.
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1. Introduction

Acute leukemias in ~75% infant and 5–10% child/adult patients are caused by chromo-
somal translocations of mixed lineage leukemia (MLL, also known as MLL1 or KMT2A) gene,
which generate oncogenic fusion MLL (onco-MLL). MLL-rearranged (MLL-r) leukemias can
be clinically characterized as acute lymphocytic leukemia (ALL) or acute myeloid leukemia
(AML) with a poor prognosis [1–5]. Five-year survival rates for MLL-r ALL patients are
<40%, in contrast to ~90% for other pediatric ALLs [6–10]. The situation is even worse for
very young patients with five-year survivals of <20% [9]. MLL-r AML has 5-year survival
rates of ~45%, similar to other AMLs [11,12]. More effective and/or less toxic targeted
therapies are needed for patients with MLL-r leukemias [13–16].

The onco-MLL in these MLL-r leukemias consists of the N-terminal ~1400 amino
acid residues of MLL, which function as a transcription factor and recognize MLL-target
genes, in-frame fused with one of >70 other proteins [17–19]. However, only several fusion
partners are predominant, including transcription cofactor AF4 (~35%), AF9 (25%) and its
paralog ENL (10%) [1,2,11,17]. These proteins associate with each other and recruit other
proteins (e.g., positive transcription elongation factor or P-TEFb) to form super elongation
complexes (SEC) [20–22], which promote gene transcription elongation. Thus, certain MLL
target genes, such as HoxA9 and Myc [23–25], are constitutively or excessively expressed,
causing leukemia.

The C-terminal AHD domain (~70 residues) of AF9 and highly homologous ENL is a
novel and validated drug target for MLL-r leukemia [11,26]. Although it is disordered by it-
self, AF9/ENL AHD forms a structured protein complex with a consensus peptide segment
of LxVxIxLxxV/L in AF4 or its paralog AFF4 with a high affinity [27,28]. Such protein–
protein interaction (PPI) is essential for the oncoprotein MLL-AF9/-ENL or MLL-AF4 to
recruit SEC for aberrant gene expression. Moreover, similar interactions between AF9/ENL
AHD and histone-H3 lysine-79 (H3K79) methyltransferase DOT1L (which also contains
several LxVxIxLxxV/L sequences) can recruit DOT1L to MLL target gene loci, causing
genome-wide H3K79 hypermethylation, which has been observed and characteristic to
MLL-r leukemia [29]. Knockdown or pharmacological inhibition of DOT1L was found to
selectively inhibit MLL-r leukemia in cells, animal models and clinical trials [30–32]. There-
fore, disruption of the PPIs between AF9/ENL and AF4/AFF4 or DOT1L is a potentially
useful therapy for MLL-r leukemia by suppressing SEC-mediated gene expression and
DOT1L-caused H3K79 methylation [26].

Two series of compounds have been reported to inhibit the AF9/ENL-DOT1L interac-
tions, including our previously disclosed compound SYC-1456 [26] and a series of 7-mer
peptidomimetic compounds derived from DOT1L, such as Cpd-10 [33,34] (Chart 1). These
compounds can inhibit AF9-DOT1L and other related PPIs and selectively suppress aber-
rant gene expression and cell proliferation of MLL-r leukemia, showing on-target activities,
as well as a need for additional inhibitor discovery and development. Here, we report the
discovery, synthesis, structure–activity relationships (SAR) and biological activities of a
new chemo-type of inhibitors of the PPIs between AF9/ENL and DOT1L or AF4.
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Chart 1. Known inhibitors of the AF9/ENL-DOT1L interaction.

2. Results and Discussion
2.1. Discovery of Novel Inhibitors of the AF9-DOT1L Interaction

An AlphaLisa assay we previously developed [26] was used for compound screening
for inhibitors of the AF9-DOT1L interaction. The PPI takes the DOT1L-peptide coated
donor beads and AF9 AHD coated acceptor beads together. The donor beads are illu-
minated with a laser beam (680 nm) to generate singlet oxygen radicals, which activate
the adjacent acceptor beads to produce luminescence at 615 nm. When a compound can
disrupt such PPI and separate the donor and acceptor beads, the highly unstable radicals
are rapidly quenched by water without generating luminescence. With this method, indole-
carboxamide compounds 1 and 2 were found to be novel inhibitors of the AF9-DOT1L
interaction, which can inhibit the PPI dose-dependently with an IC50 value of 3.3 and
4.5 µM, respectively (Table 1 and Supplementary Materials Figure S1), which showed
comparable activities to SYC-1456 (IC50: 3.5 µM) [26]. Moreover, another reported inhibitor,
Cpd-10 (Chart 1), was synthesized and found to exhibit an IC50 of 2.1 µM in our AlphaLisa
assay conditions (Figure S1). These results support medicinal chemistry optimization based
on the novel chemical scaffold in compounds 1 and 2.

Table 1. Structures and activities of 6-substituted indole compounds against the AF9-DOT1L interaction.

Cpd # R6 IC50 (µM) or % Inhihition at 5 µM Cpd # R6 IC50 (µM) or % Inhihition at 5 µM

1 3.3 ± 0.2 9 17%

3 2.8 ± 0.2 10 0%

4 31% 11 10%

5 40% 2 4.5 ± 0.01

6 14% 12 2.9 ± 0.1

7 5.6% 13 29%

8 37% 14 11%
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2.2. Synthesis

Medicinal chemistry based on the structures of these two compounds was next
performed to investigate structure–activity relationships, as well as to find compounds
with improved potency. Three series of indole- and closely related benzothiophene- and
benzofuran-carboxamide compounds were synthesized for the study.

The general synthesis of the indole-carboxamide compounds is shown in Scheme 1.
A 5- or 6-bromo-substituted indole-2-carboxylic acid ethyl ester 78 was hydrolyzed and
then reacted with tert-butyloxycarbonyl (BOC)-protected 4-aminomethylpiperidine to give
an indole-2-carboxamide intermediate compound 79, which was subjected to a Suzuki
coupling reaction, followed by deprotection of the BOC, to give the target compounds
1, 3–11 and 15–22. To synthesize indole-3-carboxamide compounds, 5- or 6-bromo- or
iodo-substituted indole 80 was reacted with trifluoroacetic anhydride to give 3-trifluoacetyl-
indole 81, which was hydrolyzed to provide the corresponding indole-3-carboxylic acid
82. A similar amidation and Suzuki coupling reaction for compound 82 gave, upon BOC
deprotection, the target compounds 2, 12–14 and 23.

Scheme 1. Synthesis of compounds 1–23. Reagents and conditions: (a) NaOH, THF-H2O, 50 ◦C, 5 h;
(b) 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophos-
phate, N,N-diisopropylethylamine, DMF, 4-aminomethyl-1-Boc-piperidine, 12 h; (c) aryl boronic
acid or aryl 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, tetrakis(triphenylphosphine)palladium, Na2CO3,
1,4-dioxane-H2O, 100 ◦C; (d) HCl (4 N in 1,4-dioxane), CH2Cl2, 0 ◦C; (e) trifluoroacetic anhydride,
0 ◦C to room temperature, 2 h; (f) NaOH (20% aq.), 80 ◦C, 2 days; (g) 4-aminomethyl-1-Boc-piperidine,
N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide, 1-hydroxybenzotriazole, triethylamine, CH2Cl2.

The synthesis of benzothiophene and benzofuran compounds is shown in Scheme 2.
A bromo-substituted benzothiophene- or benzofuran-2-carboxylic acid 83 was coupled
with BOC-protected 4-aminomethylpiperidine to provide 84, which was subjected to a
Suzuki coupling reaction with an aryl boronic acid/ester, or a Buchwald-Hartwig amination
reaction with an amine/phenol to give, after deprotection of the BOC, the target compounds
24–28, 31, 32, 35–50, 53–56, 58–62 and 67–77. The carboxylic acid 85, the Suzuki coupling
product from compound 84, reacted with an amine to yield, upon removal of the BOC, the
final compounds 29, 30, 33, 34, 51–52 and 63–66. Similar transformations from benzofuran-
3-carboxylic acid 86 gave compound 57.
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Scheme 2. Synthesis of compounds 24–77. Reagents and conditions: (a) 1-[bis(dimethylamino)methylene]-
1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate, N,N-diisopropylethylamine, DMF,
4-aminomethyl-1-Boc-piperidine or another amine,12 h; (b) aryl boronic acid or aryl 4,4,5,5-
tetramethyl-1,3,2-dioxaborolane, tetrakis(triphenylphosphine)palladium, Na2CO3, 1,4-dioxane-H2O,
100 ◦C; (c) a amine or phenol, tris(dibenzylideneacetone)dipalladium, 2-dicyclohexylphosphino-2′,6′-
dimethoxybiphenyl, t-BuOH, toluene, 100 ◦C; (d) HCl (4 N in 1,4-dioxane), CH2Cl2, 0 ◦C.

2.3. Structure–Activity Relationships

Because of the high costs for the AlphaLisa assay, inhibitory activities of all compounds
were first screened at 5 µM and the IC50 values for those exhibiting >50% inhibition
were determined.

The structures and inhibitory activities of 6-substituted indole compounds, including
compounds 1 and 2 (IC50 = 3.3 and 4.5 µM) with a piperidin-1-ylphenyl group, are sum-
marized in Table 1. Ring-contracted compound 3 with a pyrrolidin-1-ylphenyl substituent
was found to be equally potent, with an IC50 of 2.8 µM. Compound 4 without an N atom
in the 6-substituent exhibited reduced activity (31% inhibition at 5 µM) and compound 5
having two N atoms is also weaker (40% inhibition). Replacing the piperidin-1-yl group
with a thiophene in compound 6 (14% inhibition at 5 µM) significantly decreased activity.
Changing to a 2-hydroxyethyl in compound 7 or to an acetyl group in 8 also resulted in a
lowered potency. Compounds 9 and 10 with meta-substituted tert-butyl- and cyano-phenyl
R6, respectively, are very weak (17% and 0% inhibition at 5 µM). Compound 11 with a
smaller thiophene group at this position is almost inactive. In addition, three analogs of
compound 2 with a 3-carboxylamide sidechain were synthesized. Compound 12 with a
4-pyrrolidin-1-ylphenyl R6 group was found to exhibit slightly improved activity with an
IC50 of 2.9 µM. Compound 13 with another similar morpholin-4-yl group showed reduced
activity (29% inhibition at 5 µM), while compound 14 with a polar aminomethyl group was
almost inactive (11% inhibition at 5 µM).

Compounds 15–23 (Table 2) with a variety of groups at the 5-position of the indole core
were investigated. Compounds 15 and 16 with the 4-piperidin-1-ylphenyl and 4-pyrrolidin-
1-ylphenyl R5 group, respectively, showed comparable activities (IC50 = 3.6 and 2.7 µM) to
compounds 1–3 and 12. Other groups in compounds 17–22 showed less potent activities.
While having a 4-piperidin-1-ylphenyl R5 group, compound 23 with a 3-carboxylamide
sidechain showed reduced activity (43% inhibition at 5 µM).
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Table 2. Structures and activities of 5-substituted indole compounds against the AF9-DOT1L interaction.

Cpd # R5 IC50 (µM) or %
Inhihition at 5 µM Cpd # R5 IC50 (µM) or %

Inhihition at 5 µM

15 3.6 ± 0.3 20 8%

16 2.7 ± 0.2 21 0%

17 52% 22 >30

18 36% 23 43%

19 13%

Results of the above indole compounds show that in most cases, 4-piperidin-1-
ylphenyl or similar 4-pyrrolidin-1-ylphenyl group contributes favorably to inhibition of
the AF9-DOT1L interaction, regardless whether they are in the 6- or 5-position. However,
despite their strong biochemical activities, these indole-containing inhibitors showed only
modest activities to inhibit the proliferation of MLL-r leukemia cells (described below),
which might be due to poor cell permeability or uptake of these compounds.

Next, a structurally similar, less polar benzothiophene core was used to replace indole.
The structures and inhibitory activities of 6-substituted benzothiophene compounds are
shown in Table 3. Compound 24 with a 4-piperidin-1-ylphenyl group was found to be
a strong inhibitor of the AF9-DOT1L interaction with an IC50 of 1.6 µM, showing ~2×
activity compared to the indole analog 1. Compound 25 with a 4-pyrrolidin-1-ylphenyl had
weaker activity (IC50 = 5.3 µM). Changing to a morpholine in compound 26 (40% inhibition
at 5 µM) or a diethylamino group in 27 (25% inhibition at 5 µM) considerably reduced in-
hibitory activity. Adding a -CH2- (in compound 28) or a carbonyl (in 29 and 30) between the
piperidinyl/pyrrolidine and phenyl groups lost activity (0–8% inhibition at 5 µM). Replac-
ing the phenyl group with a non-aromatic piperidine ring yielded very weak compounds
31 and 32 (14% and 20% inhibition at 5 µM). Inserting a carbonylphenyl into these two
compounds produced inactive compounds 33 and 34. Compound 35 with an additional
-NH- between the 4-piperidin-1-ylphenyl group and benzothiophene core was found to be
a strong inhibitor (IC50 = 2.3 µM). Compound 36 having a 4-(4-chlorophenoxy)phenoxy
R6 group is a moderate inhibitor (IC50~5 µM). In addition, a variety of substituted phenyl
R6 groups in compounds 37–49 with different steric and electronic properties resulted in
inactive to moderate inhibitors.
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Table 3. Structures and activities of 6-substituted benzothiophene compounds against the AF9-DOT1L
interaction.

Cpd # R6 IC50 (µM) or %
Inhibition at 5 µM Cpd # R6 IC50 (µM) or %

Inhihition at 5 µM

24 1.6 ± 0.2 37 0%

25 5.3 ± 0.1 38 0%

26 40% 39 0%

27 25% 40 19%

28 45% 41 ~50%

29 8% 42 26%

30 0% 43 49%

31 14% 44 14%

32 20% 45 43%

33 0% 46 0%

34 5% 47 47%

35 2.3 ± 0.2 48 ~50%

36 50% 49 21%
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5-Substituted benzothiophene compounds 50–56 were synthesized and tested for SAR
studies. As shown in Table 4, similar SAR results were observed with compound 50 having
a 4-piperidin-1-ylphenyl R5 group showing the strongest activity (IC50 = 2.5 µM), while
other compounds showed no to moderate activities.

Table 4. Structures and activities of 5-substituted benzothiophene compounds against the AF9-DOT1L
interaction.

Cpd # R5 IC50 (µM) or % Inhihition at 5 µM

50 2.5 ± 0.2

51 31%

52 0%

53 23%

54 33%

55 45%

56 24%

Moreover, benzofuran compounds 57–77, which possess subtle structural (e.g., angles
between substituents), electronic or hydrophobic differences from indole or benzothiophene
analogs, were synthesized for the SAR studies. As shown in Table 5, similar SARs were
observed, but benzofuran inhibitors appeared to be less potent. The strongest benzofuran
compounds 57 with a 4-piperidin-1-ylphenyl and 74 with a 4-piperidin-1-ylphenylamino
R6 group had IC50 values of 7.2 and 4.6 µM, respectively. Replacing the 4-piperidin-1-
ylphenyl group with a closely related morpholine (in compound 58), piperazine (in 59/60),
cyclohexyl (in 61), or diethylamino group (in 62) significantly reduced the inhibitory activity.
Activities of compounds 63–66 indicate that an amide-containing R6 group is disfavored.
Other R6 groups in compounds 67–73 and 75–77 also showed no to modest activities against
the AF9-DOT1L interaction.
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Table 5. Structures and activities of 6-substituted benzofuran compounds against the AF9-DOT1L
interaction.

Cpd # R6 IC50 (µM) or %
Inhihition at 5 µM Cpd # R6 IC50 (µM) or %

Inhihition at 5 µM

57 7.2 ± 0.4 68 33%

58 40% 69 33%

59 38% 70 19%

60 32% 71 27%

61 18% 72 >30

62 30% 73 15%

63 1% 74 4.6 ± 0.3

64 0% 75 23%

65 0% 76 24%

66 0% 77 20%

67 0%

2.4. Activity Confirmation by a Pull-Down Assay

A pull-down assay [26] was used to confirm that the strong inhibitors could disrupt
the AF9-DOT1L interaction. Streptavidin agarose beads coated with biotinylated DOT1L
peptide were used to pull-down the protein AF9 AHD in the solution, followed by thorough
washing, SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and
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Western blotting to visualize and quantitate the protein. As shown in Figure 1, inhibitors
24 and 50 (IC50 = 1.6 and 2.5 µM) can dose-dependently reduce AF9 AHD, while inactive
compound 37 did not significantly affect the binding of the protein to the DOT1L-coated
beads even at 50 µM. This alternative, non-optical method confirmed that compounds 24
and 50 can inhibit the PPI between AF9 and DOT1L.

Figure 1. Pull-down assay indicated that compounds 24 and 50 significantly reduced the amounts
of AF9 AHD bound to DOT1L peptide-coated resins in a dose-dependent manner, while inactive
compound 37 did not significantly affect the AF9 AHD levels. The uncropped bolts are shown in
Supplementary Materials.

2.5. Activity to Block the AF9/ENL-AF4 Interactions

Transcription cofactor AF4, which is the most frequent (~35%) fusion protein in MLL1-r
leukemia, is another binding partner of AF9/ENL [35–37]. The AF9/ENL-AF4 interactions
are essential for the formation of SEC, which causes aberrant gene expression in MLL-r
leukemia and other AMLs [20,28]. Using our previously developed AlphaLisa assays [26],
selected compounds were tested for their ability to inhibit the PPIs between AF9 or ENL and
AF4. As summarized in Table 6, inhibitors 16, 24, 25 and 50 of the AF9-DOT1L interaction
(IC50 = 1.6–5.3 µM) were found to exhibit comparable activities to block the AF9-AF4 and
ENL-AF4 interactions with IC50 values of 1.9–7.9 µM, while inactive compounds 22 and 37
did not inhibit these PPIs. These results are consistent with our previous finding that an
inhibitor of the AF9-DOT1L interaction is broadly active against PPIs between AF9/ENL
and AF4 [26].

Table 6. Activities (IC50, µM) against the AF9/ENL AHD-AF4 interactions.

AF9-DOT1L AF9-AF4 ENL-AF4

16 2.7 ± 0.2 1.9 ± 0.1 1.9 ± 0.3
24 1.6 ± 0.2 2.1 ± 0.3 2.6 ± 0.3
25 5.3 ± 0.1 7.7 ± 0.9 7.9 ± 1.5
50 2.5 ± 0.2 2.5 ± 0.3 3.4 ± 0.4
22 >30 >50 >50
37 inactive >50 >50

2.6. Activity to Suppress Oncogenic Gene Expression

The major function of the SEC is to promote transcription elongation for its bound
genes [20–22]. Because of the high affinity of the PPIs between AF9/ENL and AF4, onco-
MLL (e.g., MLL-AF4 or MLL-AF9/-ENL) recruits SEC to MLL target genes, facilitates
their expression, and eventually causes leukemia initiation [27,28]. Next, we investigated
whether selected inhibitors of these PPIs can inhibit the expression of HoxA9, Meis1 and
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Myc, which are MLL target genes and their high expression is characteristic of MLL-r
leukemia. In addition, high expression of Myc is also observed in a broad range of AMLs
and other cancers and is considered a driving factor for oncogenesis [38–41]. To this end,
RNAs from the control and compound-treated Molm-13 cells (harboring MLL-AF9) were
extracted and subjected to quantitative PCR. As shown in Figure 2, potent inhibitors 24
and 50 were able to reduce the expression of HoxA9, Meis1 and Myc. However, inactive
compound 37 did not significantly affect the expression of these MLL target genes.

Figure 2. RT-qPCR results of treatment of Molm-13 cells with compounds 24 (a), 50 (b) or 37 (c) at the
designated concentrations for 4 days, showing 24 and 50, but not inactive compound 37, inhibited
expression of representative MLL target genes HoxA9, Meis1 and Myc at 1 and 5 µM in Molm-13
cells. (* p < 0.05).

2.7. Antitumor Activity

The antitumor activity of selected compounds was evaluated against the proliferation
of a panel of MLL-r leukemia and other cancer cells. The results are shown in Table 7.
MV4;11 and Molm-13 leukemia cells contain MLL-AF4 and MLL-AF9 fusion oncogenes,
respectively. NB4 and HL60 are AML cells without MLL translocation. Hela (cervical
cancer) is a solid tumor cell line. Indole-containing compounds 2, 12 and 15 were found
to exhibit modest to no activities against proliferation of MLL-r leukemia MV4;11 and
Molm-13 cells, despite their strong inhibitory activities against the AF9-DOT1L interac-
tion (IC50 = 2.9–4.5 µM) (Figure S2). They did not significantly affect the growth of other
cancerous cells. Presumably due to improved cell permeability or uptake, benzothiophene-
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containing inhibitor 24 (IC50 = 1.6 µM) showed more potent activities against proliferation
of MLL-r leukemia MV4;11 and Molm-13 and AML NB4 and HL60 cells with EC50 values
of 9.6, 4.7, 5.3 and 10 µM. Benzothiophene compound 25 had generally reduced anti-
tumor activities with EC50s of 8.7–26 µM, in line with its reduced biochemical activity
(IC50 = 5.3 µM). Another benzothiophene inhibitor 50 (IC50 = 2.5 µM) exhibited compa-
rable antitumor activities (EC50 = 5.1–9.4 µM) to compound 24. The anti-proliferation
activity of these compounds against other AML cells (i.e., NB4 and HL60) might be due to
their inhibition of SEC-mediated gene expression (e.g., Myc), as observed in our previous
studies [26]. In addition, these three compounds were found to have weak to no activities
against the proliferation of Hela cells, showing good selectivity. Benzofuran compound 57
(IC50 = 7.2 µM) moderately inhibited the proliferation of MLL-r leukemia and AML cells
with EC50s of 9.7–21 µM. It did not affect the growth of Hela cells. Moreover, inactive indole,
benzothiophene and benzofuran compounds 22, 37 and 72 were included in this assay
as negative controls. None of these three compounds inhibited tumor cell proliferation,
largely excluding possible off-target effects for these series of compounds.

Table 7. Antitumor activity (EC50, µM) of selected compounds.

MV4;11 Molm13 NB4 HL60 Hela

2 33 ± 2.8 29 ± 2.5 32 ± 2.0 50 >50
12 26 ± 1.8 50 50 50 >50
15 22 ± 2.0 10 ± 1.6 >50 50 >50
24 9.6 ± 1.2 4.7 ± 0.3 5.3 ± 1.1 10 ± 1.8 50
25 8.7 ± 0.9 9.4 ± 0.8 10 ± 0.5 26 ± 2.6 50
50 8.2 ± 1.2 5.1 ± 0.2 9.4 ± 1.2 9.0 ± 0.9 25 ± 2.5
57 21 ± 1.2 13 ± 1.7 11 ± 0.4 9.7 ± 1.2 50
22 >50 >50 >50 >50 >50
37 >50 >50 >50 >50 >50
72 ~50 >50 >50 >50 >50

3. Materials and Methods

All chemicals for synthesis were purchased from Aldrich (Milwaukee, WI, USA) or
Alfa Aesar (Ward Hill, MA, USA). Unless otherwise stated, all solvents and reagents were
used as received. All reactions were performed using a Teflon-coated magnetic stir bar at
the indicated temperature and were conducted under an inert atmosphere when stated.
The identity of the synthesized compounds was characterized by 1H and 13C NMR on
a Varian (Palo Alto, CA, USA) 400-MR spectrometer and mass spectrometer (Shimadzu
LCMS-2020, Shimadzu Kyoto, Japan). Chemical shifts were reported in parts per million
(ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as
singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). The identity
of the potent inhibitors was confirmed with high resolution mass spectra (HRMS) using
an Agilent 6550 iFunnel quadrupole-time-of-flight (Q-TOF) mass spectrometer (Agilent
Technologies, Santa Clara, CA, USA) with electrospray ionization (ESI). The purities of
the final compounds were determined to be >95% with a Shimadzu Prominence HPLC
(Shimadzu, Tokyo, Japan) using a Zorbax C18 (or C8) column (4.6 × 250 mm) (Agilent
Technologies, Santa Clara, CA, USA) monitored by UV at 254 nm.

3.1. Chemical Synthesis

Synthesis of compounds 1, 5, 6, 7, 11, 14, 15, 16, 17, 18, 19, 21 and 22 was reported in
our previous publications [42].

3.1.1. General Synthetic Procedure-A for Compounds 3, 4, 8–10 and 20

To a solution of 5- or 6-bromoindole-2-carboxylic ester 78 (2.0 g, 7.46 mmol) in
THF/H2O (10/10 mL), sodium hydroxide (0.90 g, 22.4 mmol) was added slowly. The
resulting mixture was stirred and heated at 50 ◦C for 5 h. After cooling down to room
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temperature, the solution was removed in a vacuum. The resulting residues were diluted
with H2O (10 mL) and then acidified with 3 N hydrochloride acid solution to give a white
precipitate, which was filtered, washed with cold H2O and dried under a vacuum overnight
to give the corresponding acid as a white solid, which was used directly for the next step.

The reaction mixture containing crude indole-2-carboxylic acid (1.5 g, 6.25 mmol),
4-aminomethyl-1-Boc-piperidine (1.47 g, 6. 88 mmol), or 4-amino-1-Boc-piperidine (1.38 g,
6.89 mmol), HATU (2. 85 g, 7.5 mmol) and N, N-diisopropylethylamine (1.84 mL, 12.5 mmol)
in DMF (20 mL) was stirred for 12 h at room temperature before quenched with H2O (30 mL).
The crude product was extracted with ethyl acetate (3 × 30 mL) and the resulting organic
phase was washed with brine (3 × 10 mL) and dried over Na2SO4. Up on removal of the
organic solvents, it was purified with column chromatography (silica gel, hexanes: ethyl
acetate from 1.5:1 to 1:1), to give compound 79 in a yield of 62–85%.

The reaction mixture containing indole-2-carboxamide 79 (0.2 mmol), aryl boronic acid or
aryl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.24 mmol), tetrakis(triphenylphosphine)palladium
(11.6 mg, 0.01 mmol), and sodium carbonate (42 mg, 0.4 mmol) in p-dioxane/H2O (5/1,
v/v, 6 mL) was heated at 100 ◦C for 16 h. Upon cooling, it was diluted with brine (5 mL),
and the crude product was extracted with ethyl acetate (3 × 15 mL). The organic layers
were washed with brine (3 × 10 mL), dried over Na2SO4, and concentrated. The residue
was purified with column chromatography (silica gel, hexanes: ethyl acetate from 8:1 to 1:1)
to give the corresponding Suzuki coupling product (58–83% yield), which was deprotected
in a solution of dichloromethane (3 mL) containing 4N HCl in p-dioxane (0.2 mL) at 0 ◦C to
room temperature for 6 h. Upon filtration, the powder was washed with cold water to give
the final compounds 3, 4, 8, 9, 10 and 20 as a hydrochloric salt (~100% yield).

6-(4-(1-Pyrrolinylphenyl)-N-(piperidin-4-ylmethyl)-1H-indole-2-carboxamide
hydrochloride (3)

1H NMR (400 MHz, DMSO-d6) δ 11.66 (s, 1H), 9.02 (s, 1H), 8.71 (s, 2H), 7.64 (d,
J = 8.3 Hz, 1H), 7.61–7.54 (m, 3H), 7.31 (d, J = 8.3 Hz, 1H), 7.15 (s, 1H), 7.00 (s, 2H), 3.39 (s,
4H), 3.29–3.15 (m, 4H), 2.82 (dd, J = 21.3, 10.4 Hz, 2H), 2.03 (s, 4H), 1.83 (d, J = 12.3 Hz, 3H),
1.41 (dd, J = 24.3, 12.7 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.6, 145.1, 137.6, 136.0,
132.5, 127.9, 126.3, 122.2, 119.4, 115.6, 109.4, 103.1, 50.6, 43.92, 43.2, 34.2, 26.7, 24.9. MS (ESI):
[M + H]+ 403.2.

6-(4-Cyclohexylphenyl)-N-(piperidin-4-ylmethyl)-1H-indole-2-carboxamide
hydrochloride (4)

1H NMR (400 MHz, DMSO-d6) δ 11.72 (s, 1H), 9.05 (d, J = 8.8 Hz, 1H), 8.82–8.68 (m,
2H), 7.66 (d, J = 8.4 Hz, 1H), 7.62 (s, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.8 Hz, 1H),
7.29 (d, J = 8.0 Hz, 2H), 7.18 (s, 1H), 3.23 (dd, J = 14.8, 9.2 Hz, 4H), 2.82 (q, J = 11.2 Hz, 2H),
1.90–1.66 (m, 9H), 1.49–1.31 (m, 7H). 13C NMR (100 MHz, DMSO-d6) δ 161.1, 146.2, 138.8,
137.1, 135.7, 132.3, 127.2, 126.6, 126.3, 121.8, 119.2, 109.8, 102.6, 43.4, 42.8, 34.0, 33.8, 26.4,
26.3, 25.6, 24.7. MS (ESI): [M + H]+ 416.3.

6-(4-Acetophenyl)-N-(piperidin-4-ylmethyl)-1H-indole-2-carboxamide hydrochloride (8)
1H NMR (400 MHz, DMSO-d6) δ 11.82 (s, 1H), 8.98 (d, J = 10.0 Hz, 1H), 8.76 (t,

J = 5.6 Hz, 1H), 8.68 (d, J = 10.0 Hz, 1H), 8.04 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H),
7.73 (d, J = 8.8 Hz, 2H), 7.43 (dd, J = 8.4, 1.6 Hz, 1H), 7.20 (d, J = 1.6 Hz, 1H), 3.23 (dd,
J = 15.6, 9.6 Hz, 4H), 2.83 (dd, J = 22.8, 11.6 Hz, 2H), 2.61 (s, 3H), 1.84 (d, J = 12.0 Hz, 3H),
1.42 (dd, J = 23.2, 11.2 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ 197.5, 161.0, 145.7, 136.9,
135.1, 134.2, 133.0, 129.0, 127.2, 126.8, 122.2, 119.3, 110.6, 102.7, 43.6, 42.8, 33.8, 26.8, 26.3. MS
(ESI): [M+H]+ 375.2.

6-(3-(tert-Butyl)phenyl)-N-(piperidin-4-ylmethyl)-1H-indole-2-carboxamide
hydrochloride (9)

1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H), 9.05 (s, 1H), 8.74 (s, 2H), 7.68 (d,
J = 8.4 Hz, 1H), 7.63 (d, J = 11.6 Hz, 2H), 7.46–7.31 (m, 4H), 7.19 (s, 1H), 3.30–3.18 (m, 4H),
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2.83 (dd, J = 23.2, 12.0 Hz, 2H), 1.84 (d, J = 12.0 Hz, 3H), 1.42 (d, J = 12.8 Hz, 2H), 1.34
(s, 9H). 13C NMR (100 MHz, DMSO-d6) δ 161.1, 151.2, 141.1, 137.0, 136.3, 132.4, 128.6,
126.4, 124.1, 123.8, 123.6, 121.9, 119.5, 110.2, 102.6, 43.5, 42.8, 34.5, 33.8, 31.2, 26.3. MS (ESI):
[M + H]+ 389.2.

6-(3-Cyanophenyl)-N-(piperidin-4-ylmethyl)-1H-indole-2-carboxamide hydrochloride (10)
1H NMR (400 MHz, DMSO-d6) δ 11.87 (s, 1H), 9.08 (d, J = 9.6 Hz, 1H), 8.80 (t, J = 5.8 Hz,

2H), 8.11 (s, 1H), 8.00 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.76–7.63 (m, 3H), 7.41 (d,
J = 8.4 Hz, 1H), 7.22 (s, 1H), 3.23 (dd, J = 14.0, 8.8 Hz, 4H), 2.83 (q, J = 11.6 Hz, 2H), 1.84 (d,
J = 12.8 Hz, 3H), 1.43 (q, J = 11.6 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.0, 142.4,
136.9, 133.4, 133.0, 131.6, 130.4, 130.2, 130.2, 127.1, 122.2, 119.2, 118.9, 112.0, 110.5, 102.7, 43.5,
42.8, 33.8, 26.3. MS (ESI): [M + H]+ 358.2.

5-(3-Fluoro-4-cyanophenyl)-N-(piperidin-4-ylmethyl)-1H-indole-2-carboxamide
hydrochloride (20)

1H NMR (400 MHz, DMSO-d6) δ 11.82 (s, 1H), 8.79–8.68 (m, 2H), 8.42 (dt, J = 10.8,
8.4 Hz, 1H), 8.12 (s, 1H), 7.96 (t, J = 7.6 Hz, 1H), 7.90 (dd, J = 11.2, 1.2 Hz, 1H), 7.78 (dd,
J = 8.4, 1.6 Hz, 1H), 7.64 (dd, J = 8.8, 1.6 Hz, 1H), 7.53 (d, J = 8.8 Hz, 1H), 7.25 (d, J = 1.2 Hz,
1H), 3.28–3.20 (m, 4H), 2.91–2.79 (m, 2H), 1.84 (d, J = 12.0 Hz, 3H), 1.38 (q, J = 12.0 Hz, 2H).
MS (ESI): [M + H]+ 377.2.

3.1.2. Synthetic Methods for Compounds 2, 12, 13 and 23

To a solution of 5- or 6-substituted indole 80 (3 mmol) in DMF (10 mL) was slowly
added to trifluoroacetyl anhydride (0.61 mL, 4.5 mmol) at 0 ◦C. The resulting mixture was
stirred at room temperature for 2 h before quenched with H2O (10 mL) to give a white
powder, which was filtered and washed with cold water to give compound 81, which
was stirred in a 20% NaOH solution (20 mL) at 50 ◦C for 2 days. The reaction was slowly
acidified with 3 N HCl solution to give a white powder, which was filtered and washed
with cold water to give the corresponding indole-3-carboxylic acid, which was directly used
without further purification as the starting compound for the general synthetic procedure-A
(described above) to give the final compounds 2, 12, 13 and 23.

6-(4-(Piperidin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-1H-indole-3-carboxamide
hydrochloride (2)

1H NMR (400 MHz, DMSO-d6) δ 11.77 (s, 1H), 8.93 (d, J = 10.6 Hz, 1H), 8.64 (d,
J = 8.6 Hz, 1H), 8.18 (d, J = 8.5 Hz, 1H), 8.08 (dd, J = 25.9, 12.8 Hz, 2H), 7.92 (d, J = 7.8 Hz,
2H), 7.84 (d, J = 8.5 Hz, 2H), 7.69 (s, 1H), 7.42 (d, J = 8.4 Hz, 1H), 3.22 (d, J = 12.1 Hz, 2H),
3.18–3.07 (m, 2H), 2.79 (dd, J = 23.1, 11.7 Hz, 3H), 1.80 (d, J = 12.2 Hz, 4H), 1.48–1.24 (m,
3H). 13C NMR (100 MHz, DMSO-d6) δ 165.0, 142.7, 142.3, 137.1, 132.9, 129.4, 128.4, 126.6,
122.6, 122.0, 120.1, 111.0, 110.5, 66.8, 55.4, 43.7, 43.2, 34.6, 34.4, 26.8, 23.3, 21.3. HRMS (ESI+)
calcd for C26H32N4O [M + H]+, 417.2654; found, 417.2650.

6-(4-(Pyrrolidin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-1H-indole-3-carboxamide
hydrochloride (12)

1H NMR (400 MHz, DMSO-d6) δ 11.63 (s, 1H), 8.96 (d, J = 10.7 Hz, 1H), 8.66 (d,
J = 10.1 Hz, 1H), 8.19–7.88 (m, 3H), 7.69–7.46 (m, 3H), 7.34 (d, J = 8.2 Hz, 1H), 7.02 (d,
J = 36.4 Hz, 2H), 3.53 (s, 2H), 3.36 (s, 3H), 3.22 (d, J = 11.9 Hz, 2H), 3.14 (s, 2H), 2.79 (dd,
J = 22.3, 11.9 Hz, 2H), 2.00 (s, 3H), 1.80 (d, J = 12.2 Hz, 3H), 1.37 (dd, J = 23.6, 11.7 Hz, 2H).
13C NMR (100 MHz, DMSO-d6) δ 165.1, 145.0, 137.3, 134.5, 128.6, 128.1, 127.9, 125.4, 121.7,
119.6, 115.6, 110.9, 109.1, 66.8, 43.6, 43.3, 34.4, 26.8, 24.9. HRMS (ESI+) calcd for C25H30N4O
[M + H]+, 403.2498; found, 403.2480.
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6-(4-(Morpholinophenyl)-N-(piperidin-4-ylmethyl)-1H-indole-3-carboxamide
hydrochloride (13)

1H NMR (400 MHz, DMSO-d6) δ 11.62 (s, 1H), 8.86 (d, J = 9.9 Hz, 1H), 8.55 (d,
J = 11.1 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 2.8 Hz, 2H), 7.68–7.52 (m, 3H), 7.36
(d, J = 8.4 Hz, 1H), 7.21 (d, J = 7.9 Hz, 2H), 3.99–3.75 (m, 5H), 3.32–3.19 (m, 5H), 3.15 (t,
J = 5.1 Hz, 2H), 2.81 (dd, J = 23.0, 11.1 Hz, 2H), 1.81 (d, J = 11.2 Hz, 3H), 1.48–1.29 (m, 2H).
13C NMR (100 MHz, DMSO-d6) δ 165.1, 137.3, 134.2, 128.7, 127.8, 125.6, 121.8, 119.8, 117.2,
111.0, 110.0, 109.4, 66.0, 50.0, 43.6, 43.3, 34.4, 26.8. MS (ESI): [M + H]+ 419.2.

5-(4-(Piperidin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-1H-indole-3-carboxamide
hydrochloride (23)

1H NMR (400 MHz, DMSO-d6) δ 11.75 (s, 1H), 8.91 (s, 1H), 8.64 (s, 1H), 8.41 (s, 1H),
8.19–8.04 (m, 2H), 7.92 (d, J = 7.5 Hz, 2H), 7.80 (d, J = 8.6 Hz, 2H), 7.48 (dt, J = 8.6, 4.9 Hz,
2H), 3.55 (d, J = 11.6 Hz, 10H), 3.22 (d, J = 11.5 Hz, 2H), 3.16 (t, J = 5.7 Hz, 2H), 2.80 (dd,
J = 22.4, 11.4 Hz, 2H), 1.80 (d, J = 11.8 Hz, 3H), 1.38 (dd, J = 23.4, 11.3 Hz, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 165.0, 136.4, 131.6, 129.2, 128.4, 127.1, 122.4, 121.7, 119.8, 112.9, 111.3,
66.8, 55.4, 43.7, 43.3, 34.4, 26.8, 23.4. MS (ESI): [M + H]+ 417.3.

3.1.3. Synthetic Methods for Compounds 24–28, 37–50, 53, 54, 58–62, and 67–73

General synthetic procedure-A was used for the synthesis of compounds 24–28, 37–50,
53, 54, 58–62 and 67–73, starting from a Br- or I-substituted benzothiophene- or benzofuran-
2-carboxylic acid 83.

6-(4-(Piperidin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (24)

1H NMR (500 MHz, CD3OD) δ 8.23 (s, 1H), 8.05 (s, 1H), 8.02 (d, J = 8.4 Hz, 1H),
7.97–7.93 (m, 2H), 7.84–7.80 (m, 2H), 7.74 (dd, J = 8.4, 1.6 Hz, 1H), 3.72–3.66 (m, 4H),
3.46–3.41 (m, 2H), 3.39–3.36 (m, 2H), 3.05–2.97 (m, 2H), 2.17–2.08 (m, 4H), 2.05–1.98 (m, 3H),
1.88–1.80 (m, 2H), 1.60–1.50 (m, 2H). 13C NMR (126 MHz, CD3OD) δ 164.9, 143.7, 143.2,
143.1, 140.9, 140.5, 138. 7, 130.3, 126.9, 126.3, 125.5, 122.8, 122.0, 58.3, 45.5, 44.9, 35.4, 27.7,
24.8, 22.2. HRMS (ESI+) calcd for C26H31N3O3S [M + H]+, 434.2266; found, 434.2261.

6-(4-(Pyrrolindin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (25)

1H NMR (500 MHz, DMSO-d6) δ 9.06 (br, 1H), 8.98–8.90 (m, 1H), 8.76 (br, 1H),
8.23 (s, 1H), 8.13 (s, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.74–7.65 (m, 3H), 6.89–6.80 (m, 2H),
3.39–3.31 (m, 4H), 3.28–3.21 (m, 2H), 3.19 (t, J = 6.0 Hz, 2H), 2.88–2.78 (m, 2H), 2.06–1.95 (m,
4H), 1.88–1.78 (m, 3H), 1.48–1.35 (m, 2H). 13C NMR (126 MHz, DMSO-d6) δ 161.6, 141.2,
139.3, 138.2, 137.3, 127.6, 125.2, 124.5, 123.2, 118.9, 43.9, 42.6, 33.6, 30.6, 26.2, 24.6. HRMS
(ESI+) calcd for C25H29N3OS [M + H]+, 420.2110; found, 420.2096.

6-(4-(Morpholino)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (26)

1H NMR (400 MHz, DMSO-d6) δ 8.98–8.88 (m, 2H), 8.68–8.55 (m, 1H), 8.26 (s, 1H), 8.12
(s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.75–7.65 (m, 3H), 7.15 (d, J = 8.2 Hz, 2H), 3.83–3.75 (m,
4H), 3.28–3.16 (m, 8H), 2.89–2.75 (m, 2H), 1.88–1.75 (m, 3H), 1.45–1.30 (m, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 161.6, 141.1, 139.7, 137.9, 137.7, 127.6, 125.3, 124.5, 123.5, 119.5, 116.0,
65.7, 48.7, 44.0, 42.8, 33.6, 26.2. MS (ESI): [M + H]+ 436.2.

6-(4-(Diethylamino)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (27)

1H NMR (400 MHz, DMSO-d6) δ 10.60–10.45 (m, 1H), 8.97 (t, J = 5.6 Hz, 1H), 8.87 (br,
1H), 8.58 (br, 1H), 8.39 (s, 1H), 8.16 (s, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.2 Hz, 2H),
7.83–7.71 (m, 3H), 3.29–3.15 (m, 4H), 3.12–2.99 (m, 4H), 2.92–2.76 (m, 2H), 1.92–1.75 (m, 3H),
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1.44–1.34 (m, 2H), 1.26 (t, J = 7.2 Hz, 6H). 13C NMR (100 MHz, DMSO-d6) δ 161.6, 141.1,
140.7, 140.4, 138.7, 137.2, 131.8, 129.7, 127.3, 125.6, 124.4, 124.0, 120.8, 45.7, 44.0, 42.8, 33.7,
26.3, 8.3. MS (ESI): [M + H]+ 422.2.

6-(4-(Piperidin-1-ylmethyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (28)

1H NMR (400 MHz, DMSO-d6) δ 10.69 (br, 1H), 9.05–8.93 (m, 2H), 8.73–8.60 (m, 1H),
8.38 (s, 1H), 8.17 (s, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 8.4 Hz,
1H), 7.72 (d, J = 8.1 Hz, 2H), 4.35–4.23 (m, 2H), 3.32–3.14 (m, 6H), 2.91–2.73 (m, 4H), 1.90–1.62
(m, 8H), 1.45–1.27 (m, 3H). 13C NMR (100 MHz, DMSO-d6) δ 161.6, 141.1, 140.7, 140.5, 138.7,
137.2, 132.1, 129.2, 127.2, 125.6, 124.5, 124.1, 120.8, 58.4, 51.6, 44.0, 42.8, 33.7, 26.3, 22.1, 21.4.
MS (ESI): [M + H]+ 448.2.

6-(4-(Carbamoyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (37)

1H NMR (400 MHz, DMSO-d6) δ 9.05–8.96 (m, 2H), 8.75–8.65 (m, 1H), 8.42 (s, 1H),
8.18 (s, 1H), 8.09–7.95 (m, 4H), 7.86 (d, J = 8.4 Hz, 2H), 7.80 (dd, J = 8.4, 1.4 Hz, 1H), 7.41 (s,
1H), 3.30–3.16 (m, 4H), 2.89–2.75 (m, 2H), 1.95–1.80 (m, 3H), 1.48–1.32 (m, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 167.4, 161.6, 142.2, 141.1, 140.8, 138.8, 137.1, 133.2, 128.2, 126.7, 125.6,
124.5, 124.1, 121.0, 44.0, 42.8, 33.7, 26.3. MS (ESI): [M + H]+ 394.2.

6-(4-(Acetamido)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (38)

1H NMR (400 MHz, DMSO-d6) δ 10.12 (s, 1H), 8.91 (t, J = 5.3 Hz, 1H), 8.86–8.75 (m,
1H), 8.58–8.42 (m, 1H), 8.28 (s, 1H), 8.12 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.70–7.50 (m, 5H),
3.30–3.14 (m, 4H), 2.90–2.74 (m, 2H), 2.07 (s, 3H), 1.89–1.75 (m, 3H), 1.45–1.30 (m, 2H). 13C
NMR (100 MHz, DMSO-d6) δ 168.4, 161.7, 141.1, 140.0, 139.1, 138.0, 134.0, 127.2, 126.3, 125.4,
124.5, 123.7, 119.9, 119.3, 44.0, 42.8, 33.7, 26.3, 24.1. MS (ESI): [M + H]+ 408.2.

6-(4-(Hydroxylmethyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (39)

1H NMR (400 MHz, DMSO-d6) δ 8.95–8.88 (m, 1H), 8.80–8.68 (m, 1H), 8.49–8.37 (m,
1H), 8.32 (s, 1H), 8.12 (s, 1H), 8.03–7.96 (m, 1H), 7.80–7.70 (m, 3H), 7.42 (d, J = 7.6 Hz, 2H),
5.25 (br, 1H), 4.55 (s, 2H), 3.24–3.13 (m, 4H), 2.89–2.75 (m, 3H), 1.89–1.78 (m, 3H), 1.45–1.30
(m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.7, 142.2, 141.1, 140.2, 138.2, 138.1, 138.0, 127.1,
126.7, 125.5, 124.4, 124.0, 120.4, 62.6, 44.0, 42.9, 33.7, 26.3. MS (ESI): [M + H]+ 381.2.

6-(4-(Tert-butyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (40)

1H NMR (400 MHz, DMSO-d6) δ 8.95–8.85 (m, 1H), 8.73 (br, 1H), 8.48 (br, 1H), 8.28 (s,
1H), 8.11 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.75–7.65 (m, 3H), 7.48 (d, J = 8.4 Hz, 2H), 3.27–3.13
(m, 4H), 2.82 (t, J = 12.1 Hz, 2H), 1.89–1.75 (m, 3H), 1.40–1.30 (m, 2H), 1.30 (s, 9H). 13C NMR
(100 MHz, DMSO-d6) δ 161.7, 150.2, 141.1, 140.1, 138.2, 138.1, 136.8, 126.7, 125.8, 125.5, 124.5,
124.0, 120.3, 44.0, 42.8, 34.3, 33.7, 31.1, 26.3. MS (ESI): [M + H]+ 407.2.

6-(4-(Cyanomethyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (41)

1H NMR (400 MHz, DMSO-d6) δ 8.98–8.85 (m, 2H), 8.65–8.55 (m, 1H), 8.35–8.28 (m,
1H), 8.14 (d, J = 4.9 Hz, 1H), 8.03–7.94 (m, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.76–7.68 (m, 2H),
7.46 (d, J = 8.3 Hz, 1H), 7.37 (d, J = 8.3 Hz, 1H), 4.10 (s, 1H), 3.42 (s, 1H), 3.29–3.16 (m, 4H),
2.88–2.75 (m, 2H), 1.88–1.75 (m, 3H), 1.46–1.29 (m, 2H). MS (ESI): [M + H]+ 390.2.
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6-(4-Cyano-3-fluorophenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (42)

1H NMR (400 MHz, DMSO-d6) δ 9.05–8.96 (m, 1H), 8.88–8.80 (m, 1H), 8.60–8.47 (m,
2H), 8.17 (s, 1H), 8.11–7.97 (m, 3H), 7.89–7.84 (m, 2H), 3.28–3.15 (m, 4H), 2.90–2.78 (m,
2H), 1.88–1.76 (m, 3H), 1.45–1.30 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 162.9 (d,
J = 254.7 Hz), 161.4, 147.2 (d, J = 8.5 Hz), 141.8, 140.9, 139.7, 134.7 (d, J = 1.9 Hz), 134.3, 125.8,
124.4, 124.1, 123.8 (d, J = 2.8 Hz), 121.8, 114.6 (d, J = 20.7 Hz), 114.1, 98.7 (d, J = 15.3 Hz),
44.0, 42.8, 33.6, 26.3. MS (ESI): [M + H]+ 394.1.

6-(4-(Methylsulfonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (43)

1H NMR (400 MHz, DMSO-d6) δ 8.96 (t, J = 6.0 Hz, 1H), 8.78–8.70 (m, 1H), 8.50–8.35
(m, 2H), 8.16 (s, 1H), 8.09–7.99 (m, 5H), 7.83 (dd, J = 8.4, 1.7 Hz, 1H), 3.28–3.25 (m, 5H),
3.20 (t, J = 6.1 Hz, 2H), 2.88–2.78 (m, 2H), 1.89–1.80 (m, 3H), 1.42–1.30 (m, 2H). 13C NMR
(150 MHz, DMSO-d6) δ 162.0, 145.1, 141.7, 141.5, 140.2, 139.7, 136.7, 128.4, 128.2, 126.2, 124.9,
124.8, 122.0, 44.5, 44.0, 43.4, 34.1, 26.8. MS (ESI): [M + H]+ 429.1.

6-(4-Trifluoromethoxylphenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (44)

1H NMR (400 MHz, DMSO-d6) δ 9.05–8.95 (m, 2H), 8.75–8.60 (m, 1H), 8.36 (s, 1H),
8.17 (s, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.7 Hz, 2H), 7.75 (d, J = 8.4 Hz, 1H), 7.48
(d, J = 8.4 Hz, 2H), 3.28–3.10 (m, 4H), 2.89–2.76 (m, 2H), 1.89–1.75 (m, 3H), 1.45–1.32 (m,
2H). 13C NMR (100 MHz, DMSO-d6) δ 161.6, 148.0, 141.0, 140.7, 139.0, 138.7, 136.6, 128.9,
125.6, 124.4, 124.1, 121.5, 120.9, 44.0, 42.8, 33.7, 26.3. MS (ESI): [M + H]+ 435.1.

6-(4-Methoxylphenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (45)

1H NMR (400 MHz, DMSO-d6) δ 9.18–9.06 (m, 1H), 9.00 (t, J = 5.3 Hz, 1H), 8.88–8.75 (m,
1H), 8.25 (s, 1H), 8.17 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.74–7.65 (m, 3H), 7.03 (d, J = 8.7 Hz,
2H), 3.79 (s, 3H), 3.27–3.11 (m, 4H), 2.89–2.72 (m, 2H), 1.89–1.75 (m, 3H), 1.51–1.28 (m, 2H).
13C NMR (100 MHz, DMSO-d6) δ 161.7, 159.1, 141.1, 139.9, 137.9, 137.8, 131.9, 128.1, 125.4,
124.6, 123.7, 119.8, 114.5, 55.2, 44.0, 42.7, 33.7, 26.3. MS (ESI): [M + H]+ 381.2.

6-(4-Hydroxylphenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (46)

1H NMR (400 MHz, DMSO-d6) δ 9.61 (s, 1H), 8.92 (t, J = 5.1 Hz, 1H), 8.85–8.78 (m,
1H), 8.58–8.46 (m, 1H), 8.24 (s, 1H), 8.12 (s, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 8.4
Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H), 7.11 (s, 1H), 6.80 (d, J = 8.0 Hz,
1H), 3.27–3.18 (m, 4H), 2.88–2.74 (m, 2H), 1.89–1.78 (m, 3H), 1.45–1.30 (m, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 161.7, 157.9, 141.1, 141.0, 140.3, 138.4, 138.4, 130.0, 125.4, 124.4, 124.1,
120.5, 117.8, 114.7, 113.8, 44.0, 42.8, 33.7, 26.3. MS (ESI): [M + H]+ 367.1.

6-(4-Methylphenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (47)

1H NMR (400 MHz, DMSO-d6) δ 8.99–8.85 (m, 2H), 8.65–8.55 (m, 1H), 8.30 (s, 1H),
8.13 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.72 (dd, J = 8.4, 1.6 Hz, 1H), 7.66 (d, J = 8.1 Hz, 2H),
7.29 (d, J = 8.0 Hz, 2H), 3.29–3.15 (m, 4H), 2.89–2.75 (m, 2H), 2.35 (s, 3H), 1.89–1.75 (m,
3H), 1.45–1.30 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.7, 141.1, 140.1, 138.1, 138.1,
137.1, 136.7, 129.6, 126.8, 125.4, 124.5, 123.9, 120.2, 44.0, 42.8, 33.7, 26.3, 20.7. MS (ESI):
[M + H]+ 365.2.
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6-(4-Chlorophenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (48)

1H NMR (400 MHz, DMSO-d6) δ 8.96–8.90 (m, 1H), 8.82–8.72 (m, 1H), 8.50–8.40 (m,
1H), 8.35 (s, 1H), 8.13 (s, 1H), 8.01 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.76–7.72
(m, 1H), 7.54 (d, J = 8.5 Hz, 2H), 3.28–3.17 (m, 4H), 2.90–2.74 (m, 2H), 1.88–1.78 (m, 3H),
1.46–1.28 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.6, 141.1, 140.6, 138.6, 138.5, 136.8,
132.6, 129.0, 128.8, 125.6, 124.4, 124.0, 120.7, 44.0, 42.9, 33.7, 26.3. MS (ESI): [M + H]+ 385.1.

6-(4-Fluorophenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (49)

1H NMR (400 MHz, DMSO-d6) δ 9.02–8.89 (m, 2H), 8.63 (br, 1H), 8.31 (s, 1H), 8.15
(s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.85–7.76 (m, 2H), 7.72 (d, J = 8.4 Hz, 1H), 7.35–7.28 (m,
2H), 3.26–3.15 (m, 4H), 2.88–2.75 (m, 2H), 1.89–1.75 (m, 3H), 1.45–1.32 (m, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 162.0 (d, J = 244.0 Hz), 161.6, 141.0, 140.4, 138.3, 137.1, 136.1 (d,
J = 3.0 Hz), 129.0 (d, J = 8.2 Hz), 125.5, 124.4, 124.0, 120.6, 115.8 (d, J = 21.4 Hz), 44.0, 42.8,
33.7, 26.3. MS (ESI): [M + H]+ 369.1.

5-(4-(Piperidin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (50)

1H NMR (400 MHz, DMSO-d6) δ 9.15–9.02 (m, 2H), 8.85–8.70 (m, 1H), 8.25–8.19 (m,
2H), 8.10 (d, J = 8.5 Hz, 1H), 7.99–7.85 (m, 3H), 7.79–7.75 (m, 1H), 7.69 (d, J = 9.0 Hz, 1H),
6.89 (d, J = 9.0 Hz, 1H), 3.40–3.34 (m, 2H), 3.33–3.13 (m, 6H), 2.89–2.75 (m, 2H), 2.11–1.63
(m, 9H), 1.49–1.40 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.6, 141.0, 139.9, 139.7,
135.9, 134.5, 128.3, 125.2, 125.0, 123.5, 123.0, 122.8, 116.1, 56.3, 44.1, 42.8, 33.7, 26.3, 23.2, 22.9.
HRMS (ESI+) calcd for C26H31N3O3S [M + H]+, 434.2266; found, 434.2263.

5-(4-Cyanophenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (53)

1H NMR (400 MHz, DMSO-d6) δ 9.05 (t, J = 5.9 Hz, 1H), 8.99–8.90 (m, 1H), 8.70–8.56
(m, 1H), 8.30 (d, J = 1.5 Hz, 1H), 8.20 (s, 1H), 8.14 (d, J = 8.5 Hz, 1H), 8.01–7.92 (m, 4H), 7.83
(dd, J = 8.5, 1.8 Hz, 1H), 3.27–3.16 (m, 4H), 2.89–2.70 (m, 2H), 1.89–1.70 (m, 3H), 1.46–1.28
(m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.5, 144.4, 141.2, 140.5, 139.9, 135.3, 132.9, 127.9,
125.2, 125.0, 123.6, 123.6, 118.9, 110.0, 44.1, 42.8, 33.7, 26.3. MS (ESI): [M + H]+ 376.1.

5-(4-(Tert-butyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (54)

1H NMR (400 MHz, DMSO-d6) δ 8.97 (t, J = 5.9 Hz, 1H), 8.90–8.80 (m, 1H), 8.60–8.50
(m, 1H), 8.18–8.11 (m, 2H), 8.07 (d, J = 8.5 Hz, 1H), 7.73 (dd, J = 8.5, 1.6 Hz, 1H), 7.66 (d,
J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 3.28–3.14 (m, 4H), 2.89–2.75 (m, 2H), 1.91–1.75 (m,
3H), 1.45–1.34 (m, 2H), 1.32 (s, 9H). 13C NMR (100 MHz, DMSO-d6) δ 161.6, 150.0, 140.7,
139.9, 139.1, 137.2, 137.1, 126.7, 125.8, 125.2, 125.0, 123.3, 122.6, 44.0, 42.8, 34.3, 33.7, 31.1,
26.3. MS (ESI): [M + H]+ 407.2.

6-(4-Morpholinophenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide
hydrochloride (58)

1H NMR (400 MHz, DMSO-d6) δ 9.05–8.95 (m, 1H), 8.87 (t, J = 5.8 Hz, 1H), 8.69–8.60
(m, 1H), 7.85–7.73 (m, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.2 Hz, 1H), 7.56 (s, 1H),
7.19–7.01 (m, 2H), 3.85–3.70 (m, 4H), 3.29–3.15 (m, 8H), 2.89–2.72 (m, 2H), 1.89–1.75 (m, 3H),
1.45–1.30 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 158.3, 155.1, 149.3, 139.1, 127.7, 125.7,
122.9, 122.4, 115.9, 109.4, 108.5, 65.8, 48.6, 43.4, 42.8, 33.6, 26.2. MS (ESI): [M + H]+ 420.2.

6-(4-(Piperazin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide
hydrochloride (59)

1H NMR (400 MHz, DMSO-d6) δ 9.35–9.25 (m, 2H), 8.99–8.90 (m, 1H), 8.88–8.80 (m,
1H), 8.70–8.58 (m, 1H), 7.85–7.74 (m, 2H), 7.70–7.54 (m, 4H), 7.10 (d, J = 8.4 Hz, 2H), 3.44 (d,
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J = 3.6 Hz, 4H), 3.22 (t, J = 11.0 Hz, 8H), 2.81 (dd, J = 17.8, 6.6 Hz, 2H), 1.83 (dd, J = 18.5, 8.7
Hz, 3H), 1.38 (dd, J = 20.2, 8.6 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ 158.3, 155.1, 149.5,
149.3, 139.0, 131.0, 127.7, 125.7, 122.9, 122.4, 116.2, 109.3, 108.6, 45.1, 43.4, 42.7, 42.4, 33.6,
26.2. MS (ESI): [M + H]+ 419.2.

6-(4-(4-Methylpiperazin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-
carboxamide hydrochloride (60)

1H NMR (400 MHz, DMSO-d6) δ 10.89 (br, 1H), 8.95–8.80 (m, 2H), 8.65–8.50 (m, 1H),
7.86–7.72 (m, 2H), 7.68–7.54 (m, 4H), 7.11 (d, J = 8.4 Hz, 2H), 3.95–3.85 (m, 2H), 3.52–3.45 (m,
2H), 3.27–3.09 (m, 8H), 2.86–2.75 (m, 5H), 1.90–1.75 (m, 3H), 1.42–1.30 (m, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 158.3, 155.1, 149.3, 149.1, 139.0, 131.0, 127.7, 125.7, 122.9, 122.4, 116.2,
109.3, 108.6, 51.9, 45.2, 43.4, 42.8, 41.9, 33.6, 26.2. MS (ESI): [M + H]+ 433.3.

6-(4-Cyclohexylphenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide
hydrochloride (61)

1H NMR (400 MHz, DMSO-d6) δ 8.87 (t, J = 5.7 Hz, 1H), 8.78 (br, 1H), 8.47 (br, 1H),
7.90–7.76 (m, 2H), 7.68–7.60 (m, 3H), 7.56 (s, 1H), 7.33 (d, J = 8.0 Hz, 2H), 3.29–3.15 (m, 4H),
2.89–2.76 (m, 2H), 2.58–2.50 (m, 1H), 1.89–1.73 (m, 7H), 1.72–1.67 (m, 1H), 1.48–1.18 (m, 7H).
13C NMR (100 MHz, DMSO-d6) δ 158.3, 155.0, 149.5, 147.2, 139.4, 137.5, 127.4, 127.1, 126.2,
123.0, 122.9, 109.4, 109.3, 43.5, 42.9, 33.9, 33.7, 26.4, 26.3, 25.6. MS (ESI): [M + H]+ 417.2.

6-(4-(Diethylamino)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide
hydrochloride (62)

1H NMR (400 MHz, DMSO-d6) δ 10.41 (br, 1H), 8.90 (t, J = 5.9 Hz, 1H), 8.88–8.75 (m,
1H), 8.55–8.40 (m, 1H), 7.95 (s, 1H), 7.90–7.79 (m, 3H), 7.74–7.65 (m, 3H), 7.60 (s, 1H), 4.33
(d, J = 5.3 Hz, 2H), 3.27–3.16 (m, 6H), 2.85–2.75 (m, 2H), 1.89–1.75 (m, 3H), 1.45–1.35 (m,
2H), 1.29–1.20 (m, 6H). 13C NMR (100 MHz, DMSO-d6) δ 158.6, 155.4, 150.2, 141.0, 138.7,
132.2, 130.1, 127.8, 127.3, 123.6, 123.4, 110.1, 109.7, 46.1, 43.9, 43.2, 40.6, 40.4, 40.1, 34.1, 26.7,
8.7. MS (ESI): [M + H]+ 406.2.

6-((1,1′-Biphenyl)-4-yl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide
hydrochloride (67)

1H NMR (400 MHz, DMSO-d6) δ 8.90 (t, J = 5.9 Hz, 1H), 8.85–8.75 (m, 1H), 8.55–8.45
(m, 1H), 7.95 (s, 1H), 7.88–7.84 (m, 3H), 7.82–7.75 (m, 2H), 7.74–7.68 (m, 2H), 7.60 (s, 1H),
7.53–7.46 (m, 2H), 7.40–7.35 (m, 1H), 3.28–3.13 (m, 4H), 2.89–2.75 (m, 2H), 1.91–1.70 (m, 3H),
1.44–1.27 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 158.3, 155.0, 149.7, 139.5, 139.4, 138.8,
138.7, 129.1, 127.7, 127.3, 126.6, 126.6, 123.1, 122.9, 109.5, 109.4, 43.5, 42.8, 33.6, 26.3. MS
(ESI): [M + H]+ 411.2.

6-((1,1′-Biphenyl)-3-yl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide
hydrochloride (68)

1H NMR (400 MHz, DMSO-d6) δ 8.95–8.78 (m, 2H), 8.59–8.48 (m, 1H), 8.05–7.95 (m,
2H), 7.86 (d, J = 8.2 Hz, 1H), 7.79–7.71 (m, 4H), 7.69–7.65 (m, 1H), 7.62–7.55 (m, 2H),
7.55–7.45 (m, 2H), 7.43–7.35 (m, 1H), 3.29–3.13 (m, 4H), 2.88–2.75 (m, 2H), 1.89–1.75 (m, 3H),
1.45–1.30 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 158.3, 155.0, 149.7, 141.1, 140.6, 140.1,
139.3, 129.7, 129.0, 127.7, 127.0, 126.6, 126.3, 126.2, 125.6, 123.3, 123.1, 110.0, 109.4, 43.5, 42.8,
33.7, 26.3. MS (ESI): [M + H]+ 411.2.

6-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-N-(piperidin-4-ylmethyl)-benzofuran-2-
carboxamide hydrochloride (69)

1H NMR (400 MHz, DMSO-d6) δ 8.92–8.80 (m 2H), 8.60–8.50 (m, 1H), 7.82–7.76 (m,
2H), 7.60–7.55 (m, 2H), 7.35 (s, 1H), 7.25–7.16 (m, 3H), 7.09 (s, 1H), 6.95 (d, J = 8.3 Hz, 1H),
4.28 (s, 4H), 3.28–3.13 (m, 4H), 2.88–2.75 (m, 2H), 1.91–1.65 (m, 3H), 1.46–1.28 (m, 2H). 13C
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NMR (100 MHz, DMSO-d6) δ 158.7, 144.1, 143.8, 139.3, 139.2, 133.5, 126.4, 123.3, 123.1, 120.4,
118.0, 117.5, 115.9, 109.8, 109.4, 64.6, 64.5, 43.9, 43.2, 34.1, 26.7. MS (ESI): [M + H]+ 393.2.

6-(4-(Methylsulfonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide
hydrochloride (70)

1H NMR (400 MHz, DMSO-d6) δ 8.92 (t, J = 6.1 Hz, 1H), 8.81–8.73 (m, 1H), 8.50–8.39 (m,
1H), 8.06–7.98 (m, 5H), 7.90 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.62 (s, 1H), 3.29–3.19
(m, 7H), 2.89–2.75 (m, 2H), 1.93–1.74 (m, 3H), 1.45–1.27 (m, 2H). 13C NMR (100 MHz,
DMSO-d6) δ 158.2, 154.8, 150.2, 144.8, 139.8, 137.3, 128.0, 127.7, 127.5, 123.4, 123.3, 110.4,
109.3, 43.6, 43.5, 42.8, 33.6, 26.3. MS (ESI): [M + H]+ 413.1.

6-(4-(Benzyloxycarbonylaminomethyl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-
carboxamide hydrochloride (71)

1H NMR (400 MHz, DMSO-d6) δ 9.06–8.95 (m, 1H), 8.94–8.90 (m, 1H), 8.78–8.62 (m,
1H), 7.95–7.79 (m, 3H), 7.69 (d, J = 8.0 Hz, 2H), 7.65–7.57 (m, 2H), 7.43–7.25 (m, 7H), 5.05
(s, 2H), 4.25 (d, J = 6.0 Hz, 2H), 3.72–3.62 (m, 1H), 3.50–3.40 (m, 1H), 3.28–3.18 (m, 4H),
2.88–2.72 (m, 2H), 1.88–1.72 (m, 3H), 1.45–1.30 (m, 2H). 13C NMR (100 MHz, DMSO-d6)
δ 158.2, 156.4, 155.0, 149.6, 139.3, 139.1, 138.4, 137.1, 128.4, 127.8, 127.7, 127.7, 127.0, 126.4,
123.0, 122.9, 109.4, 109.3, 65.4, 43.5, 43.5, 42.7, 33.6, 26.2. MS (ESI): [M + H]+ 498.2.

6-(4-(Aminomethyl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide
hydrochloride (72)

1H NMR (400 MHz, DMSO-d6) δ 9.05–8.95 (m, 1H), 8.92 (t, J = 5.9 Hz, 1H), 8.75–8.65
(m, 1H), 8.50 (br, 3H), 7.91 (s, 1H), 7.88–7.75 (m, 3H), 7.69–7.65 (m, 1H), 7.64–7.58 (m, 3H),
4.11–4.02 (m, 2H), 3.29–3.15 (m, 4H), 2.89–2.73 (m, 2H), 1.89–1.70 (m, 3H), 1.43–1.30 (m, 2H).
13C NMR (100 MHz, DMSO-d6) δ 158.3, 155.0, 149.8, 139.9, 138.6, 133.6, 129.7, 127.2, 126.7,
123.2, 123.0, 109.7, 109.3, 43.5, 42.8, 41.9, 33.7, 26.6. MS (ESI): [M + H]+ 364.2.

6-(4-Cyanophenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide hydrochloride
(73)

1H NMR (400 MHz, DMSO-d6) δ 8.92 (t, J = 5.7 Hz, 1H), 8.81–8.70 (m, 1H), 8.52–8.37
(m, 1H), 8.01 (s, 1H), 7.99–7.92 (m, 3H), 7.89 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.61
(s, 1H), 3.28–3.10 (m, 4H), 2.88–2.75 (m, 2H), 1.89–1.75 (m, 3H), 1.42–1.30 (m, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 158.2, 154.9, 150.2, 144.3, 137.2, 133.0, 128.0, 127.6, 123.4, 123.2, 118.9,
110.3, 110.2, 109.3, 43.5, 42.9, 33.6, 26.3. MS (ESI): [M + H]+ 360.2.

3.1.4. Synthetic Methods for Compounds 29, 30, 33, 34, 51–52, and 63–66

An amidation and a Suzuki coupling reaction, as described in the General synthetic
procedure-A, were used for synthesis of benzothiophene- or benzofuran-2-carboxamide 85.
Compounds 29, 30, 33, 34, 51–52, and 63–66 were prepared using an additional amidation
reaction followed by BOC deprotection, following the General synthetic procedure-A, as a
hydrochloric salt.

6-(4-(Piperidine-1-carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (29)

1H NMR (400 MHz, DMSO-d6) δ 9.05–8.90 (m, 2H), 8.71–8.59 (m, 1H), 8.38 (s, 1H), 8.16
(s, 1H), 8.02 (d, J = 8.3 Hz, 1H), 7.83 (d, J = 6.7 Hz, 2H), 7.78 (d, J = 8.4 Hz, 1H), 7.47 (d,
J = 6.7 Hz, 2H), 3.65–3.58 (m, 2H), 3.36–3.18 (m, 6H), 2.85–2.75 (m, 2H), 1.89–1.75 (m, 3H),
1.63–1.36 (m, 8H). 13C NMR (100 MHz, DMSO-d6) δ 168.6, 161.6, 141.1, 140.6, 140.4, 138.7,
137.3, 135.6, 127.4, 127.0, 125.6, 124.5, 124.1, 120.8, 48.8, 44.0, 42.8, 33.7, 26.3, 24.7, 24.1. MS
(ESI): [M + H]+ 462.2.
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6-(4-(Pyrroline-1-carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (30)

1H NMR (400 MHz, DMSO-d6) δ 8.97 (t, J = 5.8 Hz, 1H), 8.94–8.84 (m, 1H), 8.65–8.55 (m,
1H), 8.39 (s, 1H), 8.16 (s, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.88–7.75 (m, 3H), 7.63 (d, J = 8.1 Hz,
2H), 3.50–3.41 (m, 4H), 3.28–3.18 (m, 4H), 2.85–2.78 (m, 2H), 1.93–1.77 (m, 7H), 1.45–1.30 (m,
2H). 13C NMR (100 MHz, DMSO-d6) δ 168.3, 162.0, 141.5, 141.2, 141.1, 139.1, 137.7, 136.7,
128.3, 127.2, 126.0, 124.9, 124.5, 121.3, 49.4, 46.4, 44.5, 43.3, 34.1, 26.7, 25.0, 24.4. MS (ESI): [M
+ H]+ 448.2.

6-(4-(4-(Piperidin-1-yl)piperidin-1-carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-
benzo[b]thiophene-2-carboxamide hydrochloride (33)

1H NMR (400 MHz, DMSO-d6) δ 10.68–10.55 (m, 1H), 9.05–8.95 (m, 2H), 8.78–8.65
(m, 1H), 8.39 (s, 1H), 8.18 (s, 1H), 8.02 (d, J = 8.3 Hz, 1H), 7.84 (d, J = 7.8 Hz, 2H), 7.78
(d, J = 8.3 Hz, 1H), 7.52 (d, J = 7.8 Hz, 2H), 3.69–3.33 (m, 6H), 3.30–3.16 (m, 4H), 2.96–2.75
(m, 5H), 2.24–2.03 (m, 2H), 1.93–1.66 (m, 10H), 1.45–1.32 (m, 3H). 13C NMR (100 MHz,
DMSO-d6) δ 168.6, 161.6, 141.1, 140.8, 140.7, 138.7, 137.2, 134.9, 127.6, 127.0, 125.6, 124.5,
124.1, 120.9, 70.5, 62.3, 60.2, 48.9, 44.0, 42.8, 33.7, 26.3, 22.5, 21.6. MS (ESI): [M + H]+ 545.3.

6-(4-(4-(Pyrrolidin-1-yl)piperidin-1-carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-
benzo[b]thiophene-2-carboxamide hydrochloride (34)

1H NMR (400 MHz, DMSO-d6) δ 11.21 (br, 1H), 9.05–8.95 (m, 2H), 8.76–8.56 (m, 1H),
8.39 (s, 1H), 8.17 (s, 1H), 8.02 (d, J = 8.3 Hz, 1H), 7.85 (d, J = 7.9 Hz, 2H), 7.78 (d, J = 8.3 Hz,
1H), 7.50 (d, J = 7.8 Hz, 2H), 3.75–3.65 (m, 2H), 3.52–3.32 (m, 4H), 3.28–3.16 (m, 4H), 3.09–2.98
(m, 2H), 2.88–2.75 (m, 3H), 2.15–1.66 (m, 11H), 1.48–1.34 (m, 2H). 13C NMR (100 MHz,
DMSO-d6) δ 168.7, 161.6, 141.1, 140.8, 140.7, 138.7, 137.2, 134.9, 127.6, 127.1, 125.6, 124.5,
124.1, 120.9, 60.5, 50.3, 44.0, 42.8, 33.7, 26.3, 22.7. MS (ESI): [M + H]+ 531.3.

5-(4-(Piperidine-1-carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (51)

1H NMR (400 MHz, DMSO-d6) δ 8.99 (t, J = 5.8 Hz, 1H), 8.85–8.75 (m, 1H), 8.52–8.40 (m,
1H), 8.24 (s, 1H), 8.16 (s, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.85–7.75 (m, 3H), 7.48 (d, J = 8.2 Hz,
2H), 3.66–3.47 (m, 2H), 3.31–3.13 (m, 6H), 2.88–2.75 (m, 2H), 1.90–1.76 (m, 3H), 1.68–1.34 (m,
8H). 13C NMR (100 MHz, DMSO-d6) δ 168.6, 161.6, 140.9, 140.7, 139.9, 139.6, 136.5, 135.5,
127.4, 127.0, 125.2, 124.9, 123.4, 123.0, 44.0, 42.9, 33.7, 26.3, 24.1. MS (ESI): [M + H]+ 462.2.

5-(4-(Pyrroline-1-carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (52)

1H NMR (400 MHz, DMSO-d6) δ 9.05–8.95 (m, 1H), 8.87–8.75 (m, 1H), 8.56–8.45 (m,
1H), 8.24 (s, 1H), 8.17 (s, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.85–7.75 (m, 3H), 7.63 (d, J = 8.1 Hz,
2H), 3.54–3.42 (m, 4H), 3.28–3.16 (m, 4H), 2.90–2.78 (m, 2H), 1.91–1.77 (m, 7H), 1.49–1.30 (m,
2H). 13C NMR (100 MHz, DMSO-d6) δ 167.9, 161.6, 141.0, 140.9, 139.9, 139.7, 136.4, 136.1,
127.8, 126.7, 125.2, 124.9, 123.4, 123.0, 48.9, 46.0, 44.0, 42.8, 33.7, 26.3, 26.0, 23.9. MS (ESI):
[M + H]+ 448.2.

6-(4-((Pyrrolidine-1-yl)carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-
carboxamide hydrochloride (63)

1H NMR (400 MHz, DMSO-d6) δ 9.18–9.10 (m, 1H), 8.95 (t, J = 5.6 Hz, 1H), 8.89–8.80
(m, 1H), 7.94 (s, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 8.3 Hz, 1H),
7.66–7.55 (m, 3H), 3.51–3.34 (m, 4H), 3.28–3.15 (m, 4H), 2.84–2.74 (m, 2H), 1.94–1.70 (m, 7H),
1.46–1.32 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 167.9, 158.2, 154.9, 149.8, 141.0, 138.4,
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136.3, 127.9, 126.9, 123.2, 123.0, 109.8, 109.3, 46.0, 43.5, 42.7, 33.7, 26.2, 26.0, 23.9. MS (ESI):
[M + H]+ 432.2.

6-(4-((Piperidine-1-yl)carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-
carboxamide hydrochloride (64)

1H NMR (400 MHz, DMSO-d6) δ 8.98–8.88 (m, 2H), 8.68–8.55 (m, 1H), 7.93 (s, 1H),
7.86–7.78 (m, 3H), 7.74–7.57 (m, 2H), 7.47 (d, J = 7.9 Hz, 2H), 3.35–3.14 (m, 8H), 2.84–2.74 (m,
2H), 1.89–1.75 (m, 3H), 1.65–1.53 (m, 6H), 1.45–1.32 (m, 2H). 13C NMR (100 MHz, DMSO-d6)
δ 168.6, 158.2, 154.9, 149.8, 140.6, 138.4, 135.7, 127.5, 127.1, 126.8, 123.2, 123.0, 109.7, 109.3,
43.5, 42.8, 33.6, 26.2, 24.7, 24.1, 23.2. MS (ESI): [M + H]+ 446.2.

6-(4-((Azepane-1-yl)carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-
carboxamide hydrochloride (65)

1H NMR (400 MHz, DMSO-d6) δ 8.98–8.90 (m, 2H), 8.68–8.55 (m, 1H), 7.93 (s, 1H),
7.85 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.71–7.53 (m, 2H), 7.46 (d, J = 8.0 Hz, 2H),
3.36–3.17 (m, 8H), 2.85–2.75 (m, 2H), 1.89–1.70 (m, 5H), 1.66–1.50 (m, 6H), 1.42–1.30 (m, 2H).
13C NMR (100 MHz, DMSO-d6) δ 169.9, 158.2, 154.9, 149.8, 140.2, 138.4, 136.6, 127.1, 127.0,
126.8, 123.1, 123.0, 109.7, 109.3, 51.0, 45.4, 43.5, 42.8, 33.6, 27.2, 26.8, 26.2, 26.0, 25.8. MS (ESI):
[M + H]+ 460.3.

6-(4-((1,4′-Bipiperidine-1-yl)carbonyl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-
carboxamide hydrochloride (66)

1H NMR (400 MHz, DMSO-d6) δ 10.49–10.40 (m, 1H), 8.98–8.85 (m, 2H), 8.64–8.50 (m,
1H), 7.95 (s, 1H), 7.88–7.82 (m, 3H), 7.69 (d, J = 8.3 Hz, 1H), 7.61 (s, 1H), 7.53 (d, J = 7.9 Hz,
2H), 3.40–3.19 (m, 9H), 2.99–2.71 (m, 6H), 2.20–2.20 (m, 2H), 1.87–1.65 (m, 10H), 1.45–1.30
(m, 3H). 13C NMR (100 MHz, DMSO-d6) δ 168.6, 158.2, 154.9, 149.8, 141.0, 138.3, 134.9, 127.6,
127.1, 126.9, 123.2, 123.0, 109.8, 109.3, 70.5, 62.3, 60.2, 49.0, 43.5, 42.8, 33.6, 26.2, 22.5, 21.6.
MS (ESI): [M + H]+ 529.3.

Compounds 31, 32, 35, 36, 55, 56 and 74–77 were synthesized using the general
synthetic procedure-A, starting from benzothiophene- or benzofuran-2-carboxamide 84, as
a hydrochloric salt.

6-((4-(Piperidin-1-yl)piperidin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-
2-carboxamide hydrochloride (31)

1H NMR (400 MHz, DMSO-d6) δ 10.37 (br, 1H), 8.96–8.85 (m, 1H), 8.76 (t, J = 6.0 Hz,
1H), 8.66–8.49 (m, 1H), 7.97 (s, 1H), 7.75 (d, J = 8.9 Hz, 1H), 7.53 (s, 1H), 7.23 (d, J = 8.7 Hz,
1H), 3.99–3.92 (m, 2H), 3.45–3.36 (m, 2H), 3.28–3.20 (m, 2H), 3.15 (t, J = 5.6 Hz, 2H), 2.95–2.80
(m, 6H), 2.24–2.15 (m, 2H), 1.89–1.75 (m, 10H), 1.73–1.65 (m, 1H), 1.45–1.32 (m, 3H). 13C
NMR (100 MHz, DMSO-d6) δ 161.9, 148.3, 142.3, 139.0, 135.2, 125.5, 124.5, 119.4, 116.2, 62.2,
50.6, 48.9, 43.9, 42.7, 33.7, 26.3, 25.2, 22.5, 21.6. MS (ESI): [M + H]+ 441.3.

6-((4-(Pyrrolidin-1-yl)piperidin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-
benzo[b]thiophene-2-carboxamide hydrochloride (32)

1H NMR (400 MHz, DMSO-d6) δ 10.87 (br, 1H), 8.88–8.80 (m, 1H), 8.75 (t, J = 5.8 Hz,
1H), 8.60–8.50 (m, 1H), 7.96 (s, 1H), 7.74 (d, J = 9.0 Hz, 1H), 7.53 (s, 1H), 7.23 (d, J = 8.6 Hz,
1H), 3.99–3.90 (m, 2H), 3.54–3.44 (m, 2H), 3.33–3.20 (m, 3H), 3.15 (t, J = 5.8 Hz, 2H), 3.10–3.00
(m, 2H), 2.89–2.75 (m, 4H), 2.18–2.10 (m, 2H), 1.99–1.76 (m, 9H), 1.50–1.25 (m, 2H). MS (ESI):
[M + H]+ 427.2.
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6-((4-(Piperidin-1-yl)phenyl)amino)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (35)

1H NMR (400 MHz, DMSO-d6) δ 12.58 (br, 1H), 9.13–8.87 (m, 2H), 8.84–8.57 (m, 2H),
8.02 (s, 1H), 7.85–7.72 (m, 3H), 7.67 (s, 1H), 7.25 (d, J = 8.9 Hz, 2H), 7.18 (dd, J = 8.7, 1.9 Hz,
1H), 3.52–3.32 (m, 4H), 3.26–3.20 (m, 4H), 2.88–2.74 (m, 2H), 2.23–2.05 (m, 2H), 1.92–1.53 (m,
7H), 1.45–1.28 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.9, 143.9, 142.1, 141.3, 136.7,
135.0, 133.1, 125.8, 124.6, 122.6, 117.3, 117.0, 109.6, 108.4, 56.1, 43.9, 42.7, 33.7, 26.3, 22.9, 20.8.
MS (ESI): [M + H]+ 449.2.

6-(4-(4-Chlorophenoxyl)phenoxyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (36)

1H NMR (400 MHz, DMSO-d6) δ 8.92–8.80 (m, 2H), 8.61–8.45 (m, 1H), 8.08 (s, 1H), 7.93
(d, J = 8.7 Hz, 1H), 7.61 (s, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.17–7.01 (m, 7H), 3.27–3.14 (m, 4H),
2.88–2.75 (m, 2H), 1.89–1.75 (m, 3H), 1.39–1.30 (m, 2H). 13C NMR (100 MHz, DMSO-d6)
δ 161.6, 156.2, 156.0, 152.3, 152.0, 141.8, 139.1, 135.1, 129.9, 127.0, 126.5, 124.3, 120.8, 119.7,
117.2, 111.0, 44.0, 42.8, 33.7, 26.3. MS (ESI): [M + H]+ 493.1.

5-(4-(Tert-butyl)phenyl)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-carboxamide
hydrochloride (55)

1H NMR (400 MHz, DMSO-d6) δ 9.03–8.92 (m, 1H), 8.83 (t, J = 5.8 Hz, 1H), 8.69–8.60
(m, 1H), 7.96 (s, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.49 (d, J = 2.0 Hz, 1H), 7.26 (d, J = 8.6 Hz, 2H),
7.17 (dd, J = 8.8, 2.1 Hz, 1H), 7.05 (d, J = 8.6 Hz, 2H), 3.31–3.10 (m, 4H), 2.88–2.75 (m, 2H),
1.89–1.75 (m, 3H), 1.45–1.35 (m, 2H), 1.25 (s, 9H). 13C NMR (100 MHz, DMSO-d6) δ 161.8,
142.3, 141.7, 140.8, 140.3, 140.3, 131.4, 125.8, 124.5, 123.3, 118.4, 116.9, 109.6, 44.0, 42.8, 33.8,
33.7, 31.3, 26.3. MS (ESI): [M + H]+ 422.2.

5-((4-(Trifluoromethoxyl)phenyl)amino)-N-(piperidin-4-ylmethyl)-benzo[b]thiophene-2-
carboxamide hydrochloride (56)

1H NMR (400 MHz, DMSO-d6) δ 8.86–8.75 (m, 2H), 8.58–8.43 (m, 2H), 7.98 (s, 1H),
7.86 (d, J = 8.7 Hz, 1H), 7.59 (s, 1H), 7.25–7.10 (m, 5H), 3.27–3.13 (m, 4H), 2.88–2.78 (m, 2H),
1.88–1.76 (m, 3H), 1.45–1.30 (m, 2H). MS (ESI): [M + H]+ 450.1.

6-((4-(Piperidin-1-yl)phenyl)amino)-N-(piperidin-4-ylmethyl)-benzofuran-2-
carboxamide hydrochloride (74)

1H NMR (400 MHz, DMSO-d6) δ 12.39 (br, 1H), 9.01–8.83 (m, 2H), 8.72–8.48 (m, 2H),
7.79–7.68 (m, 2H), 7.59 (d, J = 8.5 Hz, 1H), 7.43 (s, 1H), 7.33–7.16 (m, 3H), 7.08 (d, J = 8.5 Hz,
1H), 3.40–3.06 (m, 8H), 2.86–2.72 (m, 2H), 2.19–2.05 (m, 2H), 1.87–1.56 (m, 7H), 1.39–1.25 (m,
2H). 13C NMR (100 MHz, DMSO-d6) δ 158.5, 156.1, 147.3, 146.9, 145.7, 133.9, 122.9, 120.9,
118.1, 117.3, 113.5, 109.9, 94.7, 50.5, 45.4, 42.8, 33.7, 26.2, 25.5, 23.9. MS (ESI): [M + H]+ 433.3.

6-((4-Trifuluoromethoxyl)phenyl)amino)-N-(piperidin-4-ylmethyl)-benzofuran-2-car
boxamide hydrochloride (75)

1H NMR (400 MHz, DMSO-d6) δ 8.86–8.78 (m, 1H), 8.76 (s, 1H), 8.67 (t, J = 5.8 Hz, 1H),
8.57–8.43 (m, 1H), 7.59 (d, J = 8.6 Hz, 1H), 7.42 (s, 1H), 7.28–7.15 (m, 4H), 7.06 (d, J = 8.5 Hz,
1H), 3.27–3.10 (m, 4H), 2.86–2.75 (m, 2H), 1.88–1.73 (m, 3H), 1.41–1.26 (m, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 158.4, 155.6, 147.8, 142.8, 142.3, 123.2, 122.3, 120.1, 117.9, 115.3, 109.7,
98.0, 43.3, 42.8, 33.7, 26.2. MS (ESI): [M + H]+ 434.2.

6-(4-Methoxylphenoxyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-carboxamide
hydrochloride (76)

1H NMR (400 MHz, DMSO-d6) δ 9.08–8.95 (m, 1H), 8.81–8.63 (m, 2H), 7.70 (d, J = 8.5 Hz,
1H), 7.52 (s, 1H), 7.10 (s, 1H), 7.08–6.92 (m, 5H), 3.75 (s, 3H), 3.27–3.07 (m, 4H), 2.88–2.72 (m,
2H), 1.88–1.72 (m, 3H), 1.46–1.28 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 158.1, 157.7,
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155.8, 154.9, 149.3, 149.2, 123.5, 122.2, 120.8, 115.2, 114.7, 109.4, 100.4, 55.5, 43.3, 42.7, 33.6,
26.2. MS (ESI): [M + H]+ 381.2.

6-(4-(4-Cholorophenoxyl)phenoxyl)-N-(piperidin-4-ylmethyl)-benzofuran-2-
carboxamide hydrochloride (77)

1H NMR (400 MHz, DMSO-d6) δ 8.94–8.77 (m, 2H), 8.62–8.42 (m, 1H), 7.75 (d, J = 8.5 Hz,
1H), 7.53 (s, 1H), 7.42 (d, J = 8.5 Hz, 2H), 7.25 (s, 1H), 7.15–6.98 (m, 7H), 3.28–3.15 (m, 4H),
2.88–2.75 (m, 2H), 1.89–1.72 (m, 3H), 1.40–1.30 (m, 2H). 13C NMR (100 MHz, DMSO-d6)
δ 158.1, 156.6, 156.2, 154.8, 152.5, 151.9, 149.4, 129.8, 126.9, 123.7, 122.8, 120.8, 120.6, 119.7,
115.5, 109.4, 101.5, 43.3, 42.8, 33.6, 26.2. MS (ESI): [M + H]+ 477.2.

6-(4-(Piperidin-1-yl)phenyl)-N-(piperidin-4-ylmethyl)-benzofuran-3-carboxamide
hydrochloride (57)

It was synthesized using the general synthetic procedure-A, starting from 6-bromo-
benzofuran-3-carboxylic acid 86, as a hydrochloric salt. 1H NMR (400 MHz, DMSO-d6) δ
9.01–8.89 (m, 1H), 8.75–8.60 (m, 4H), 8.13 (d, J = 8.2 Hz, 1H), 8.03–7.89 (m, 4H), 7.71 (d,
J = 8.3 Hz, 1H), 3.55–3.50 (m, 2H), 3.34–3.07 (m, 6H), 2.85–2.75 (m, 2H), 2.10–1.58 (m, 8H),
1.47–1.28 (m, 3H). 13C NMR (100 MHz, DMSO-d6) δ 162.0, 155.4, 148.3, 148.1, 135.9, 128.3,
127.0, 123.4, 122.9, 122.3, 116.9, 114.9, 109.8, 66.4, 43.4, 42.8, 33.8, 26.3, 25.0, 23.1. MS (ESI):
[M + H]+ 418.2.

3.2. Plasmids and Peptides

The cDNA for the human AF9 AHD domain (475–568) and ENL AHD domain
(489–559) was synthesized (by Genscript, Piscataway, NJ, USA) and inserted into the pMAL
c5X expression plasmid. The DOT1L peptide (Biotin-AHX-NKLPVSIPLASVVLPSRAERARST)
and AF4 peptide (Biotin-AHX-QSLMVKITLDLLSRIPQPPGK) for the Alpha assay were
purchased from Genscript.

3.3. Protein Expression and Purification

The AF9 or ENL expression plasmid was used to transform E. coli BL21(DE3) strain
(Novagen, Madison, WI, USA), and protein expression was induced by adding 0.4 mM
isopropyl β-D-1-thiogalactopyranoside (IPTG) at 16 ◦C overnight. The cells were collected
and lysed using a French press (GlenMills, Clifton, NJ, USA) in a lysis buffer (50 mM
HEPES, 200 mM NaCl, 1 mM DTT, pH 7.4). Upon centrifugation, the supernatant was
applied to an amylose resin column (GE Healthcare) and the recombinant protein with a
N-terminal maltose-binding protein (MBP) tag was eluted with 20 mM HEPES, 10 mM
Maltose, pH 7.4, which was further purified to be > 95% (SDS-PAGE) using a size exclusion
column (HiLoad 16/60 Superdex 200, GE Healthcare, Chicago, IL, USA).

3.4. AlphaLisa Assays

Alpha assays were developed in our previous publication [26], using a Perkin-Elmer
AlphaLisa anti-MBP kit, which contains streptavidin donor beads and anti-MBP acceptor
beads. Briefly, the assay was performed using a MBP-protein (5 nM), a biotinylated peptide
(40 nM), and increasing concentrations of a compound in 25 µL buffer (PBS with 0.5% BSA,
pH 7.5) in 384-well plates according to the manufacturer’s protocol and measured with a
Tecan SPARK microplate reader. Data were imported into Prism (version 5.0), and IC50
values from 3 independent experiments with standard deviation were obtained by using a
standard dose-response curve fitting.

3.5. Pull-Down Assay

The pull-down assays were conducted following our previous method [26]. Briefly,
the biotinylated DOT1L peptide (0.25 mg/mL) was incubated with streptavidin agarose
beads (20 µL) in PBS containing 0.1% Triton X-100 (400 µL) for 3h to yield, after washing,
DOT1L-coated beads. MBP-tagged AF9 AHD (0.2 µM, 400 µL) was pre-incubated with a
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compound for 1 h before adding to the beads. After 6 h incubation at 4 ◦C, the beads were
collected, thoroughly washed, and subjected to SDS-PAGE and analyzed by Western blot
using an MBP antibody (#2396, Cell signaling, Danvers, MA, USA).

3.6. RNA Extraction and Quantitative Real-Time PCR

RNA extraction and RT-qPCR were performed following our previous method [26].
105 cells/mL were incubated with a compound for 4 days and the RNA was extracted
using an RNeasy mini kit (#74104, Qiagen, Germantown, MD, USA). 100–1000 ng of total
RNA was reverse transcribed using iScript™ Reverse Transcription Supermix (Bio-Rad,
Hercules, CA, USA), using the manufacturer’s protocol. Quantitative real-time PCR was
carried out using Fast SYBR Green Master Mix (Applied Biosystems, Waltham, MA, USA)
according to the manufacturer’s instructions. Measurements were performed in triplicate
using GAPDH as the reference gene. Real-time PCR was performed using the Biosystems
Step One Plus detection system. The following sequences of primers were used:

MYC (forward: 5′-CACCGAGTCGTAGTCGAGGT-3′; reverse: 5′-TTTCGGGTAGTGG
AAAACCA-3′);

HoxA9 (forward: 5′-TACGTGGACTCGTTCCTGCT-3′; reverse: 5′-CGTCGCCTTGGA
CTGGAAG-3′);

Meis1 (forward: 5′-CCAGCATCTAACACACCCTTAC-3′; reverse: 5′-TATGTTGCTGA
CCGTCCATTAC -3′);

GAPDH (forward: 5′-GCGAGATCCCTCCAAAATCAA-3′; reverse: 5′-GTTCACACCC
ATGACGAACAT-3′)

3.7. Antiproliferation Assay

Proliferation inhibition assays were performed using an XTT assay kit (Biotium, Fre-
mont, CA, USA) following our previous methods [26]. The antiproliferation EC50 values
were determined using Prism 5 and the reported results were the mean values of at least
three independent experiments. The incubation time for all compounds was 7 days.

3.8. Statistical Analysis

At least three independent experiments were carried out to generate each dataset. The
significance of experimental differences was evaluated using the Student’s t test (Prism 5.0,
GraphPad Software, Boston, MA, USA). The results are expressed as the mean± SEM.

4. Conclusions

PPIs between AF9/ENL and AF4 or DOT1L are a potential drug target for MLL-r
leukemia, as well as other cancers (e.g., AML) driven by SEC-mediated aberrant gene
expression. Several indole-carboxamide compounds were identified as novel inhibitors
of the AF9-DOT1L interaction. Synthesis and structure–activity relationship studies of 77
compounds show that a 4-piperidin-1-ylphenyl or 4-pyrrolidin-1-ylphenyl R5 or R6 sub-
stituent is essential for these indole- and closely related benzothiophene- and benzofuran-
carboxamide compounds to have strong inhibitory activity. The activities of these inhibitors
with IC50 values as low as 1.6 µM were further confirmed using a pull-down assay. In-
hibitors of the AF9-DOT1L interaction also blocked the PPIs between AF9/ENL and AF4
with comparable IC50s. Selected inhibitors were found to suppress expression of MLL
target genes HoxA9, Meis1 and Myc and inhibit proliferation of MLL-r leukemia and
other AML cells with EC50s as low as 4.7 µM, while they were inactive against solid tu-
mor Hela cells. This antitumor activity profile is consistent with the roles of AF9/ENL in
these tumors, suggesting that their activities are on-target. In conclusion, the identified
benzothiophene compounds 24 and 50 are not only useful chemical probes for biological
studies of AF9/ENL or SEC, but they also represent novel lead compounds for further
drug development against MLL-r leukemia and related cancers.
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