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Simple Summary: Several risk prediction tools have been developed to better stratify women
according to their risk of developing breast cancer (BC) and inform prevention and early detection
strategies. Many recent versions of these tools now incorporate a polygenic risk score (PRS) that uses
the aggregated effect of common genetic variants, also known as single nucleotide polymorphisms
(SNP), as a reliable predictor to estimate BC risk. However, the characteristics of each tool in terms of
PRS development, population, and risk factors included vary considerably, which may affect their
predictive performance and limit their use in public health practices. Thus, this systematic review
characterizes BC risk prediction tools incorporating a PRS and explores the factors that can influence
their ability to predict a woman’s risk of developing BC during her lifetime.

Abstract: Single nucleotide polymorphisms (SNPs) in the form of a polygenic risk score (PRS) have
emerged as a promising factor that could improve the predictive performance of breast cancer (BC)
risk prediction tools. This study aims to appraise and critically assess the current evidence on these
tools. Studies were identified using Medline, EMBASE and the Cochrane Library up to November
2022 and were included if they described the development and/ or validation of a BC risk prediction
model using a PRS for women of the general population and if they reported a measure of predictive
performance. We identified 37 articles, of which 29 combined genetic and non-genetic risk factors
using seven different risk prediction tools. Most models (55.0%) were developed on populations from
European ancestry and performed better than those developed on populations from other ancestry
groups. Regardless of the number of SNPs in each PRS, models combining a PRS with genetic and
non-genetic risk factors generally had better discriminatory accuracy (AUC from 0.52 to 0.77) than
those using a PRS alone (AUC from 0.48 to 0.68). The overall risk of bias was considered low in most
studies. BC risk prediction tools combining a PRS with genetic and non-genetic risk factors provided
better discriminative accuracy than either used alone. Further studies are needed to cross-compare
their clinical utility and readiness for implementation in public health practices.

Keywords: breast cancer; polygenic risk score (PRS); risk prediction tools; non-genetic risk factors;
systematic review
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1. Introduction

Breast cancer (BC) remains a major public health issue worldwide and is the second
leading cause of death among women annually [1]. There is compelling evidence that early
detection by mammography screening improves prognosis and reduces mortality rates
from BC even though risks of overdiagnosis, over-treatment and psychological impacts
cannot be discounted [2,3].

Currently, most organized BC screening programs are offered to women based solely
on their age, from age 40–50 to age 70–74, depending on the country [4,5]. Although the
risk of developing BC increases with age, genetic, environmental, lifestyle, reproductive
and hormonal factors have been found to be associated with the risk of developing the
disease [6]. In this context, risk-stratified BC screening, in which individual risk assessment
based on multiple risk factors is used to tailor screening recommendations (e.g., more
screening for women at higher risk and less screening for those at lower risk), has been
proposed as an alternative to the current age-based approach [7–9]. Developing and
validating accurate BC risk prediction tools is therefore critical to achieving optimal risk-
stratified BC screening strategies.

Genome-wide association studies (GWAS) have identified common, low-penetrance
genetic variants associated with BC risk [10,11]. Although individually, these variants
confer minimal risk of BC, their effect becomes significant when aggregated as a polygenic
risk score [(PRS), also known as genetic risk score—GRS] [12]. This PRS can be used alone
or incorporated into a risk prediction model to identify women at higher risk of developing
BC [13,14]. At the population level, risk prediction tools could be used to stratify healthy
women based on their risk level of developing cancer in a certain time period (commonly 5
or 10 years) in order to adapt preventive measures [15–17]. While risk prediction models
aim to predict the probability of an event occurring in individuals based on a combination
of factors, risk prediction tools are the means by which these models are implemented in
clinical or public health practice [18]. Commonly used tools to predict BC risk include the
Breast Cancer Risk Assessment Tool (BCRAT; also referred to as the Gail model) [19], the
International Breast Cancer Intervention Study model (IBIS; the Tyrer–Cuzick model) [20],
BRCAPRO risk assessment tool [21], and the Breast and Ovarian Analysis of Disease
Incidence and Carrier Estimation Algorithm model (BOADICEA) [13,22]. Clinical-grade
tests to measure PRS are now available, and several BC risk prediction tools, including IBIS
and BOACIDEA, have been extended to include a PRS value [13,23–25].

For a risk prediction tool based on or incorporating a PRS to be clinically useful for
prevention or early detection, it must provide good risk discrimination between individuals
who will develop the disease and those who will not and account for the population risk of
the disease. Even if a model is well-calibrated to predict different risk categories, its ability
to stratify groups of individuals in the population with a sufficient difference in absolute
risk to justify additional preventive interventions plays an important role in its clinical
utility [23]. Nonetheless, considerable heterogeneity in PRS development methods brings
uncertainty and potential bias to BC risk prediction tools incorporating a PRS [26].

To date, there is no critical assessment regarding the development, performance,
and risk of bias of BC risk prediction tools that include a PRS. In addition, population
characteristics for which these tools are best suited remain to be further investigated.
Finally, we need to understand the current validation processes of these tools and the
existence of comparative studies to envision how they could apply to clinical or public
health practices. Thus, we conducted this systematic review to help fill this gap in the
literature. Our specific aims are to (1) identify, characterize, and summarise the different
prediction risk models incorporating a PRS to estimate the risk of developing BC in women
in the general population; and (2) assess the risk of bias of individual studies reporting on
their performance.
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2. Methods
2.1. Protocol and Registration

A systematic review protocol was published in the International Prospective Regis-
ter of Systematic Reviews PROSPERO (PROSPERO 2020 CRD42020198930 available at
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=198930 (accessed
on 6 November 2023).

2.2. Search Strategy

This systematic review followed PICOTS and PRISMA guidelines [27,28]. We pro-
ceeded to a first search of the Medline, EMBASE databases and the Cochrane Library up
to June 2021 using the strategy presented in Supplemental Table S1. We then updated our
search to retrieve relevant literature up to November 2022. Our search strategy, adapted for
each database, consisted of a combination of keywords and controlled vocabulary for three
concepts: “breast cancer”, “polygenic risk score or genetic risk score” and “cancer risk pre-
diction tools”. We also manually screened bibliographic references of all included papers
and other relevant systematic reviews or meta-analyses to retrieve additional studies.

2.3. Eligibility Criteria

We included studies reporting original research published in a peer-reviewed journal
describing the development and/or validation of prediction models incorporating a PRS
and using it to estimate the risk of developing BC for adult women in the general population.
We defined the general population as a cohort representing women typically considered
at average risk of developing BC. Therefore, we excluded studies including individuals
with a history of BC or focusing on specific population groups (e.g., individuals with a
known mutation in BRCA1 or BRCA2 genes, nurses’ study, hereditary BC risk in a familial
setting, etc.). The prediction models included in this review could either use only genetic
factors in the form of a PRS or a combination of genetic and non-genetic risk factors. To
be included in our review, studies needed to meet the following criteria: (1) describe the
development and/or validation of a prediction model; (2) use at least two SNPs in the
form of a PRS or GRS; (3) predict the risk of developing BC for a specified period in an
individual’s life (e.g., 5 or 10-year risk, lifetime or remaining lifetime risk); (4) report a
measure of performance to assess the predictive capacity of the model (i.e., measure of
discrimination (e.g., C-statistic, AUC), or calibration (e.g., Hosmer–Lemeshow statistic)).
Articles published in French or English and with any study design were considered without
restriction on the publication year.

2.4. Study Selection

Two independent reviewers (C. Mbuya-Bienge and C.D. Kazemali) screened the titles
and abstracts. A first pilot selection of titles and abstracts was conducted from a random
sample of 10% of the identified articles to verify the clarity and consistency of inclusion
criteria. Since the kappa statistic was 0.9 for this pilot, indicating no significant problems,
no changes were made to the selection process and criteria. The full text of all potentially
relevant studies was also assessed independently by the two researchers. When a consensus
to include or exclude a study could not be reached, a senior researcher (H. Nabi) made the
final decision.

2.5. Data Extraction Process and Analysis

Data extraction was undertaken independently by the same two researchers (C. Mbuya-
Bienge and C.D. Kazemali) using a grid based on the CHARMS checklist of relevant items
to extract from individual studies of prediction tools [29]. Data were extracted into ta-
bles divided into four categories that influence the models’ validity and utility: (1) study
characteristics, (2) outcomes and predictors, (3) model development and (4) model perfor-
mance and validation. Study characteristics included information such as study design,
source of data, study population size, study population characteristics (e.g., ethnicity)

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=198930
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and type of study according to the TRIPOD guidelines [30] (e.g., development only (1a);
development and validation using resampling (1b); random (2a) or non-random (2b) split
sample development and validation; development and validation using a separate data (3);
and validation only (4)). Outcomes and predictors were assessed based on the studies’
definition and method for measuring the outcomes and predictors, handling of predictors
and selecting genetic and non-genetic predictors. For the model development phase, we
considered the handling of missing data, the modelling method and the model presen-
tation. Model performance and validation were assessed from the reported measure of
performance, the classification measures if available and the method of internal or external
validation if applicable.

The heterogeneity of model characteristics in terms of predictors and outcomes pre-
cluded the possibility of pooling data across studies. Therefore, a narrative synthesis was
conducted. Key study characteristics, validation and accuracy of individual risk prediction
models, as well as the methodological quality, are described in tables and summarised
narratively. We presented the studies’ main measure of discrimination and its 95% confi-
dence interval (CI), when provided, using a forest plot. The measures of discrimination,
such as the area under the receiver operating characteristics curve (AUROC or AUC) or the
concordance statistics (c-statistics), indicate how well patients can be classified into two
groups (usually the cases with the disease and the controls without the disease). Possible
values range between 0.0 and 1.0 with a value of 1.0 indicating that the model has a perfect
classification accuracy and 0.5 indicating that the classification is not better than a random
classification. On rare occasions, the value can be less than 0.5, indicating that the model
has an inaccurate classification accuracy (i.e., it performs worse than chance) [31,32]. When
the same study reported performance measures for multiple steps of the same model
(e.g., model development and internal validation), only the best-performing model was
included in our main analysis. When an article presented performance measures for the
development of a model and external validation on a different population (TRIPOD level 3),
both models were included in our analysis. If a performance measure was presented
separately for a model including only a PRS and the same model combining the PRS with
genetic and non-genetic risk factors, both models were considered separately. The same
method was performed if a model presented results for different subtypes of BC or different
ethnicities. However, if a study presented different performance measures for the PRS
and some genetic and non-genetic risk factors individually, only the most comprehensive
model was retained.

We also presented the calibration assessed with the Hosmer–Lemeshow test or the
expected-to-observed (E/O) ratio, and the reclassification assessed with the net reclassifica-
tion index (NRI) when available. The Hosmer–Lemeshow test provides a chi-square and
p-value that indicates the goodness of fit. When this test is not statistically significant, it
indicates a lack of evidence of model miscalibration. The expected-to-observed (E/O) ratio
provides a ratio of the total expected number of cases (individuals with the outcome) to
the observed number of cases. A value of 1 indicates that the model is perfectly calibrated,
while values less than 1 and above 1 indicate, respectively, that the model is either under-
predicting or overpredicting the total number of cases in the population [31]. The NRI seeks
to quantify the agreement between risk classification and event status (cases and controls)
when comparing an old model to a new model given a set of predefined risk categories. It
allows evaluating the incremental value in the predictive capacity of new predictors to an
existing set of predictors. The statistic is calculated as follows P(up|case) − P(down|case)
+ P(down|control − P(up|control), and its value ranges between −2 and 2. The terms “up”
and “down”, respectively, refer to a new risk model placing an individual into a higher risk
category or a lower risk category compared to the old model [33,34].

Finally, we performed sensitivity analyses by using multiple comparative assessments
based on characteristics such as the populations on which the model was developed, the
number of SNPs, the type of risk prediction tools used, the BC subtype and the age category
to determine their impact on the models’ performance.
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2.6. Risk of Bias of Individual Studies

We used PROBAST Prediction model Risk Of Bias Assessment Tool) [35], a tool which
is organized into four domains (participants, predictors, outcome and analysis) to assess
the risk of bias of individual studies that developed or validated multivariable diagnosis or
prognosis prediction models. We used the same classification as the tool to indicate whether
the studies were at low (+), high (−) or unclear (?) risk of bias for each domain separately.
Based on our classification for each domain, we followed the PROBAST’s method [35] to
determine the overall risk of bias for a study.

3. Results
3.1. Study Selection

A total of 7377 records were found from our search strategy after removing duplicates.
We excluded 7191 records after screening their titles and abstracts and assessed the full
text of 186 papers. A flow diagram of the selection process is presented in Figure 1. At
the full-text level, the main reasons for exclusion were that the studies did not include a
PRS or a GRS (n = 53) and did not present a predictive model (n = 28) or a measure of
performance (n = 19). Additionally, seven studies did not present a risk prediction model
for the general population as two of them were developed on a population of working
nurses [36,37], and five were developed either for women at increased familial risk of
BC [38,39], with a previous diagnosis of BC [40,41] or with known genetic mutations [42].
Two additional studies were identified via reference screening of the included studies. In
total, we included 37 studies [12,23–25,43–75] in our systematic review, presenting seven
different risk prediction tools.

3.2. Characteristics of Included Studies

The main characteristics of individual studies are presented in Table 1. Studies in-
cluded in this review presented the risk for different types of BC. Most predicted the
risk of developing overall BC (n = 25) [12,24,25,43–46,49,51,54,56,58,61–67,69–72,74,75] or
invasive BC (n = 11) [47,48,50,52,53,55,57,59,63,68,73], and BC subtypes such as ER-positive
(n = 11) [7,12,45,47–50,52,57,67,70] and ER-negative (n = 10) [12,45,47–50,52,57,67,70]. Most
studies were conducted in the United States (n = 7) [7,43,44,57,59,61,74], the United King-
dom (n = 5) [25,45,62,69,75], Sweden (n = 3) [23,46,66] and Australia (n = 3) [47,48,73].
Seven studies were conducted in Asian countries [54,65,70], including four in multiple
countries [50,64,68,72]. Of our 37 studies, 8 (21.6%) [12,49,50,56,64,67,68,74] presented
models with only genetic factors. The number of SNPs used to calculate the PRS varied
between 7 [57] and 5218 [74]. Most studies selected SNPs based on previously identified
SNPs from published studies. Others selected SNPs associated with BC at a predefined
threshold, level of significance or associated specifically with a certain ancestry group. The
most common development method of the PRS was based on the cumulative effect of the
per-allele odds ratio and the number of risk alleles [57]. However, newer methods such
as Bayesian approaches [7,59] or risk prediction algorithms [72] were also used. Nineteen
studies presented only the development of a risk model [7,43,46–49,52,54–57,59,62–67,71],
and fourteen presented only its validation [23–25,44,45,50,51,53,58,61,69,73–75]. Nine in-
cluded a method of internal validation [49,52,56,57,59,60,65,67,71], and four studies ex-
ternally validated their model [12,68,70,72]. As for studies combining genetic and non-
genetic risk factors, the selection of non-genetic risk factors was mostly based on those
included in previously validated prediction tools such as the BCRAT [43–48,52–54,57,58,61]
or IBIS [25,43,45,48,53,58,62,69,73]. Studies sample size ranged from 39 to 33,673 cases and
51 to 286,801 controls (Supplemental Table S2). Twelve studies used logistic regression to
create the final model combining the PRS and genetic and non-genetic risk factors [7,43–
45,52,55,59,63,66,69,70,75], and two used Cox regression [54,71].
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Table 1. Characteristics of individual studies based on the type of included risk models.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Models based on genetic risk factors alone

Du, 2021 [49]

Various (USA,
Ghana,

Nigeria and
Barbados)

Overall BC,
ER-positive,
ER-negative

179 and 313
SNPs

SNPs that reached
genome-wide statistical

significance in GWAS analyses
and SNPs from a previously

published study [12].

Cumulative effect at a risk locus
of the weights of each SNP
multiplied by the risk allele

dosage of each SNP.

__ __ 2a

Gao, 2022 [67]
Various

(Barbados,
Ghana, USA)

Overall BC,
ER-positive,
ER-negative

307 SNPs

Modified version of the
hard-thresholding based on

stepwise forward logistic
regression outlined by
Mavaddat et al. [12].

Three methods were evaluated:
(1) Cumulative effect of the

per-allele log OR for BC
associated with each SNP

multiplied by the allele dosage
for each SNP from genome-wide

data in women of African
Ancestry, (2) the 313 SNPs PRS

using the effect size from
Mavaddat et al. [12] and (3) the

joint and hybrid PRS as a
weighted linear combination of
the two previous PRS (adapted

method from Márquez-Luna
et al. [76]).

__ __ 2a

Ho, 2020 [50]

Various
(China,

Malaysia,
India)

Invasive BC,
ER-positive,
ER-negative

287 SNPs

Available race-specific derived
SNPs from Mavaddat et al. [12]

based on an imputation
accuracy score.

Cumulative effect of the
weights of each SNP multiplied
by the dosage of risk allele for

each SNP.

__ __ 4
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Ho, 2022 [68]

Various
(China, India,

Taiwan,
Singapore,

Korea, Japan,
Malaysia)

Invasive BC 46, 287 and
2985 SNPs

Multiple approaches:
(1) Clumping and threshold
approach, (2) lasso penalized

regression, (3) linear
combination of European and
Asian PRS, (4) integration of
Asian weights into European
PRS, (5) Bayesian polygenic

prediction approach and
(6) South Asian specific SNPs.

Cumulative effect of the
weights of each SNP multiplied

by the risk allele dosage of
each SNP.

__ __ 3

Liu, 2021 [74] USA Overall BC

313, 3820 or
5218 SNPs
(European

ancestry), 34
or 75 SNPs

(African
ancestry), 71
or 180 SNPs

(Latinx
ancestry)

Previously identified SNPs
from published studies
(2 studies in women of

European ancestry [12,77], 2 in
women of African ancestry

[43,78] and 2 in women from
Latinx ancestry [43,79].

Weighted sum of each variant
effect size using the PLINK

version 1.9 [80] to reconstruct
seven previously developed

and tested PRS with European,
African and Latinx ancestries.
Ambiguous variants, variants
with allele mismatches, and
variants with more than 3+

alleles from each PRS model
were excluded.

__ __ 4

Mavaddat, 2015
[56]

Various
(Europe,

Australia,
USA)

Overall BC 77 SNPs

SNPs associated at p < 5 × 10−8

with overall or ER-negative BC
by the COGS or previous

publications.

Cumulative effect of the
per-allele log OR multiplied by

the number of alleles for the
same SNP, ignoring departures

from a multiplicative model.

__ __ 2b
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Mavaddat, 2019
[12]

Various
(Europe,

Australia,
USA)

Overall BC,
ER-positive,
ER-negative

77, 313 and
3820 SNPs

Hard-thresholding based on
stepwise forward regression

that retained SNPs significantly
association with overall or

subtype-specific BC or lasso
penalized regression.

For overall BC: Cumulative
effect of the per-allele log OR
for BC associated with each
SNP and multiplied by the
allele dosage for each SNP.

For BC subtypes, four methods
were evaluated: (1) using effect
sizes for overall BC; (2) using

effect sizes for subtype-specific
BC; (3) using a hybrid method;
(4) deriving subtypes-specific
estimates using case-only ORs

case-only ORs estimated by
lasso combining with overall

BC ORs.

__ __ 3

Wen, 2016 [64]

Various
(China, Japan,
South Korea,

Thailand, and
Malaysia)

Overall BC 44 SNPs SNPs associated with overall
BC at p < 0.05 (one-sided).

Cumulative effect of the
per-allele log OR for BC

associated with the risk allele
for each SNP.

__ __ 1a

Models based on genetic risk factors and non-genetic risk factors

Allman, 2015
[43] USA Overall BC

75 SNPs
(African

American),
71 SNPs

(Hispanics)

Race-specific derived SNPs
identified as being associated

with BC from studies of White
women [56] for which imputed

genotypes were available.

Mealiffe et al. [57] approach.
SNP-based relative risk score
using ORs per-allele and risk

allele frequency assuming
independent and additive risks

on the log-OR scale. Then,
multiplying the adjusted risk

values for each SNP.

From existing
models

(BCRAT and
IBIS).

Log-transformed
combined score

(SNP-based score
multiplied by

model’s
predicted 5-year

risk) and
age-adjusted
using logistic

regression.

1a
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Allman, 2021
[44] USA Overall BC

77 SNPs
(European
ancestry),
75 SNPs
(African

American),
71 SNPs

(Hispanics)

Race-specific derived SNPs
from published GWAS.

Mealiffe et al. [57] approach.
SNP-based relative risk score
using ORs per-allele and risk

allele frequency assuming
independent and additive risks

on the log-OR scale. Then,
multiplying the adjusted risk

values for each SNP.

From
real-world

clinical
practice

factors based
on the

BCRAT.

Log-transformed
combined score

(SNP-based score
multiplied by

model’s
predicted 5-year

risk) and
age-adjusted
using logistic

regression.

4

Brentmall, 2020
[45] UK

Overall BC
(invasive or

ductal
carcinoma in

situ),
ER-positive,
ER-negative

143 SNPs

Previously identified SNPs
associated with BC from

Michailidou et al. [10] and
available in the dataset.

Multiplying the per-allele OR
for each SNP, normalized by

the average risk expected in the
populations based on the
assumed allele frequency.

From an
existing

model (Tyrer–
Cuzick).

Regressing the
PRS on

adjustment
factors (age, the

natural
logarithm of

10-year risk from
the Tyrer–Cuzick

model and
mammographic

density) in
controls.

4

Darabi, 2012
[46] Sweden Overall BC 18 SNPs Previously identified SNPs

from Pashayan et al. [81].

Weighted average of effect
estimates from separate studies

obtained by the inverse
variance method or

multiplicative penetrance
model for BC-associated SNPs.

From an
existing

model (Gail).

Method by Gail
et al. [19] to
estimate the

probability of a
woman with a
particular risk

profile
developing BC in

a specific time
interval.

1a
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Dite, 2013 [47] Australia
Invasive BC,
ER-positive,
ER-negative

7 SNPs

Statistically significant SNPs
associated with BC in GWAS
and identified in the study by

Mealiffe et al. [57]

Mealiffe et al. [57] approach.
SNP-based relative risk score

using ORs and risk allele
frequency assuming

independence of additive risks
on the log-OR scale. Then,

multiplying the adjusted risk
values for each SNP.

From an
existing
model

(BCRAT).

Multiplying the
SNP risk score
and the BCRAT
risk score under
the assumption

of independence.

1a

Dite, 2016 [48] Australia
Invasive BC,
ER-positive,
ER-negative

77 SNPs Previously identified SNPs
from Mavaddat et al. [56].

Mealiffe et al. approach [57].
SNP-based relative risk score
using ORs per-allele and risk

allele frequency assuming
independence of additive risks

on the log-OR scale. Then,
multiplying the adjusted risk

values for each SNP.

From existing
models

(BOADICEA,
BRCAPRO,

BCRAT, IBIS).

Multiplying the
SNP-based score

by model’s
predicted 5-year
absolute risk of

BC (all risk
factors were

age-adjusted log
5-year risks).

1a

Eriksson, 2020
[66] Sweden Overall BC 313 SNPs Previously identified SNPs

from Mavaddat et al. [12].
Per-allele log OR for each SNP

in a log-additive model.

Not
specified—

All
considered

were
included.

Unconditional
logistic

regression
stratified by age.

1a

Evans, 2022 [69] UK

Overall BC
(invasive or

ductal
carcinoma in

situ)

18, 143 and
313 SNPs

Previously identified SNPs
from two studies [45,63].

PRS143: Per-allele OR derived
from published OR and allele

frequency normalized around a
relative risk of 1.0.

PRS313: Cumulative effect of
the log OR for each SNP

multiplied by the
corresponding number of

minor alleles.

From existing
model (Tyrer–

Cuzick).

Regressing the
PRS on

adjustment
factors.

4
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Hou, 2022 [70] China
Overall BC,
ER-positive,
ER-negative

24 SNPs

Previously identified SNPs
from GWAS or meta-analyses

found to be associated with BC
risk in Chinese women.

Three different approaches, the
first two based on the
cumulative effect size,

calculated as the per-allele log
OR for BC associated with each
SNP, multiplied by the number

of effect alleles: (1) repeated
logistic regression (RLR)

(2) logistic ridge regression
(LRR), (3) artificial neural

network (ANN)-based
approach.

Established
BC risk
factors.

Regressed the
PRS against

non-genetic risk
factors or

absolute risks
predicted by the

Gail-2 model.

3 *

Hurson, 2021
[51]

Various
(Australia,
Germany,

Netherlands,
Sweden, UK,

USA)

Overall BC (In
situ or invasive

BC)
313 SNPs Previously identified SNPs

from Mavaddat et al. [12].

Cumulative effect of the
per-allele log OR for BC

associated with each SNP and
multiplied by the allele dosage

for each SNP.

From an
existing
model

(iCARE-Lit).

Use of iCARE
tool to

incorporate risk
factors and the

PRS assuming a
multiplicative

joint association
with disease risk,

accounting for
the correlation of

PRSs with
family history.

4

Husing, 2012
[52]

Various (USA,
Europe)

Invasive BC,
ER-positive,
ER-negative

7, 9, 18 and
32 SNPs

Statistically significant SNPs in
at least one GWAS at a

genome-wide significance level
(p < 10−7).

Log-additive model with
individually weighted

per-allele effects for each SNP.

Available
factors from
an existing

model
(BCRAT)

selected using
a backwards

selection
process.

Unconditional
logistic

regression with
BC status as the

outcome
combining

genetic effects
and covariate

model.

2a
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Jantzen, 2021
[53] Canada Invasive BC 10, 18, 77 and

86 SNPs

Previously identified SNPs
from 4 published studies

[38,56,59,82].

Linear combinations of the
risk-conferring variant alleles
weighted by their effect sizes.

Available
factors from

existing
models

(BCRAT and
IBIS).

Use of the iCARE
package to sum

the PRS and
BCRAT score

(relative hazard
regression score).
Use of the IBIS

tool to
incorporate
shifted PRS

scores.

4

Jia, 2020 [75] UK Overall BC 282 SNPs

Available SNPs in dataset from
the 313 SNPs previously

identified by Mavaddat et al.
[12].

Sum of the product of the
weight and the number of risk

alleles for each risk variant
across all selected risk variants

per individual.

Not
specified—

Only family
history of
cancer in

first-degree
relatives was

included.

Logistical
models adjusted

for genotype
array types.

4

Lakeman, 2020
[24]

The
Netherlands

Overall BC (In
situ or

invasive BC)
313 SNPs Previously identified SNPS

from Mavaddat et al. [12].

Cumulative effect of per- allele
log OR (obtained from the

BCAC) for BC associated with
each SNP and multiplied by the

number of risk alleles.

Available
factors from
an existing

model
(BOADICEA).

Use of
BOADICEA

version 5.
4

Lee, 2015 [54] Singapore
Overall BC (In

situ or
invasive BC)

75 SNPs

SNPs identified in GWAS or in
BCAC from the Asian

populations assuming no
interaction between SNPs,

mammographic density and
other risk factors.

Cumulative effect of log OR for
each SNP multiplied by the

number of risk alleles.

From an
existing

model (Gail) +
predictors
relevant to

their
population.

Cox proportional
hazards model. 1a
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Li, 2021 [73] Australia Invasive BC 313 SNPs
Previously identified SNPs

based on GWAS published by
the BCAC [10,12].

BOADICEA: Sum of the per
allele log-OR multiplied by the

allele counts for each SNP
across variants and then

normalized using
population-based risk and

allele frequency.
IBIS: Multiplying the

SNP-specific relative risk by the
genotype-specific relative risk

of BC, which estimates the
average population relative risk

accounting for the
population-based risk and the

allele frequency for the
women’s genotype.

From existing
models

(BOADICEA
v5.0.0 and
IBIS V8b).

Use of
BOADICEA

version 5.0.0 and
the Tyler-Cuzick

model v.8b.

4

Maas, 2016 [55]
Various

(Australia,
Europe, USA)

Invasive BC 92 SNPs
SNPs identified in the BPC3

study and previously
published SNPs.

Combination of a PRS24
assuming additive associations

on the log scale after
adjustments and a simulated

PRS68 conditional on
case-control status and family

history, using the model
estimates of the log-OR and the
allele frequencies for the SNPs
with an estimate of the log-OR

for family history.

Established
BC risk
factors.

Multivariate
logistic

regression.
1a

Mealiffe, 2010
[57] USA

Invasive BC,
ER-positive,
ER-negative

7 SNPs

Statistically significant SNPs in
GWAS with correction for

multiple testing and confirmed
in an independent set of

case controls.

Product of genotype relative
risk value for each SNP based

on a log-additive model.

Available
factors from
an existing

model
(BCRAT).

Multiplying
5-year Gail

absolute risk
estimates by SNP

risk score.

1b
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Olsen, 2021 [71] Estonia Overall BC 973 SNPs Previously identified SNPs
from Läll et al. [83].

Weighted average of the two
strongest associated PRS

(named metaGRS2), each PRS
obtained by a linear

combination of SNPs effect
weighted by their log

beta-coefficients.

Statistically
significant
predictors

from a fully
adjusted Cox

model.

Cox proportional
hazards model

adjusted for age.
2a

Pal Choudhury,
2020 [58] UK and USA Overall BC 313 SNPs Previously identified SNPS

from Mavaddat et al. [12].

Cumulative effect for the total
number of SNPS per allele OR

associated with SNPs multiplied
by allele dosage for SNPs.

From existing
models

(iCARE-Lit,
iCARE-BPC3,
BCRAT, IBIS).

Use of the
iCARE, BCRAT

and IBIS
v8 models.

4

Pal Choudhury,
2021 [25] UK Overall BC 313 SNPs Previously identified SNPS

from Mavaddat et al. [12].

Cumulative effect for the total
number of SNPS per allele OR

associated with SNPs
multiplied by allele dosage

for SNPs.

From existing
models

(BOADICEA
and Tyrer–
Cuzick).

Use of
BOADICEA
version 5 as

described by Lee
et al. [13] and the
IBIS tool (v.8) as

described by
Brentnall et al. [45]

4

Shieh, 2016 [59] USA Invasive BC 76 (Asian)
and 83 SNPs

GWAS significant SNPs
(p < 5 × 10−8) associated with
invasive BC in White, Asian or

Hispanic women.

Bayesian approach of the
composite likelihood ratio
representing the individual

effects of each SNP assuming
independence and no

interaction between them.

From an
existing
model

(fitted-BCSC).

Use version 2.0 of
the BCSC model
for multivariable

regression
analysis.

2a

Shieh, 2017 [60] USA ER-positive 83 SNPs

GWAS significant SNPs
(p < 5 × 10−8) associated with
invasive BC in White, Asian or

Hispanic women.

Bayesian approach of the
composite likelihood ratio
representing the individual

effects of each SNP assuming
independence and no

interaction between them.

From an
existing
model

(BCSC v1).

Conditional
logistic

regression using
a multivariable

model.

2a
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Starlard-
Davenport,
2018 [61]

USA Overall BC 75 SNPs Previously identified SNPs
from Mavaddat et al. [56]

Mealiffe et al. approach [57].
SNP-based relative risk score
using ORs per-allele and risk

allele frequency assuming
independence of additive risks

on the log-OR scale. Then,
multiplying the adjusted risk

values for each SNP.

From an
existing
model

(BCRAT).

Multiplying the
SNP-based score
by the model’s

predicted 5-year
and lifetime
absolute risk

of BC.

4

Vachon, 2015
[63]

USA and
Germany

Overall BC,
invasive BC 76 SNPs Previously identified SNPS

from published studies.

Cumulative effect of the log OR
for each SNP multiplied by the

corresponding number of
minor alleles.

From an
existing
model

(BCSC).

Logistic
regression. 1b

van Veen,
2018 [62] UK

Overall BC
(Invasive and

ductal
carcinoma

in-situ)

18 SNPs SNPs associated with BC in
GWAS.

Multiplying the per-allele OR
for each SNP and normalizing

the risk by the average risk
expected in the population

using published minor
allele frequencies.

From an
existing

model (Tyrer–
Cuzick).

Multiplying
Tyrer–Cuzick

10-year absolute
risk by density

residual and PRS
assuming

independence.

1a

Yang X.,
2022 [23] Sweden Invasive BC 313 SNPs Previously identified SNPs

from Mavaddat et al. [12].

SNP was given a per-allele log
OR in a log-additive model and

derived and standardized by
the mean and

standard deviation.

From existing
model

(BOADICEA v.6)

Used
BOADICEA V.6
with Swedish

age-specific and
calendar

period-specific
population

incidences for
invasive BC.

4
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Table 1. Cont.

Author, Year Country Type of BC Number of
SNPs Selection of SNPs Method of Development of

GRS or PRS
Selection of
Risk Factors

Method of
Development of

Combined
Model

TRIPOD
Level

Yang Y., 2022
[72]

Various
(China, Japan,

Korea
Shanghai)

Overall BC 111 and 263
SNPs

Race-specific SNPs from two
published studies [12,84].

Three different approaches
based on the cumulative effect
of the allelic dosage multiplied
by the corresponding weight of

each SNP: (1) reported
European PRS, (2) PRS based

on SNPs identified by
fine-mapping of

GWAS-identified risk loci and
(3) PRS-based on genome-wide

risk prediction algorithms.

Established
BC risk
factors.

An integrated
risk prediction

model included
the PRS and the
non-genetic risk
score (weighted

value of each risk
factor plus the
weight of the

interaction
between BMI

and menopause
status) as

independent
predictors of BC
(BC~PRS + NgRS).

3

Zheng, 2010
[65] China Overall BC 9 SNPs Statistically significant SNPs

associated with BC in GWAS.

Cumulative effect of the OR for
each SNP multiplied by the

number of SNPs replicated in
the study.

Established
BC risk
factors.

Similar approach
to Gail et al. [81]
to estimate the

absolute risk of C
according to the
risk factors that

a woman
carried [85].

1b

* Results for development not shown. Abbreviations: UK = United Kingdom; USA = United States of America; LR = likelihood ratio; OR = Odds ratio; SNP = Single nucleotide polymor-
phism; BCAC = Breast Cancer Association Consortium; BPC3 = Breast and Prostate Cancer Cohort Consortium; BCSC = Breast Cancer Surveillance Consortium; BOADICEA = Breast
and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; BCRAT = Breast Cancer Risk Assessment Tool (Gail Model); COGS = Collaborative Oncological
Gene-Environment Study; IBIS = International Breast Intervention Study (Tyrer–Cuzick model); iCARE-Lit = Individualized Coherent Absolute Risk Estimator based on literature
review; iCARE-BPC3 = Individualized Coherent Absolute Risk Estimator based on BPC3 analysis. TRIPOD levels: 1a = development only; 1b = development and validation using
resampling; 2a = random split sample development and validation; 2b = non-random split sample development and validation; 3 = development and validation using separate data;
4 = validation only.
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3.3. Characteristics of Risk Prediction Models

Table 2 shows the main non-genetic predictors used in combined models. The number
of predictors included in the models varied between one [75] and twenty-five [58]. Almost
all models used the current age of women as a predictor of BC. Age was considered either
by directly introducing it in the models as an independent variable or by stratifying by
age groups [25,47,51,58,73]. Age at menarche, age at menopause, age at first live birth and
family history of BC were also used in the majority of models. Details on participants and
risk models are shown in Supplementary Table S2. Most models (55.0%) were developed
or validated in populations of European descent, 26.3% in Asian populations, 12.5% in
populations of African descent and 6.3% in Hispanic populations. A little more than 55%,
30% and 15% of the models estimated the 5-year, 10-year and lifetime risk of developing
BC, respectively. In addition, one model estimated the 2-year [66] and 3-year [71] BC risk.
Among the models based on a combination of genetic and non-genetic risk factors, 32.7%
were an upgraded version of the BCRAT, 21.2% of the IBIS, 9.6% of the Breast Cancer
Surveillance Consortium (BCSC) and 7.7% on the BOADICEA tool.
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Table 2. Main predictors used in breast cancer (BC) prediction models including a Polygenic Risk Score (PRS).

Author, Year Age
Age at
Mena-
Rche

Age at
Meno-
Pause

Age at
First Live

Birth

No of
Live

Births
Parity

Family
History
of BC

No of
Relatives
with BC

Breast
Biopsy

No of
Biopsies

Breast
Density

Meno-
Pausal
Status

HRT
Use OC Use History

of BBD BMI Alcohol
Use

Smoking
Status

Race/
Ethnicity

Atypical
Hyper-
Plasia

Heig-Ht

Allman, 2015 [43] BCRAT X X X X 1 X
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Table 2. Cont.

Author, Year Age
Age at
Mena-
Rche

Age at
Meno-
Pause

Age at
First Live

Birth

No of
Live

Births
Parity

Family
History
of BC

No of
Relatives
with BC

Breast
Biopsy

No of
Biopsies

Breast
Density

Meno-
Pausal
Status

HRT
Use OC Use History

of BBD BMI Alcohol
Use

Smoking
Status

Race/
Ethnicity

Atypical
Hyper-
Plasia

Heig-Ht

Pal Choudhury, 2020 [58]
iCARE-BPC3 X ‡ X X X X X 1 X X X X X

Pal Choudhury, 2020 [58] BCRAT X ‡ X X X 1 X 1 X X X

Pal Choudhury, 2020 [58] IBIS j X ‡ X X X X X 1,2,3 X 1,2,3 X X X X X

Pal Choudhury, 2021 [25]

BOADICEA k X ‡ X X X X X 1 X X X X X

Pal Choudhury, 2021 [25]
Tyrer–Cuzick X ‡ X X X X X 1 X X e X X X

Shieh, 2016 [59] X X 1 X X X X

Cancers 2023, 14, x FOR PEER REVIEW 17 of 33 
 

 

Maas, 2016 [55]  X X X  X X     X X   X X X   X 
Mealiffe, 2010 [57] X X  X    X 1  X         X NA  

Olsen, 2021[71] X                     
Pal Choudhury, 2020 [58] 

iCARE-Lit 
X‡ X X X  X X 1  X    X X X X X     

Pal Choudhury, 2020 [58] 
iCARE-BPC3 

X‡ 

 
X X X  X X 1     X X   X X X    

Pal Choudhury, 2020 [58] 
BCRAT X‡ X  X   X 1 X 1  X     X     X  

Pal Choudhury, 2020 [58] 
IBIS j 

X‡ X X X  X X 1,2,3 X 1,2,3    X X   X    X X 

Pal Choudhury, 2021[25] 
BOADICEA k 

X‡ X X X  X X 1      X X  X X    X 

Pal Choudhury, 2021[25] 
Tyrer–Cuzick 

X‡ X X X  X X 1     X X e   X    X X 

Shieh, 2016 [59] X      X 1  X  X     X   X Ⴕ   
Shieh, 2017 [60] l X      X 1  X  X        X   

Starlard-Davenport, 2018 
[61] 

X X  X    X 1  NA          NA  

Vachon, 2015 [63] X          X     X      
van Veen, 2018 [62] X   X  X X 1    X     X   X   
Yang X., 2022 [23] X X X X  X  X 1   X X X X  X X    X 

Yang Y., 2022 [72] f,m  X  X   X        X X      
Zheng, 2010 [65]m  X  X  X X 1        X X      

Abbreviations: BDD = Benign breast disease; BMI = Body mass index; HRT = Hormone therapy replacement; NA = Information not available in the dataset often 
noted as unknown; OC = Oral contraceptive. Notes: 1 = First-degree relative with cancer; 2 = Second-degree relative with cancer; 3 = Third-degree relatives with 
cancer. Ⴕ = Results are presented separately for different ethnicities. ႵႵ Age of breast cancer diagnosis in affected first- and second-degree relatives is also collected. 
‡ = Results are presented stratified by age. a = Also includes number of first-degree relatives with ovarian cancer; b = Presented as percentage mammographic 
density; c = Also includes microcalcifications and masses; d = Also includes a custom gene panel (ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, NF1, PALB2, PTEN, 
RAD50, RAD51C, RAD51D and TP53) and weight; e = Also includes HRT type; f = Used as an interaction between BMI and menopausal status at baseline; g = Also 
includes weight and history of ovarian cancer; h = Also includes year of birth, age at cancer diagnosis for family history and history of ovarian cancer; i= Also 
includes history of lobular carcinoma in situ, age at cancer diagnosis for family history and history of ovarian cancer; j = Also includes hyperplasia, lobular carci-
noma in situ (LCIS), age at onset of breast cancer in a relative, bilateral breast cancer in a relative, ovarian cancer in a relative and male breast cancer; k = BOADICEA 
model also includes information on explicit family history of breast and other cancers, genetic factors such as pathogenic variants and unobserved genetic effects, 
breast tumor pathology and demographic factors (see Lee et al. 2019 [13]); l = Other factors includes sex hormone levels of estradiol; m = Also includess waist-to-
hip ratio. 

Shieh, 2017 [60] l X X 1 X X X

Starlard-Davenport, 2018 [61] X X X X 1 NA NA

Vachon, 2015 [63] X X X

van Veen, 2018 [62] X X X X 1 X X X

Yang X., 2022 [23] X X X X X X 1 X X X X X X X

Yang Y., 2022 [72] f,m X X X X X

Zheng, 2010 [65]m X X X X 1 X X

Abbreviations: BDD = Benign breast disease; BMI = Body mass index; HRT = Hormone therapy replacement; NA = Information not available in the dataset often noted as unknown;
OC = Oral contraceptive. Notes: 1 = First-degree relative with cancer; 2 = Second-degree relative with cancer; 3 = Third-degree relatives with cancer.

Cancers 2023, 14, x FOR PEER REVIEW 17 of 33 
 

 

Maas, 2016 [55]  X X X  X X     X X   X X X   X 
Mealiffe, 2010 [57] X X  X    X 1  X         X NA  

Olsen, 2021[71] X                     
Pal Choudhury, 2020 [58] 

iCARE-Lit 
X‡ X X X  X X 1  X    X X X X X     

Pal Choudhury, 2020 [58] 
iCARE-BPC3 

X‡ 

 
X X X  X X 1     X X   X X X    

Pal Choudhury, 2020 [58] 
BCRAT X‡ X  X   X 1 X 1  X     X     X  

Pal Choudhury, 2020 [58] 
IBIS j 

X‡ X X X  X X 1,2,3 X 1,2,3    X X   X    X X 

Pal Choudhury, 2021[25] 
BOADICEA k 

X‡ X X X  X X 1      X X  X X    X 

Pal Choudhury, 2021[25] 
Tyrer–Cuzick 

X‡ X X X  X X 1     X X e   X    X X 

Shieh, 2016 [59] X      X 1  X  X     X   X Ⴕ   
Shieh, 2017 [60] l X      X 1  X  X        X   

Starlard-Davenport, 2018 
[61] 

X X  X    X 1  NA          NA  

Vachon, 2015 [63] X          X     X      
van Veen, 2018 [62] X   X  X X 1    X     X   X   
Yang X., 2022 [23] X X X X  X  X 1   X X X X  X X    X 

Yang Y., 2022 [72] f,m  X  X   X        X X      
Zheng, 2010 [65]m  X  X  X X 1        X X      

Abbreviations: BDD = Benign breast disease; BMI = Body mass index; HRT = Hormone therapy replacement; NA = Information not available in the dataset often 
noted as unknown; OC = Oral contraceptive. Notes: 1 = First-degree relative with cancer; 2 = Second-degree relative with cancer; 3 = Third-degree relatives with 
cancer. Ⴕ = Results are presented separately for different ethnicities. ႵႵ Age of breast cancer diagnosis in affected first- and second-degree relatives is also collected. 
‡ = Results are presented stratified by age. a = Also includes number of first-degree relatives with ovarian cancer; b = Presented as percentage mammographic 
density; c = Also includes microcalcifications and masses; d = Also includes a custom gene panel (ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, NF1, PALB2, PTEN, 
RAD50, RAD51C, RAD51D and TP53) and weight; e = Also includes HRT type; f = Used as an interaction between BMI and menopausal status at baseline; g = Also 
includes weight and history of ovarian cancer; h = Also includes year of birth, age at cancer diagnosis for family history and history of ovarian cancer; i= Also 
includes history of lobular carcinoma in situ, age at cancer diagnosis for family history and history of ovarian cancer; j = Also includes hyperplasia, lobular carci-
noma in situ (LCIS), age at onset of breast cancer in a relative, bilateral breast cancer in a relative, ovarian cancer in a relative and male breast cancer; k = BOADICEA 
model also includes information on explicit family history of breast and other cancers, genetic factors such as pathogenic variants and unobserved genetic effects, 
breast tumor pathology and demographic factors (see Lee et al. 2019 [13]); l = Other factors includes sex hormone levels of estradiol; m = Also includess waist-to-
hip ratio. 

= Results are presented separately
for different ethnicities.

Cancers 2023, 14, x FOR PEER REVIEW 17 of 33 
 

 

Maas, 2016 [55]  X X X  X X     X X   X X X   X 
Mealiffe, 2010 [57] X X  X    X 1  X         X NA  

Olsen, 2021[71] X                     
Pal Choudhury, 2020 [58] 

iCARE-Lit 
X‡ X X X  X X 1  X    X X X X X     

Pal Choudhury, 2020 [58] 
iCARE-BPC3 

X‡ 

 
X X X  X X 1     X X   X X X    

Pal Choudhury, 2020 [58] 
BCRAT X‡ X  X   X 1 X 1  X     X     X  

Pal Choudhury, 2020 [58] 
IBIS j 

X‡ X X X  X X 1,2,3 X 1,2,3    X X   X    X X 

Pal Choudhury, 2021[25] 
BOADICEA k 

X‡ X X X  X X 1      X X  X X    X 

Pal Choudhury, 2021[25] 
Tyrer–Cuzick 

X‡ X X X  X X 1     X X e   X    X X 

Shieh, 2016 [59] X      X 1  X  X     X   X Ⴕ   
Shieh, 2017 [60] l X      X 1  X  X        X   

Starlard-Davenport, 2018 
[61] 

X X  X    X 1  NA          NA  

Vachon, 2015 [63] X          X     X      
van Veen, 2018 [62] X   X  X X 1    X     X   X   
Yang X., 2022 [23] X X X X  X  X 1   X X X X  X X    X 

Yang Y., 2022 [72] f,m  X  X   X        X X      
Zheng, 2010 [65]m  X  X  X X 1        X X      

Abbreviations: BDD = Benign breast disease; BMI = Body mass index; HRT = Hormone therapy replacement; NA = Information not available in the dataset often 
noted as unknown; OC = Oral contraceptive. Notes: 1 = First-degree relative with cancer; 2 = Second-degree relative with cancer; 3 = Third-degree relatives with 
cancer. Ⴕ = Results are presented separately for different ethnicities. ႵႵ Age of breast cancer diagnosis in affected first- and second-degree relatives is also collected. 
‡ = Results are presented stratified by age. a = Also includes number of first-degree relatives with ovarian cancer; b = Presented as percentage mammographic 
density; c = Also includes microcalcifications and masses; d = Also includes a custom gene panel (ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, NF1, PALB2, PTEN, 
RAD50, RAD51C, RAD51D and TP53) and weight; e = Also includes HRT type; f = Used as an interaction between BMI and menopausal status at baseline; g = Also 
includes weight and history of ovarian cancer; h = Also includes year of birth, age at cancer diagnosis for family history and history of ovarian cancer; i= Also 
includes history of lobular carcinoma in situ, age at cancer diagnosis for family history and history of ovarian cancer; j = Also includes hyperplasia, lobular carci-
noma in situ (LCIS), age at onset of breast cancer in a relative, bilateral breast cancer in a relative, ovarian cancer in a relative and male breast cancer; k = BOADICEA 
model also includes information on explicit family history of breast and other cancers, genetic factors such as pathogenic variants and unobserved genetic effects, 
breast tumor pathology and demographic factors (see Lee et al. 2019 [13]); l = Other factors includes sex hormone levels of estradiol; m = Also includess waist-to-
hip ratio. 

Cancers 2023, 14, x FOR PEER REVIEW 17 of 33 
 

 

Maas, 2016 [55]  X X X  X X     X X   X X X   X 
Mealiffe, 2010 [57] X X  X    X 1  X         X NA  

Olsen, 2021[71] X                     
Pal Choudhury, 2020 [58] 

iCARE-Lit 
X‡ X X X  X X 1  X    X X X X X     

Pal Choudhury, 2020 [58] 
iCARE-BPC3 

X‡ 

 
X X X  X X 1     X X   X X X    

Pal Choudhury, 2020 [58] 
BCRAT X‡ X  X   X 1 X 1  X     X     X  

Pal Choudhury, 2020 [58] 
IBIS j 

X‡ X X X  X X 1,2,3 X 1,2,3    X X   X    X X 

Pal Choudhury, 2021[25] 
BOADICEA k 

X‡ X X X  X X 1      X X  X X    X 

Pal Choudhury, 2021[25] 
Tyrer–Cuzick 

X‡ X X X  X X 1     X X e   X    X X 

Shieh, 2016 [59] X      X 1  X  X     X   X Ⴕ   
Shieh, 2017 [60] l X      X 1  X  X        X   

Starlard-Davenport, 2018 
[61] 

X X  X    X 1  NA          NA  

Vachon, 2015 [63] X          X     X      
van Veen, 2018 [62] X   X  X X 1    X     X   X   
Yang X., 2022 [23] X X X X  X  X 1   X X X X  X X    X 

Yang Y., 2022 [72] f,m  X  X   X        X X      
Zheng, 2010 [65]m  X  X  X X 1        X X      

Abbreviations: BDD = Benign breast disease; BMI = Body mass index; HRT = Hormone therapy replacement; NA = Information not available in the dataset often 
noted as unknown; OC = Oral contraceptive. Notes: 1 = First-degree relative with cancer; 2 = Second-degree relative with cancer; 3 = Third-degree relatives with 
cancer. Ⴕ = Results are presented separately for different ethnicities. ႵႵ Age of breast cancer diagnosis in affected first- and second-degree relatives is also collected. 
‡ = Results are presented stratified by age. a = Also includes number of first-degree relatives with ovarian cancer; b = Presented as percentage mammographic 
density; c = Also includes microcalcifications and masses; d = Also includes a custom gene panel (ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, NF1, PALB2, PTEN, 
RAD50, RAD51C, RAD51D and TP53) and weight; e = Also includes HRT type; f = Used as an interaction between BMI and menopausal status at baseline; g = Also 
includes weight and history of ovarian cancer; h = Also includes year of birth, age at cancer diagnosis for family history and history of ovarian cancer; i= Also 
includes history of lobular carcinoma in situ, age at cancer diagnosis for family history and history of ovarian cancer; j = Also includes hyperplasia, lobular carci-
noma in situ (LCIS), age at onset of breast cancer in a relative, bilateral breast cancer in a relative, ovarian cancer in a relative and male breast cancer; k = BOADICEA 
model also includes information on explicit family history of breast and other cancers, genetic factors such as pathogenic variants and unobserved genetic effects, 
breast tumor pathology and demographic factors (see Lee et al. 2019 [13]); l = Other factors includes sex hormone levels of estradiol; m = Also includess waist-to-
hip ratio. 

Age of breast cancer diagnosis in affected first- and second-degree relatives is also collected. ‡ = Results are presented stratified by age. a = Also includes
number of first-degree relatives with ovarian cancer; b = Presented as percentage mammographic density; c = Also includes microcalcifications and masses; d = Also includes a custom
gene panel (ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, NF1, PALB2, PTEN, RAD50, RAD51C, RAD51D and TP53) and weight; e = Also includes HRT type; f = Used as an interaction
between BMI and menopausal status at baseline; g = Also includes weight and history of ovarian cancer; h = Also includes year of birth, age at cancer diagnosis for family history and
history of ovarian cancer; i = Also includes history of lobular carcinoma in situ, age at cancer diagnosis for family history and history of ovarian cancer; j = Also includes hyperplasia,
lobular carcinoma in situ (LCIS), age at onset of breast cancer in a relative, bilateral breast cancer in a relative, ovarian cancer in a relative and male breast cancer; k = BOADICEA model
also includes information on explicit family history of breast and other cancers, genetic factors such as pathogenic variants and unobserved genetic effects, breast tumor pathology and
demographic factors (see Lee et al. 2019 [13]); l = Other factors includes sex hormone levels of estradiol; m = Also includess waist-to-hip ratio.



Cancers 2023, 15, 5380 20 of 34

3.4. Discriminatory Accuracy

Figures 2 and 3 show the discriminative performance of the individual risk models and
their 95% confidence intervals (CI) when provided. For the models including a PRS only,
105 measures of discrimination were reported representing different versions of certain
models (Supplemental Table S2). The discrimination measure values ranged from 0.48 (95%
CI = 0.43–0.53) [74] to 0.68 (95% CI = 0.61–0.75) [7]. For models including a combination of
genetic and non-genetic factors, a total of 93 measures of discrimination were also reported.
The discrimination measure values ranged from 0.52 (95% CI = 0.48–0.57) [57] to 0.77 (95%
CI = 0.75–0.79) [66]. The model by Shieh et al. (2017) [7], including only a PRS, had the
best predictive capacity and predicted the 5-year ER-positive risk in women of European
descent, whereas the one by Liu et al. (2021) [74] had the lowest predictive capacity and
predicted the 5-year overall BC risk in women of Latinx descent. The combined model
by Erikson et al. (2020) [66] had the best predictive capacity and predicted the 2-year
overall BC risk in women of European descent, and the combined model by Mealiffe et al.
(2010) [57] had the lowest predictive capacity and estimated the 5-year risk of ER-negative
BC in women of European descent. Due to differences in outcomes, predictors and time
frame, direct comparisons between models could not be made; thus, these results are
intended only to provide an overview of the models’ performance.

3.5. Calibration Accuracy

Of the 37 studies, 20 (54.1%) provided a measure of calibration for their models (details
shown in Supplementary Table S3) [12,23–25,43,45–48,51,53,57–59,61–63,70,71,73]. Most
studies used the Hosmer–Lemeshow test or the expected-to-observed (E/O) ratio. A few
studies also provided a calibration slope or plots. When looking at the Hosmer–Lemeshow
test, most models had p-values greater than 0.05, indicating no evidence of the data not
fitting the models. Indeed, since the Hosmer–Lemeshow test is often underpowered, a
p-value greater than a threshold should not by itself justify good calibration. On the other
hand, the E/O ratio had values ranging from 0.73 (95% CI: 0.63–0.85) [73] to 1.23 (95%
CI: 0.18–2.28) [70], indicating that models were either underpredicting or overpredicting
the risk of BC.

3.6. Net Reclassification Improvement

A measure of reclassification was provided in twelve studies [23,43,46–48,51,52,57,61,
63,65,71]. All but three studies [23,51,65] used the NRI to quantify the discriminatory ability
of the combined models with a PRS and genetic and non-genetic risk factors compared
to the same model without the PRS. Studies usually used a net reclassification measure
for cases (identified as events—NRIe) and controls (identified as nonevents–NRIne) at a
predefined risk threshold. NRI values ranged from −0.029 (p-value = 0.5) [47] to 0.181 (95%
CI 0.09–0.27) [43]. In general, the addition of the PRS to clinical risk prediction tools such
as the BCRAT or IBIS improved the classification of patients, with cases going into higher
risk categories and controls into lower risk categories.
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1 
 Figure 2. Discriminative performance of individual risk models, including only a PRS. Each dot rep-

resents a measure of discrimination for different versions (represented by the letters when applicable)
of risk models as described in Supplementary Table S2. The horizontal segment represents the 95%
CIs when provided. Blue, green and yellow dots indicate that the AUC, c-statistic and c-index were
the measure of performance, respectively.
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and non-genetic risk factors. Each dot represents a measure of discrimination for different versions
(represented by the letters when applicable) of risk models as described in Supplementary Table S2.
The horizontal segment represents the 95% CIs when provided. Blue, green and yellow dots indicate
that the AUC, c-statistic and c-index were the measure of performance, respectively.
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3.7. Sensitivity Analysis
3.7.1. Effect of Number of SNPs

The number of SNPs included in a PRS seemed to have a modest positive impact on the
predictive capacity of risk prediction models. Based on the studies that developed multiple
PRS with different numbers of SNPs [12,49,52,53,68,69,72,75], the predictive capacity of the
PRS increased only with a considerable increase in the number of SNPs. Otherwise, there
was no statistically significant change in performance. Husing et al. (2012) [52] developed
a PRS on women of European descent with 7, 9, 18 and 32 SNPs, and their AUCs were 0.56
(95% CI: 0.55–0.58), 0.57 (95% CI: 0.55–0.59), 0.58 (95% CI: 0.57–0.60) 0.58 (95% CI: 0.57–0.60),
respectively. Mavaddat et al. (2019) [12] validated a PRS with 77, 313 and 3820 SNPs for the
risk of overall BC in White women, and their AUCs were 0.61, 0.64 and 0.65, respectively.
Similarly, Liu et al. (2021) [74] validated three PRS developed in women of European
descent with 313, 3820 and 5218 SNPs, two PRS developed in women of Hispanic descent
with 71 and 180 SNPs and two PRS developed in women of African descent with 34 and
75 SNPs. The PRS with 313, 3820 and 5218 SNPs had respective AUCs of 0.59 (95% CI:
0.58–0.60), 0.60 (95% CI: 0.59–0.61) and 0.61 (95%CI: 0.60–0.62), whereas the PRS with 71
and 180 SNPs had respective AUCs of 0.48 (95% CI: 0.43–0.53) and 0.54 (95% CI: 0.47–0.62).
However, for the PRS developed on women of African descent, the predictive performance
decreased with an increasing number of SNPs. The AUC was 0.52 (95% CI: 0.48–0.55) for
34 SNPs and 0.50 (95% CI: 0.47–0.54) for 74 SNPs. The study by Jantzen et al. (2021) [53]
showed similar results with a PRS developed on White women with 10, 18, 77 and 86 SNPs.
Their respective c-index values were 0.643 (95% CI: 0.581–0.704), 0.634 (0.567–0.702), 0.608
(95% CI: 0.530–0.685) and 0.626 (95% CI: 0.545–0.706).

3.7.2. Effect of Age

Five studies stratified their models by age groups and presented a model for younger
women (usually less than 50 years old) and one for older women (usually 50 years and
older) [25,47,51,58,73]. Three studies [25,51,58] used the PRS developed by Mavaddat et al.
(2019) [12] with 313 SNPs and predicted the 5-year risk of overall BC in White women and
one [73] used the same PRS but predicted both the 5- and 10-year risk of invasive BC in
White women. Risk prediction tools tended to perform slightly better on younger women,
although differences were not statistically significant. Studies by Hurson et al. (2021) [51]
and Pal Choudhury et al. (2020) [58] used the iCare-Lit tool to validate their combined
models. Their respective AUCs for women younger than 50 were 0.64 (95% CI: 0.62–0.66)
and 0.65 (95% CI: 0.62–0.69). The corresponding values were 0.64 (95% CI: 0.63–0.65) and
0.62 (95% CI: 0.60–0.65) for those 50 years and older. Another study by Pal Choudhury et al.
(2021) [25] using the BOADICEA tool yielded similar results. The predictive performance
(AUC) for women younger than 50 years old was 0.70 (95% CI: 0.64–0.75), and for women
50 years and older, it was 0.65 (95% CI: 0.61–0.68). Lastly, the study by Li et al. (2021) [73]
validated the 5-year risk using the BOADICEA and IBIS tools. The c-statistic for women
younger than 65 years old were 0.66 (95% CI: 0.62–0.69) and 0.64 (95% CI: 0.61–0.68) and
for women 65 years and older, 0.60 (95% CI: 0.56–0.65) and 0.62 (95% CI: 0.57–0.67) for each
tool, respectively.

3.7.3. Effect of Combining a PRS and Genetic and Non-Genetic Risk Factors

Many studies reported results for a model including a PRS only and models including
the same PRS combined with genetic and non-genetic risk factors [23,43,44,46–48,51–53,55,
57,59–61,72,75]. When comparing the same models with and without the addition of risk
factors to the PRS, we observed that the combination of genetic and non-genetic risk factors
and a PRS improved the discriminative capacity. The model with the greatest improvement
from the combination of a PRS and genetic and non-genetic risk factors is the one by Dite
et al. (2016) [48]. This study, based on the BOADICEA tool, estimated the 5-year risk
and presented discrimination measures for the clinical risk factors only (AUC: 0.66; 95%
CI: 0.63–0.70), for the PRS only (AUC: 0.61; 95% CI: 0.58–0.65) and for the combined model
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(AUC: 0.70; 95% CI: 0.67–0.73). The same study also used the BRCAPRO tool, and the AUC
for clinical risk factors only was 0.65 (95% CI: 0.62–0.68) and 0.69 (95% CI: 0.66–0.72) for
the combined model. Another study by Shieh et al. (2016) [59] based on the BSCS tool
estimating the 5-year BC risk on women of East Asian descent showed great improvement
from the addition of a PRS with an AUC of 0.72 (95% CI: 0.62–0.82) for the combined model
compared to 0.64 (95% CI: 0.53–0.74) for the PRS only. One of the most comprehensive
models is the one by Yang X. et al. (2022) [23], combining a PRS and genetic and non-
genetic risk factors using the BOADICEA tool. Their PRS-only model had an AUC of 0.67
(CI 95%: 0.64–0.69), whereas the addition of genetic and non-genetic risk factors, including
information on family history, risk factors such as lifestyle, hormonal and reproductive risk
factors, mammographic density and pathogenic variants in BC susceptible genes such as
BRCA1 and BRCA2 provided an AUC of 0.70 (95% CI = 0.66–0.73).

3.7.4. Effect of Ethnicity

In general, models developed on populations of European descent performed better
than models developed on populations from other ethnicities. A study by Allman et al.
(2021) [44] validated the same model on three different populations: African Americans,
Whites and Hispanics. The AUCs were 0.57 (95% CI: 0.54–0.60), 0.64 (95% CI: 0.61–0.67)
and 0.60 (95% CI: 0.55–0.65), respectively. Liu et al. (2021) [74] also validated three PRS
originally developed on women of European descent in women of African and Latinx
descent. The AUCs were consistently lower in women of African and Latinx descent.
One PRS had AUCs of 0.60 (95% CI: 0.59–0.61), 0.55 (95% CI: 0.51–0.58) and 0.55 (95%
CI: 0.50–0.60) in women of European, African and Latinx descent, respectively. However,
models developed on populations of Asian descent tended to have similar predictive
performance to those from populations of European descent. Ho et al. (2020) [50] validated
the PRS developed by Mavaddat et al. (2019) [12] on an Asian population, which had
been previously validated on a White population. Both AUCs were close, with values of
0.61 and 0.63. A more recent study by Ho et al. (2022) [68] showed that a PRS developed
on a population of Asian descent using a Bayesian polygenic prediction approach and
a combination of European and Asian-specific SNP weights from a subset of SNPs by
Mavaddat et al. (2019) [12] provided an AUC of 0.64. In fact, PRS based on SNPs associated
with BC among a specific ethnicity performed better than general PRS. For example, Shieh
et al. (2016) [59] applied to an East Asian population a PRS with 76 SNPs associated with BC
in that subpopulation and a general PRS with 83 SNPs associated with European descent
populations. The Asian-specific PRS had an AUC of 0.64 (95% CI: 0.53–0.74), whereas the
general PRS in East Asians had an AUC of 0.62 (95% CI: 0.52–0.73).

3.7.5. Effect of Prediction Time Frame

Most models predicted the risk of BC within 5 or 10 years. Some models also predicted
the lifetime risk (i.e., until the age of 80 to 90). Generally, models with a shorter prediction
time frame had better predictive performances than models with a longer prediction time
frame. Two studies used the same model on the same population but varied the prediction
time frame [61,71]. The study by Starlard-Davenport et al. (2018) [61] predicted the 5-year
risk and the lifetime risk of BC in African American women. The 5-year risk model had
a slightly better performance than the lifetime risk model with an AUC of 0.68 (95% CI:
0.64–0.72) compared to 0.66 (95% CI: 0.62–0.70). We observed a similar pattern of results for
the study by Olsen et al. (2021) [71], predicting the 5-year and 3-year risk with AUCs of
0.70 (95% CI: 0.67–0.74) and 0.72 (95% CI: 0.68–0.77), respectively.

3.7.6. Effect of the Type of Risk Prediction Tools

Several risk prediction tools were upgraded with the addition of a PRS to genetic and non-
genetic risk factors. Indeed, many studies were based on the BCRAT (Gail model) [43,44,46–48,
52–54,57,58,61,70], IBIS (Tyrer–Cuzick) [25,43,45,48,53,58,62,69,73], BOADICEA [23–25,48,73],
BRCAPRO [48], iCARE-Lit [51,58] and BCSC [59,60,63] tools. For instance, Allman et al.
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(2021) [44] used a streamlined version of the Gail tool based only on risk factors such as age
and family history that could be easily used by physicians in the absence of the complete
information required by the tool. Models based on the BOADICEA tool usually performed
well, considering that it is the most comprehensive BC prediction risk tool in terms of risk
factors included. The value of their predictive statistic ranged from 0.62 (95% CI: 0.59–0.64)
to 0.70 (0.66–0.73). Several studies compared the predictive capacity of different tools on
the same population [25,43,48,53,58,73]. The predictive values of different tools tended
to be similar when validated on the same population. Jantzen et al. (2020) [53] used the
BCRAT and IBIS model with a PRS of 86 SNPs to evaluate the 5-year BC risk on White
women and had the same c-index value of 0.63 (95% CI: 0.56–0.70). This observation was
similar to the study by Allman et al. (2015) [43] comparing the same two tools but on
African Americans and Hispanics. For African Americans, the respective AUCs for the
BCRAT and IBIS tools were 0.59 (95% CI: 0.56–0.61) and 0.55 (95% CI: 0.52–0.58), whereas
for Hispanics, they were 0.61 (95% CI: 0.56–0.66) and 0.59 (0.54–0.64). Another study by
Dite et al. (2016) [48] predicting the 5-year risk of invasive BC on White women compared
four tools, namely the BOADICEA, BRCAPRO, BCRAT and IBIS tools, and obtained AUCs
of 0.70 (95% CI: 0.67–0.73), 0.69 (95% CI: 0.66–0.73), 0.67 (95% CI: 0.63–0.70) and 0.63 (95%
CI: 0.59–0.66), respectively.

3.7.7. Effect of Breast Cancer Subtypes

Some articles presented discrimination measures for overall BC risk and different sub-
types, usually estrogen-positive (ER+) and estrogen-negative (ER-) [12,45,47–50,57,67,70].
Three studies used the overall BC PRS within subtypes [47,48], one of which also con-
structed a subtype specific PRS using corresponding BC cases [70]. Four other studies used
the same set of SNPs as their overall BC PRS but assigned ER subtype-specific weights to the
SNPs [12,49,50,57]. Two other studies used a subset of SNPs associated with each ER sub-
type that achieved genome-wide significance at a predefined p-value [45,67]. Additionally,
two studies presented some results for progesterone-positive (PR+) and progesterone-
negative (PR-) BC (results not shown) [48,52]. Mavaddat et al. (2019) [12] validated a
313-SNP PRS to predict the 10-year risk of developing overall BC, ER+ and ER-. The
respective AUCs were 0.64, 0.65 and 0.61. Du et al. (2021) [49] used the PRS developed by
Mavaddat et al. (2019) [12] to predict the lifetime risk of overall BC, ER+ and ER- in women
of African descent and obtained AUCs of 0.58 (95% CI: 0.57–0.60), 0.59 (95% CI: 0.58–0.60)
and 0.56 (95% CI: 0.55–0.57), respectively. Ho et al. (2020) [50] evaluated the 10-year risk
using a 287-SNP PRS for Asian women and obtained AUCs for overall, ER+ and ER- BC
of 0.61, 0.63 and 0.59, respectively. On the other hand, Brentnall et al. (2020) [45] added a
143-SNP PRS to the Tyrer–Cuzick tool. When stratifying their results by BC subtypes, the
AUC for overall BC risk was 0.64 (95% CI: 0.61–0.67), 0.65 (95% CI: 0.62–0.68) for ER+ and
0.63 (95% CI: 0.54–0.71) for ER-. The models’ discriminating capacity seemed to be lower
for ER- BC subtypes.

3.8. Quality of Reporting

The TRIPOD checklist considers 22 items to be essential for good reporting of studies
developing or validating multivariable prediction models [30]. Of the 37 studies, only
four encompassed all the items on the checklist. The vast majority of studies did not
follow the title’s recommendation. Namely, they did not identify if the study was either a
development or a validation model. In the methods, the description of how the missing data
were handled was the most omitted item. For most studies, the results section was clear and
complete. However, seven studies did not report confidence intervals for all discriminative
measures [12,50,55,63–65,68]. Also, as recommended by the TRIPOD guidelines, calibration
performance should be included in all prediction models, but it was assessed less often
than discriminative performance. All studies reported their limitations and provided an
overall interpretation of their results given those limitations. Finally, other information,



Cancers 2023, 15, 5380 26 of 34

such as supplementary materials, was often provided, and a funding statement was present
in all studies.

3.9. Risk of Bias within Studies

Assessment of the risk of bias is presented in Figure 4 based on the four domains of
the PROBAST tool [35]. Overall, 19 studies were at low risk of bias, 7 were at high risk
and 11 were at unknown risk of bias. When the participant domain was at unclear risk, it
was mostly because participants’ inclusion or exclusion criteria were not described or not
described with enough details to determine if they were appropriate. For the predictors’
domain, the main reason for the high or unclear risk of bias was the absence of important
predictors such as age when the model was developed or validated. A couple of studies
were concerning for the outcome domain since it was unclear whether the outcome was
a preclinical stage of cancer [66,71]. Most risks of bias occurred in the analysis domain as
many development models did not account for complexities in the data, such as competing
risk or model overfitting, underfitting and optimism, or did not explain how they handled
missing data. These risks of bias, such as the potential overfitting, were mentioned in some
studies [64,68,72].
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4. Discussion

The goal of this systematic review was to appraise and critically assess different
prediction models incorporating a PRS used to estimate the risk of developing BC for
women in the general population. We identified 37 studies, of which 8 included genetic
factors only, whereas the rest combined genetic and non-genetic risk factors. The combined
models were based on 7 different risk prediction tools and provided 93 measures of
discrimination. For models’ development, the median value of discriminative performance
measures was 0.60 (range = 0.53 to 0.68) for models with PRS only and 0.62 (range = 0.52
to 0.77) for models combining PRS and genetic and non-genetic risk factors. For the
models’ validation, the median value of discriminative performance measures was 0.61
(range = 0.48 to 0.67) for models with PRS only and 0.64 (range = 0.55 to 0.70) for models
combing PRS and genetic and non-genetic risk factors. Although the increase in AUC from
the combination of the PRS and genetic and non-genetic risk factors may look small, from
a public health perspective, even a modest increase in discriminative performance may
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lead to a considerable improvement in overall risk stratification levels and be clinically
meaningful [23].

Comprehensive BC risk prediction tools incorporating known risk factors could have
two potential applications. They can be used as risk-stratification tools to improve the
ability to identify women in the general population at increased risk who would most
likely benefit from personalized screening recommendations. They can also be used as risk
prediction tools to predict the risk of developing overall BC and molecular subtypes in
healthy women. However, there are many aspects to consider when evaluating if these
tools could be part of clinical routine or public health practices for risk prediction and
stratification. The first is to determine the models’ capacity to predict the outcome of interest
in a defined population, known as the analytical validity [8]. The second is to evaluate the
clinical utility of the tools (i.e., their usefulness, benefits and harms) [8]. The first aspect
may be taken into account by evaluating, as performed in this review, the discriminating
capacity, the calibration or the fit of a model and, additionally, other performance measures
such as the net reclassification index that has been proposed as an alternative or adjunct to
discrimination and calibration measures [18].

A first consideration when assessing the predictive performance of a model is that a
risk prediction model should be developed in one sample of a data set and validated in a
separate independent sample or new data [30]. In fact, associations between risk factors
and BC derived from the same data set in which the model was developed may occur by
chance due to multiple testing. This problem becomes important with a relatively small
sample size with many risk factors included in the model. In studies with small sample
size, there is a serious risk of selecting unimportant variables and omitting some variables
relevant to the model [86]. At the same time, studies with a very large sample size are more
likely to include statistically significant variables but with little clinical importance [87].
Simulation studies have suggested that the ideal number of subjects with events should be
at least 10 and safer with 20 or more per risk factor in order to build a valid model [88,89].
As per the results of our review, the number of variables included in the models varied
from 2 to 25 variables, so the required number of BC cases should range between 20 and
500 subjects. In this regard, two models could present issues. The model estimating the
10-year ER-negative BC risk by Brentnall et al. (2020) [45] with an AUC of 0.63 (95% CI:
0.54–0.71) had 39 cases for 7 predictors, including the PRS score. The same situation is also
present with the model by Shieh et al. (2016) [59] with an AUC of 0.72 (95% CI: 0.65–0.79)
but 51 cases for 7 predictors, including the PRS score. Therefore, these models could lead
to overoptimistic results in the validation data [90]. However, robust methods can facilitate
variable selection, especially when there is a large number of predictors, and can account
for many challenges in SNP selection and model specification [91]. Thus, some studies
have used more sophisticated methods to select or develop their PRS, such as penalized
regression or Bayesian approach [12,67,68,70,72] and show promising results, particularly
in diverse populations.

As models perform better in the sample in which they were developed rather than in
a different sample or a completely new population, model development should include a
validation process. However, about a third of the models did not present any validation
(i.e., internal or external validation), which brings concerns regarding the validity of
some models as they might not be ready to be used. Nonetheless, several studies were a
validation or an extension of existing prediction models. While the addition of a PRS to
existing models increased their discriminative accuracy, the number of SNPs considered in
the PRS varied widely from one study to another. It could be another factor influencing
their predictive performance. SNPs included in a PRS should be inherited independently
(i.e., in linkage equilibrium). Some studies excluded SNPs in high linkage disequilibrium
from those reported in the original study [75] or used them as proxies for risk variants not
available in their dataset [52,59,75]. With the discovery of more SNPs from larger GWAS,
the AUC of the risk prediction models is improving. For instance, the oldest model by
Mealiffe et al. (2010) [57] had an AUC of 0.58 (95% CI: 0.57–0.60) for the prediction of overall
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BC using only a 7 SNP-PRS while a more recent model by Mavaddat et al. (2019) [12] had an
AUC of 0.63 (95% CI: 0.63–0.65) for the prediction of overall BC using only a 313 SNP-PRS.
Since a small improvement in AUC can have a significant impact on risk stratification, one
relevant parameter to evaluate a PRS should be the proportion of the polygenic variance
attributable to the PRS as expressed by the odds ratio per 1 standard deviation [14].

Another consideration when developing a risk prediction tool is to choose the time-
frame for which risk should be predicted [18]. Follow-up time has been shown to have an
impact on discriminative accuracy measures such as the concordance index and is likely
important to understand differences in predictive ability [92,93]. In our review, the model
with the highest discriminative accuracy had the shortest prediction time frame. In fact, the
model by Eriksson et al. (2020) [66] had an AUC of 0.77 (CI 95%: 0.75–0.79) but estimated
the 2-year BC risk, whereas most models predicted the 5-year, 10-year or lifetime risk.
However, models evaluating short time frames would likely identify existing cancers or
preclinical cases. The lead time for BC, which is the period between the early detection of
BC by screening and the moment the cancer clinically presents or is diagnosed, is about
two to three years [94]. Thus, models predicting two or three-year risk are more likely to be
diagnostic tools and be considered as screening tests. Tools with longer timeframes could
be more effective in predicting BC risk in a screening setting for risk stratification and be
used as complements of early detection tools [66].

The choice of the risk prediction tool, especially in a public health setting, should
also be examined [18]. In our review, based on the latest version of the risk prediction
tools and considering the overall risk of bias and the population size, we observed that
the best combined models were validation models derived from the BOADICEAv.6 and
the Tyrer–Cuzick v.8 tools [23,25]. Both models predicted the 5-year risk of overall BC
in White women and used the 313-SNP PRS developed by Mavaddat et al.(2019) [12].
Although both models have limitations, including that they are not as well-calibrated in
non-White populations, the Tyrer–Cuzick tool for women over 50 provided an AUC of 0.69
(95% CI: 0.64–0.75), and the BOADICEA provided an AUC of 0.70 (95% CI: 0.66–0.73). The
Tyrer–Cuzick tool used a wide range of non-genetic risk factors but was missing important
risk factors such as breast density. The BOADICEA tool was the most comprehensive,
combining genetic risk factors such as the PRS and pathogenic variants in BC susceptibility
genes as well as non-genetic risk factors, including breast density.

Some tools included predictors easily collected in routine clinical practice or even by
questionnaires like smoking status and BMI, whereas others include predictors requiring
an extensive medical examination. For example, biopsy histopathology (i.e., the presence
of atypical hyperplasia) increases the risk of a woman for BC and is included in the BCRAT
model [95]. However, it can be difficult or expensive to collect and, therefore, has limited
use in a population-wide public health approach. Indeed, most models that considered this
predictor did not have the information and coded the variable as unknown [43,47,48,57,73].
On the other hand, including unique risk factors such as mammographic masses and
microcalcifications, as performed by Eriksson et al. (2020) [66], could improve BC risk
prediction tools. Lastly, the effect of some risk factors, such as family history, needs to be
carefully considered as it may inflate the value of AUC when cases have enriched and
strong family history of BC. This has been shown in the study by Starlard-Davenport et al.
(2018), reporting an AUC of 0.68 (CI 95%: 0.64–0.72) for the 5-year risk of overall BC in
African American women that was significantly higher than other models developed in
African American women but unselected for family history [61].

The heterogeneity of populations is also challenging when choosing a prediction tool.
We observed that only a limited number of risk models were developed or validated in
non-White populations. The models developed or validated on individuals of Latin or
African descent performed particularly poorly, with the highest AUC of 0.68 (CI 95%:
0.64–0.72) for African descent [61] and 0.60 (CI 95%: 0.55–0.68) for Latin descent [44].
In comparison, models developed or validated in Asian women showed fairly similar
performance to the ones developed in White populations [50], with the highest AUC
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of 0.72 (CI 95%: 0.62–0.82) [59]. When integrating PRS into public health practice, we
need to ensure that it does not exacerbate health disparities. Currently, risk prediction
tools, including a PRS, are not easily generalizable across diverse populations. Other
ethnic groups have been underrepresented in GWAS, including about 80% of participants
from European ancestry [96,97]. This is even more problematic for African, Hispanic or
Indigenous individuals who were included in less than 4.0% of the GWAS studies from
the first decade of their development [98]. The poor performance of models for non-White
populations may be explained by the fact that PRS are usually calculated as a weighted sum
of the risk alleles of SNPs derived from GWAS. However, most PRS do not account for effect
sizes being different than the reference of populations of European descent [98,99]. Also,
events such as the “flip-flop” phenomenon where a variant is a risk factor in one population
but a protector in another have been observed in about 30 to 40% of variants across studies
and affect the performance of risk prediction models [11,78]. Thus, the performance of the
PRS declines with increasing genetic divergence from the reference population, resulting
in attenuated associations partly due to variation in linkage disequilibrium patterns and
allele frequencies. Therefore, many researchers and organizations have raised the need for
more diverse biobanks to conduct GWAS [100].

In conclusion, although the addition of new risk factors such as SNPs has improved
the discriminative ability of risk prediction models, they still need to be further evaluated
to address the potential barriers to using these tools and the appropriate threshold for
interventions and/or recommendations [17,18]. Also, there is currently no recommen-
dation for any tools predicting individual risk to be used as the standard in a screening
context. Therefore, comparative assessment and validation of risk prediction models in the
same populations would be necessary to evaluate the effect of individual risk factors and
determine which tool could be useful at the population level [25,101].

5. Strengths and Limitations

Our review has many strengths worth mentioning. To our knowledge, this is the
first systematic review focusing specifically on BC risk prediction models, including a
PRS. We used a rigorous methodologic approach where two reviewers independently
performed each step of study selection and data extraction. The publication of the review
protocol was another strength that ensured transparency in our work. Finally, including
multiple measures of discrimination from the same study allowed us to appraise the
incremental improvement resulting from adding genetic and non-genetic factors to the PRS.
However, our review also has some limitations. Although two reviewers were involved
in identifying the studies, we cannot exclude the possibility that some studies might have
been missed. In fact, genetic research related to cancer is a growing field, and new articles
on the subject are published regularly. We included only studies published in English or
French, and those available in the gray literature or published in other languages were not
considered. Also, we did not include studies focusing on the development or validation of
new methodological methods for risk prediction tools or simulation studies, as those were
outside the scope of this review. Furthermore, it was not possible to present pooled results
of individual studies in a meta-analysis due to the heterogeneity of included studies in
terms of predictors and PRS. Some limitations were due to the quality of individual studies.
A measure of calibration or reclassification was not always provided in models, making
it difficult to determine how close the estimated risk was to the predicted risk. Finally,
studies showed the predictive performance of models, but only some of them considered
the clinical and practical utility of these models [102].

6. Conclusions

Our research brings evidence on BC risk prediction tools incorporating a PRS. This
review shows that the combination of genetic and non-genetic risk factors and PRS tends
to increase the predictive performance compared to the PRS only and can improve risk
stratification in the population. While most tools’ discriminative accuracy was still modest,
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predictive performance is only one component when considering if a risk prediction tool
will be implemented and useful in a clinical or public health setting. Many barriers,
legal, social, ethical and economic, can influence the implementation of a prediction tool.
Therefore, this review is only a first step in understanding the issues related to the validation
of BC risk prediction tools, including a genetic risk score, and more studies are needed to
shed light on potential challenges in implementing these tools.
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