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Simple Summary: Despite remarkable progress in the treatment of acute lymphoblastic leukemia
(ALL) in recent years, it remains a significant contributor to pediatric cancer-related deaths. This
highlights the urgent need for innovative therapeutic strategies that target the genetic alterations
driving ALL. We built a novel zebrafish disease model for ETV6::RUNX1-positive ALL, which
harbors secondary lesions in the two commonly mutated genes, pax5, and cdkn2a/b. The introduction
of secondary mutations significantly augmented the incidence of disease. This model provides
a valuable tool for investigating the etiological role of secondary mutations and facilitating the
evaluation of drug sensitivities in the future.

Abstract: Approximately 25% of children with B-cell precursor acute lymphoblastic leukemia
(pB-ALL) harbor the t(12;21)(p13;q22) translocation, leading to the ETV6::RUNX1 (E::R) fusion gene.
This translocation occurs in utero, but the disease is much less common than the prevalence of the
fusion in newborns, suggesting that secondary mutations are required for overt leukemia. The role of
these secondary mutations remains unclear and may contribute to treatment resistance and disease
recurrence. We developed a zebrafish model for E::R leukemia using CRISPR/Cas9 to introduce the
human RUNX1 gene into zebrafish etv6 intron 5, resulting in E::R fusion gene expression controlled by
the endogenous etv6 promoter. As seen by GFP fluorescence at a single-cell level, the model correctly
expressed the fusion protein in the right places in zebrafish embryos. The E::R fusion expression
induced an expansion of the progenitor cell pool and led to a low 2% frequency of leukemia. The
introduction of targeted pax5 and cdkn2a/b gene mutations, mimicking secondary mutations, in
the E::R line significantly increased the incidence in leukemia. Transcriptomics revealed that the
E::R;pax5mut leukemias exclusively represented B-lineage disease. This novel E::R zebrafish model
faithfully recapitulates human disease and offers a valuable tool for a more detailed analysis of
disease biology in this subtype.

Keywords: childhood pB-ALL; disease model; CRISPR/Cas9-based knock-in; zebrafish

1. Introduction

A common feature of childhood acute lymphoblastic leukemia (ALL) is the frequent
occurrence of recurring chromosomal translocations [1]. The most prevalent translocation,
t(12;21)(p13;q22), is found in 25% of B-cell precursor ALL (pB-ALL) cases and creates an
in-frame fusion that includes the repressive domain of the transcription factor ETV6 and
the RUNT DNA binding domain of the transcription factor RUNX1 [2–5].
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Studies involving monozygotic twins diagnosed with pB-ALL, along with dried blood
spot card studies, have demonstrated that the E::R fusion arises in utero [6–8]. It occurs in
≈1–5% of normal newborns, which is far above the leukemia incidence of ≈0.01% [6,9,10].
The latency between its formation and the disease presentation can be up to a decade
or more [7,11]. Moreover, studies in mice have revealed that the E::R fusion gene, when
expressed under the control of the endogenous Etv6 promoter, induces leukemia at a notably
low frequency. A higher incidence of leukemia occurred after introducing additional
genetic defects through methods such as chemical mutagenesis, Sleeping Beauty transposon
expression, or crossbreeding with mice harboring Pax5 or Cdkn2a/b deletions [12–14]. These
observations indicate that the E::R fusion protein is insufficient for the induction of overt
ALL, suggesting that secondary mutations are required for leukemogenesis. Recent studies
have revealed that these mutations differ between patients [15,16].

Children with E::R-positive pB-ALL are known to have favorable outcomes, with
event-free survival up to 97%, as reported in recent studies [17–20]. However, a subset of
patients experience relapse, and conventional treatment strategies lead to significant ther-
apy burdens and severe long-term side effects, calling for novel and improved treatment
strategies [18]. Since there is evidence suggesting that secondary oncogenic mutations
can predict drug responses, there is potential for the creation of personalized therapeutic
strategies [21,22]. To develop such approaches, it is crucial to employ a model that pos-
sesses conserved genetic processes controlling hematopoiesis, that are easily genetically
manipulable, and that has high fecundity. The zebrafish, Danio rerio, fulfills these crite-
ria [23–28]. Furthermore, tumors developing in zebrafish cancer models exhibit histological
and molecular similarities to their human counterparts, emphasizing their suitability for
pre-clinical research [29–33].

Recently, an E::R zebrafish model expressing the human E::R fusion protein under the
control of a ubiquitous promoter was developed. Around 3% of the fish developed pB-ALL,
and this model was successfully utilized to identify the cellular origin of E::R-induced
leukemia [31]. One limitation of this model was the ubiquitous expression of the E::R
fusion protein, deviating from physiological sites and levels. To address this constraint,
we used the CRISPR/Cas9 technology to bring the E::R fusion gene expression under
the control of the endogenous etv6 promoter, thus confining its expression to bona fide
etv6-expressing cells at physiological levels. Subsequently, we modified this model by
introducing targeted lesions in the pax5 and cdkn2a/b genes that are commonly mutated in
E::R-positive childhood pB-ALL.

2. Materials and Methods
2.1. Donor Plasmid Construction

To establish an etv6+/RUNX1 knock-in zebrafish line (E::R zebrafish line), we utilized the
GeneWeld technique, which employs the CRISPR/Cas9 genome editing system and short
homology arms for directed integration of transgenes into the genome [34,35]. To enable
this, we created a donor plasmid compatible with the GeneWeld method by modifying the
original pGTag-TagRFP-B-actin vector (Addgene, Watertown, MA, USA, #117808) [34]. First,
we replaced the insert (TagRFP-B-actin-terminator) of the vector with the gene-breaking
cassette (3440 bp), which contained the following components in the 5’ to 3’ direction:
the carp b-actin intron 1 splice acceptor, a partial cDNA of human RUNX1 (NM_001754;
exon 2–8), the P2A sequence from porcine teschovirus-1, the cDNA of GAL4-VP16, and
the ocean pout antifreeze gene transcriptional termination and polyadenylation (TE) se-
quence. Plasmid construction was achieved by sequentially inserting PCR fragments or
annealed oligonucleotides (oligos). The plasmids PME-Gal4VP16, pGBT-RP2-1, and a plas-
mid containing RUNX1 human untagged clone (Origene, Rockville, MD, USA; #SC123977)
(Addgene, Watertown, MA, USA, #31828) served as templates for PCR reactions [36,37].
A detailed description of the vector assembly, the sequences of the oligos utilized for its
construction, and the sequence of the plasmid can be found in Supplementary Materials
(Method S1, Figure S1, and Table S1).
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We proceeded by integrating appropriate homology arms into the newly generated
plasmid. To achieve this, we first identified a target site within intron 5 of the zebrafish
etv6 gene (BC045451.1) using CRISPRScan (http://www.crisprscan.org/; accessed on the
2 February 2020) (Method S2, Figure S2, Table S2) [38]. Subsequently, 5′ and 3′ homology
arms were designed, each spanning 48 base pairs and flanking the desired genomic double-
strand break (DSB) site. These homology arms were incorporated into the newly formed
plasmid as annealed oligos, thus framing the gene-breaking cassette. The protocol outlined
by Welker et al. in 2021 was followed, and a summary of the homologous arm design is
shown in Figure S3 [35]. Verification of the donor plasmid sequence was performed by
Sanger sequencing and restriction digest analysis.

2.2. In Vitro Transcription of sgRNAs and Cas9 mRNA

Genomic target sites in exon 3 and exon 5 of pax5 (BX511134.8) and exon 2 of cdkn2a/b
(CT573245.20) were identified using CRISPRscan (Table S2) [38]. DNA templates with a 5’
T7 promoter followed by the target sgRNA sequence were assembled by annealing oligos
and amplified using PCR as outlined in Varshney et al., 2015 (Table S3) [39]. In vitro, tran-
scription reactions were initiated using the MEGAscript™ T7 Transcription Kit (Invitrogen,
Carlsbad, CA, USA) by adhering to the manufacturer’s guidelines.

Capped Cas9 mRNA was generated through in vitro transcription using the XbaI-
linearized plasmid pT3TS-nCas9n (Addgene, Watertown, MA, USA, #46757) as the template
and the mMESSAGE mMACHINE T3 Kit (Invitrogen, Carlsbad, CA, USA) [40]. The kit
was used according to the manufacturer’s recommendations.

The synthesized RNAs were purified using the MEGAclear™ Transcription Clean-Up
Kit (Invitrogen, Carlsbad, CA, USA). To ensure quality, the concentrations of the Cas9
mRNA and the sgRNAs were measured with a Nanodrop, and their integrity was checked
on a 0.9% or 1.5% agarose gel, respectively.

To evaluate sgRNA-guided Cas9 mRNA activity, we conducted a T7 endonuclease
I assay (New England Biolabs, Ipswich, MA, USA) as previously described, using the
primers listed in Table S4 for the amplification of the respective genomic regions [41].

2.3. Generation of the Transgenic and Mutant Zebrafish Lines

To establish the E::R zebrafish line, we microinjected 2 nL of a solution consisting
of 150 pg of Cas9 mRNA, 25 pg of sgRNA targeting intron 5 of etv6, 25 pg of universal
sgRNA, and 10 pg of the donor plasmid into the cytosol of single-stage embryos of the
Tg(UAS:EGFP-CAAX)m1230 (UAS:GFP) line [42]. The following day, we selected embryos
displaying GFP fluorescence, nurtured them to maturity, and bred them with the UAS:GFP
reporter line. Founder fish were identified by producing F1 offspring exhibiting green
fluorescence in tissues known to express etv6 mRNA [43]. The integration of the gene-
breaking cassette was further confirmed in these offspring by first using PCR to amplify
specific genomic regions and then subjecting the amplified DNA to Sanger sequencing
(Figure S4 and Table S5). GFP-positive F1 offspring were raised to adulthood and used for
further breeding with the UAS:GFP line to produce GPF-positive F2 families, which were
continually monitored for leukemia development.

To establish the F0 generation E::R;pax5mut cohort harboring the E::R knock-in and a
pax5 mutation, we delivered two sgRNAs (25 pg each), targeting either exon 3 or exon 5 of
pax5, along with 300 pg of Cas9 mRNA in a 2 nL volume to one-cell stage embryos derived
from a cross between the E::R zebrafish line and the UAS:GFP line via microinjection.
The following day, we verified successful mutagenesis in some of the injected embryos
by using the T7 endonuclease I assay (Table S4) [41]. From the remaining embryos, we
selected those that were GFP-positive, raised them to adulthood, and monitored them for
the development of tumors.

To create the E::R;cdkn2a/b+/− zebrafish line, we initially generated a cdkn2a/b+/−
zebrafish line. This was accomplished by microinjecting 2 nL of a solution containing three
sgRNAs targeting the exon 2 of cdkn2a/b (each sgRNA at 12 pg) alongside 300 pg of Cas9

http://www.crisprscan.org/


Cancers 2023, 15, 5821 4 of 19

mRNA into single-cell-stage embryos from the UAS:GFP line (Table S2). F1 generation
cdkn2a/b+/− zebrafish were established using standard procedures [44]. They carry a
frameshift mutation in one allele of the cdkn2a/b gene, resulting in a premature stop codon
after 210 nucleotides (Figure S5). These F1 fish were subsequently bred with the E::R
zebrafish line to establish a stock of E::R;cdkn2a/b+/− zebrafish. The E::R;cdkn2a/b+/− fish
line was inspected regularly for signs of leukemia.

2.4. Flow Cytometry Analysis

Entire kidneys were obtained from zebrafish and subsequently disintegrated through
grinding between two etched glass slides. The material was then rinsed into a Petri dish
with ice-cold 0.9× PBS containing 5% FBS (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA) (flow cytometry buffer). This suspension was subsequently passed
through a 35 µm cell-strainer cap into a 5 mL tube to remove debris and obtain a so-
lution of individual cells. From there, the single-cell suspensions were transferred into
1.5 mL Eppendorf tubes and pelleted by centrifugation (1200× g; 7 min; 4 ◦C). Cells
were washed twice more in flow cytometry buffer and then stained with propidium io-
dide in flow cytometry buffer to facilitate the exclusion of dead cells (1 µg/mL). Next,
cells were differentiated by light scatter features as outlined below (CytoFLEX, CytEx-
pert v2.5, Brea, CA, USA): forward scatter (FSC)low corresponds to mature erythroid cells;
FSChigh and side scatter (SSC)high correspond to myelomonocytes (consisting of neutrophils,
monocytes, macrophages, and eosinophils); FSCintermediate (int) and SSClow contain lympho-
cyte cells (B lymphocytes, lymphoid progenitors, and hematopoietic stem cells). FSCint

and SSCint contain immature progenitors (myeloid, lymphoid, and erythroid precursors).
All quantifications were carried out using FlowJo software (v. 10.8.1, BD Biosciences,
Franklin Lakes, NJ, USA) [45].

2.5. Giemsa Staining of Peripheral Blood Smears of Adult Zebrafish

After euthanizing the zebrafish using a 300 mg/L MS-222 (Sigma-Aldrich,
Saint Louis, MO, USA) solution, a small incision was made in the caudal vein with a scalpel
to collect a blood sample, which was anticoagulated using a 3.8% sodium citrate solution
(Sigma-Aldrich, Saint Louis, MO, USA). Subsequently, a thin blood smear was prepared
on a glass slide and allowed to air-dry for 30 min. Then, the smear was fixed in methanol
(Sigma-Aldrich, Saint Louis, MO, USA) for 7 min and subsequently air-dried until the
methanol had evaporated. For staining, a Giemsa (Sigma-Aldrich, Saint Louis, MO, USA)
working solution was prepared by diluting the stock solution 1 to 9 in Milli-Q H2O and
applying it to the smear, allowing it to incubate for 1 h. Following staining, the sample was
observed under a Zeiss Axio Scope.A1 microscope (Zeiss, Oberkochen, Germany) and lym-
phoblasts were identified by their characteristically high nuclear-cytoplasmic ratio. Pictures
were captured using an Axiocam 506 color camera (Zeiss, Oberkochen, Germany), and
image acquisition was performed using ZEN 3.0 software (Zeiss, Oberkochen, Germany).
Subsequently, images were processed with Fiji (ImageJ, v. 1.59i).

2.6. Hematoxylin and Eosin Staining on Paraffin Sections of Whole Adult Zebrafish

Zebrafish were euthanized as described in Section 2.5. and subsequently fixed in a
4% paraformaldehyde (Sigma-Aldrich, Saint Louis, MO, USA) solution overnight at 4 ◦C
with continuous agitation. Following fixation, the fish were immersed in a 20% EDTA
(Sigma-Aldrich, Saint Louis, MO, USA) solution (20 g of EDTA per 100 mL of PBS, pH
adjusted to 7.2–7.3 with NaOH) for decalcification. This process lasted for 8 days at room
temperature. In the following, the zebrafish were thoroughly rinsed with Milli-Q H2O
and then dehydrated through a series of alcohol baths before being embedded in paraffin
wax [46]. Subsequently, sagittal sections of the fish were cut to a thickness of 5 µm using
a microtome.

To highlight cellular structures, we stained the sections with Hematoxylin and Eosin
(Sigma-Aldrich, Saint Louis, MO, USA). The process involved immersing the sections in
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a Hematoxylin solution for approximately 5 min to selectively stain nuclei blue–purple,
followed by counterstaining with Eosin for about 2 min to color the cytoplasm and other
structures. After staining, the sections were dehydrated, cleared in xylene, and subsequently
examined under a Zeiss Axio Scope.A1 microscope. Images of different tissues were
captured using an Axiocam 506 color camera. Image acquisition and processing were
performed as described in Section 2.5.

2.7. Western Blotting

Nuclear proteins from kidney marrow cells were extracted using the Thermo Scien-
tific™ NE-PER Nuclear and Cytoplasmic Extraction Kit (Thermo Fisher Scientific,
Waltham, MA, USA) following the instructions of the manufacturer. After extraction,
these proteins were electrophoresed on Mini-PROTEAN® TGX Stain-Free™ Precast 10%
gels (Bio-Rad, Hercules, CA, USA), transferred onto a 0.2 µm PVDF membrane using the
Trans-Blot Turbo Transfer System (Bio-Rad, Hercules, CA, USA), and processed using
standard methods. As primary antibodies, rabbit anti-human RUNX1 antibody (1:400 in
5% BSA, ab 23980, Abcam, Cambridge, UK) and rabbit anti-β-Actin (1:60,000 in 5% BSA,
sc-1615-R; Santa Cruz Biotechnology, Santa Cruz, CA, USA) were used. As a secondary
antibody, the goat anti-rabbit IgG antibody was conjugated to Horseradish Peroxidase
(1:7000 in 5% BSA, #7074S, Cell Signaling Technology, Danvers, MA, USA). Chemilumi-
nescence was initiated with Cell Amersham ECL Reagent (GE Healthcare, Chicago, IL,
USA) and detected using ChemiDocTM XRS+ with Image LabTM Software (version 6.0.1,
Bio-Rad, Hercules, CA, USA). Protein sizing relied on the PageRuler Plus prestained ladder
(Thermo Fisher Scientific, Waltham, MA, USA), and image processing was performed with
Fiji (ImageJ, v. 1.59i).

2.8. Isolation of Total RNA from Whole Zebrafish and Kidney Tissue

We employed TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA), following the
manufacturer’s guidelines, to isolate total RNA from kidney tissue and whole zebrafish
(30 days post-fertilization). The RNA obtained was subsequently purified using the RNeasy
Mini kit (Qiagen, Hilden, Germany), following the manual provided with the kit. On-
column DNA digestion was performed using the RNase-free DNase set from Qiagen
(Qiagen, Hilden, Germany), as recommended by the manufacturers. The total RNA was
used for either transcriptomics or as the starting material in the synthesis of cDNA with
iScript (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions.

2.9. Statistics and Language Editing

Statistical analyses were conducted using GraphPad Prism 8.0.2 (GraphPad,
La Jolla, CA, USA) with two-tailed Student’s t-tests. The statistical significance was repre-
sented as ‘ns’ for no statistical significance, * p < 0.05, ** p < 0.01, and *** p < 0.001.

Large Language Models (LLM) were used for English language editing.

2.10. Zebrafish Maintenance

Zebrafish were maintained and provided by the Tampere Zebrafish Core Facility
(Tampere University, Tampere, Finland) at standard conditions [47,48].

2.11. RNA Sequencing and Bioinformatics Analysis

Library preparation and RNA sequencing of tumors were performed by Novogene
(Novogene, Cambridge, UK). In addition, publicly available raw RNA-seq data for
103 samples from three separate zebrafish studies was downloaded from the Sequence
Read Archive (SRA) by utilizing the sra-toolkit v. 2.11.1 to retrieve the fastq files [49–51].

Analysis of all RNA-seq data was performed by utilizing the nf-core/RNA-seq
pipeline, version 3.12.0, which employs Nextflow v23.04.1 [52]. In summary, the anal-
ysis included quality control of read data with FastQC (v0.11.9), adapter, and quality
trimming by Trim Galore! (v. 0.6.7) and read alignment to the reference genome GRCz10
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by STAR (v. 2.6.1d), while quantification of gene expression was performed by utilizing
Salmon. The merged gene counts generated by Salmon (v. 1.10.1) were further processed in
R by utilizing the EdgeR package (v. 3.38.4), normalizing the data by using the trimmed
mean of M-values (TMM) method, adjusting the data for library size, and finally perform-
ing log2 transformation for the counts per million (CPM)-scaled read counts. These steps
were performed for the data from the present study (n = 11) as well as the data combined
from the present study and the public datasets (n = 114). Genes lowly expressed in all
cell types (B-ALL and healthy samples of the present study, and publicly available B-ALL,
T-ALL, biphenotypic ALL, transplanted T-ALL, and thymocyte samples) were excluded by
utilizing the FilterByExpr function.

Differential expression (DE) analyses were conducted by utilizing the limma R package
(v3.52.4), determining the mean–variance relationship of the count data by using precision
weights calculated by the voom function, while the lmFit function was used to fit a linear
model to the expression value of each gene and the eBayes function to perform the empirical
Bayes moderation on the linear model fit. DE analyses were performed for multiple
different comparisons, including E::R;pax5mut leukemia samples versus healthy controls
in the present study. We also compared the E::R;pax5mut zebrafish transcriptomes to
the publicly available zebrafish T-ALL samples, as well as grouped them with the other
zebrafish B-ALL samples to determine the DE genes between all (putative) zebrafish B-ALL
and T-ALL transcriptomes. The significant DE genes were determined for each comparison
by applying the adjusted p-value cutoff of 0.05. The DE genes were compared to B and T
lineage genes collected from a variety of studies [49–51]. Both ComplexHeatmap (v. 2.12.1)
and ggplot2 (v. 3.4.4) R packages were utilized in the visualization of gene expression data.

For comparison, the RNA-seq data of the 11 samples from the present study was
also analyzed by utilizing the Galaxy platform, which enabled alignment to the zebrafish
reference genome GRCz11 [53]. Similarly, the analysis included quality checks with FastQC,
alignment of sequencing reads using STAR, quantification of gene expression with fea-
tureCounts, and DE analysis using DESeq2 [54,55]. Moreover, the GOseq Bioconductor
package was utilized to determine enriched pathways and gene ontologies (GO) in the DE
genes between the tumor and control samples [56].

3. Results
3.1. Generation of the ETV6::RUNX1 Zebrafish Model

We aimed to generate a zebrafish line in which the expression of the E::R fusion gene
is driven by the endogenous etv6 promoter. We used the GeneWeld method, which com-
bines the CRISPR/Cas9 system and a donor vector containing the transgene and short
homology arms, to achieve precise integration of transgenes into the zebrafish genome
(Figure 1a) [34,35]. Using this method, we introduced a gene-breaking cassette, SA-RUNX1-
P2A-GAL4-TE, into intron 5 of the endogenous etv6 gene. This cassette contains a segment
of human RUNX1 cDNA (exons 2–8) with a carp b-actin intron 1 splice acceptor positioned
before it. As depicted in Figure 1b, downstream of the RUNX1 cDNA, we inserted the
coding sequence for a self-cleavable peptide, P2A, derived from porcine teschovirus-1,
along with the cDNA of the transcriptional activator GAL4-VP16 and the transcriptional
termination and polyadenylation sequence of the ocean pout antifreeze gene [57–59]. To
generate E::R transgenic founders, the components of the GeneWeld method were intro-
duced into one-cell stage embryos derived from the UAS:GFP line. A germline transmission
rate of 1% (2 out of 208 fish) was achieved with precise integration of the 3440 bp long
cassette in the F0 founders (Figure S4).

RT-PCR performed on cDNA derived from twenty whole 30 day old F1 generation E::R
zebrafish confirmed the expression of the E::R fusion transcript. Sequencing further proved
the faithful splicing of the etv6 and RUNX1 transcripts, resulting in an in-frame fusion
transcript (Figure 1c). The GFP fluorescence pattern in F1 generation E::R embryos and
larvae recapitulated the expression pattern of etv6 mRNA recently observed in wild-type
zebrafish by mRNA in situ hybridization [43]. GFP-positive cells were primarily located
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in tissues associated with primitive and definitive hematopoiesis, including the caudal
hematopoietic tissue, which is analogous to the human fetal liver, the presumed site for
the t(12;21)(p13;q22) translocation (Figures 1d and S6) [60,61]. Hence, single-cell resolution
analysis of GFP-positive cells suggested that expression of the E::R fusion was driven by
the endogenous etv6 promoter.
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The GFP-expressing E::R zebrafish lines were propagated by crossing with the UAS:GFP
line. Stable Mendelian transmission was observed for over three generations by monitoring
the number of GFP-positive embryos in the clutches.

3.2. ETV6::RUNX1 Zebrafish Have an Expansion of the Precursor Cell Pool and a Low Incidence
of Leukemia

Considering the substantial roles of the ETV6 and RUNX1 genes in blood cell develop-
ment, we investigated whether the E::R zebrafish line exhibited any defects in hematopoi-
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etic differentiation [12,62]. To achieve this, we analyzed the whole kidney marrow of
4 to 5 month old fish from the E::R (F3 generation; n = 10) and UAS:GFP lines (n = 10) by
using flow cytometry. To this end, we utilized light scatter properties that were recently
assigned to each blood cell lineage [45]. Since erythrocytes were damaged during the prepa-
ration of single-cell suspensions, they were excluded before quantification with the FlowJo
software (Figure S7). A statistically significant increase in the precursor cell population
was observed in the kidney marrow of the E::R zebrafish compared to the UAS:GFP fish
(p = 0.0008), while the myeloid cell fraction was diminished (p = 0.0238). No changes were
observed in the lymphoid cell fraction (Figure 2).
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Figure 2. Flow cytometry analysis of major blood cell lineages in the whole kidney marrow of
the ETV6::RUNX1 (E::R) zebrafish based on light scatter characteristics. (a) Flow cytometry plots
representative of the UAS:GFP and E::R zebrafish lines are shown. (b) Scatter plots representing
the percentage of cells in precursor, myeloid, and lymphoid fractions for the E::R (n = 10) and
UAS:GFP zebrafish lines (n = 10). The statistical significance was represented as ‘ns’ for no statistical
significance, * p < 0.05, and *** p < 0.001. All quantifications are presented as mean ± s.e.m.

Of the 102 E::R knock-in zebrafish, 2% (two fish) developed leukemia early,
at 3 to 4 months of age, and none have developed leukemia since. This was confirmed by
the presence of lymphoblasts in the peripheral blood smears (Figure S8). The low incidence
of leukemia in our model mirrors the situation observed in newborns carrying the E::R
fusion gene [6]. Notably, none of the several hundred UAS:GFP fish developed leukemia
during the observation period.

3.3. CRISPR/Cas9-Induced Mutations in pax5 Increase Leukemia Incidence in the ETV6::RUNX1
Zebrafish Model

Given that additional genetic aberrations are required for the onset of E::R leukemia,
we investigated whether deliberately introducing them affected the incidence of the dis-
ease [63,64]. The PAX5 gene is deleted in about 25% of E::R patients and is one of the most
commonly mutated genes in this subtype [15,16]. To mutate the zebrafish ortholog of PAX5
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in the E::R knock-in line, we injected two sgRNAs targeting either exon 3 or exon 5, which
encode functional domains of the protein, and Cas9 mRNA into one-cell-stage embryos
(Figure 3a).
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(a) Structure of the zebrafish Pax5 protein has five conserved functional domains: paired (PD),
octapeptide (OP), homeo (HD), transactivation (TAD), and inhibitory (ID) domains. Brackets indicate
the boundaries of the eleven encoding exons. Red arrowheads mark the Cas9 cut positions in exon 3
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and exon 5, and the respective sequences of the sgRNA target sites are shown. (b) Phenotypic
and histological analysis of E::R;pax5mut zebrafish. Images depict lateral views of representative
control UAS:GFP zebrafish (b(I)) and leukemic zebrafish (b(II)). The E::R;pax5mut leukemic zebrafish
developed subcutaneous bleedings in the ventral body region (highlighted by a red frame in b(II)).
An inset provides a close-up view of the bleeding (marked with red asterisks) (b(II)). Top views of the
entire kidneys of UAS:GFP and E::R;pax5mut leukemic zebrafish are shown (b(III–IV)). The kidney
of the leukemic zebrafish exhibited enlargement along its entire length (b(IV)). Giemsa staining of
a peripheral blood smear from the UAS:GFP fish (b(V)) revealed normal nucleated erythrocytes,
while Giemsa staining of the leukemic blood smear (b(VI)) showed the presence of clusters of
lymphoblasts. Hematoxylin and Eosin staining of the sagittal paraffin sections of tissues from
UAS:GFP fish (b(VII,IX,XI,XIII)) and leukemic fish (b(VIII,X,XII,XIV)) highlighted the presence
of lymphoblasts in the kidney marrow (b(VIII)), muscle tissue (b(X), arrows), epidermis (b(XII),
arrows), and liver (b(XIV), arrows). Scale bars: (b(V,VI)): 10 µm; (b(VII–XIV)): 100 µm. (c) Flow
cytometry plot (right) showing cell populations separated by their light scatter characteristics in the
whole kidney marrow of leukemic E::R;pax5mut fish, along with the UAS:GFP control plot (left). The
predominant cell population in the leukemic fish exhibited light scatter characteristics similar to the
precursor cell fraction in the control group. (d) Western blot analysis was performed using protein
extracted from kidney marrow cells of UAS:GFP fish, non-leukemic E::R knock-in fish, and 6 out of
10 leukemic E::R;pax5mut fish (#4–#9). Primary antibodies targeting human RUNX1 and β-Actin were
used. E::R protein was detected in all tumor samples but not in the samples from the UAS:GFP control
or non-leukemic E::R knock-in fish. The uncropped blots are shown in Supplementary Materials.

In the F0 generation E::R;pax5mut cohort (n = 68), fifteen percent (n = 10) of fish
developed an overt disease over a latency period of 9 to 16 months. Two fish were found
deceased, while the remaining eight exhibited subcutaneous bleeding, altered swimming
behavior, or were lying at the bottom of the tank (Figure 3b(II)).

To further characterize these zebrafish, we analyzed the kidney, the primary site of
B-cell hematopoiesis [65,66]. A top-view examination revealed a pale and enlarged kidney
compared to the kidney from the UAS:GFP fish (Figure 3b(III,IV)). Flow cytometry analysis
of the kidney marrow revealed a large cell population exhibiting light scatter characteristics
similar to precursor cells in the control UAS:GFP fish, indicating accumulation of precursor
cells and impaired differentiation (Figure 3c). Subsequent histological analysis revealed
that lymphoblast accumulation around the kidney tubules destroyed kidney architecture,
causing kidney enlargement (Figure 3b(VIII)). Lymphoblasts were also found in non-
hematopoietic tissues, such as muscle, liver, and epidermis (Figure 3b(X,XII,XIV)). Overt
leukemia also manifests as clusters of lymphoblasts in the peripheral blood, as determined
by Giemsa staining (Figure 3b(VI)). These characteristics suggest that the E::R;pax5mut
zebrafish developed ALL that originated in the kidney marrow and subsequently spread
to distant organs.

Western blot analysis using an antibody targeting the human RUNX1 protein con-
firmed that the leukemias were positive for the E::R fusion protein. Interestingly, the E::R
fusion protein was undetectable in non-leukemic E::R knock-in fish (Figures 3d and S9),
suggesting that the fusion protein was weakly expressed. We used the Integrative Genomics
Viewer (IGV) to analyze the mapped reads from the leukemia transcriptomes, confirming
that the leukemic fish had deleterious mutations in exon 3 and exon 5 of the pax5 gene
(Figure S10).

3.4. A Frameshift Mutation in cdkn2a/b Increases Leukemia Incidence in the ETV6::RUNX1
Zebrafish Model

Next, to investigate whether other frequently occurring lesions in E::R-positive child-
hood pB-ALL similarly increased the leukemia incidence, we mutated the zebrafish or-
tholog of the human CDKN2A/B gene in the E::R knock-in zebrafish line, as the CDKN2A/B
gene is also affected by deletions in 25% of children with E::R-positive leukemia [15,16]. To
achieve this, we used the CRISPR/Cas9 genome editing system to generate a cdkn2a/b+/−

zebrafish line in the UAS:GFP background. In this cdkn2a/b+/− line, one of the cdkn2a/b
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alleles carries a premature stop codon, supposedly resulting in a loss of protein expression
(Figure 4a) [67]. Subsequently, we crossed the cdkn2a/b+/− line with the E::R knock-in
fish to establish the E::R;cdkn2a/b+/− double mutant fish line. At 9 to 11 months old, 7%
(3/41) of the fish had small subcutaneous bleedings and were lying at the bottom of the
tank (Figure 4b(II)). Histological analysis of an enlarged kidney revealed large deposits of
lymphoblastic cells that destroyed the architecture of kidney tissue (Figure 4b(VI)). Tumor
cell deposits were also found in distant tissues, such as the epidermis (Figure 4b(VIII)).
Giemsa staining of peripheral blood smears revealed a significant number of lymphoblasts
in the blood (Figure 4b(IV)), and the spleen was massively enlarged (Figure 4b(X)).
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Figure 4. Generation of cdkn2a/b+/− zebrafish using the CRISPR/Cas9 genome editing and features
of leukemic E::R;cdkn2a/b+/− fish. (a) Genomic structure of the cdkn2a/b gene. Red arrowheads mark
the Cas9 cut positions in exon 2, and the sequences of the three sgRNA target sites are shown.
The cdkn2a/b+/− zebrafish line with a premature stop codon after 210 nucleotides was established.
(b) Phenotypic and histological characteristics of leukemic E::R;cdkn2a/b+/− zebrafish. Images depict
lateral views of representative control UAS:GFP zebrafish (b(I)) and leukemic zebrafish (b(II)). The
E::R;cdkn2a/b+/− leukemic zebrafish developed subcutaneous bleeding in the ventral body region
(highlighted by a red frame in (b(II))). An inset provides a close-up view of the bleeding (marked
with a red asterisk) (b(II)). Giemsa staining of a peripheral blood smear from the UAS:GFP fish (b(III))
revealed normal nucleated erythrocytes, while Giemsa staining of a leukemic blood smear (b(IV))
showed a significant presence of lymphoblasts. Hematoxylin and Eosin staining of sagittal paraffin
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sections of tissues from the UAS:GFP fish (b(V,VII)) and leukemic fish (b(VI,VIII)) revealed the
presence of large deposits of lymphoblasts in the kidney marrow (b(VI)) and epidermis (b(VIII),
arrows) of leukemic fish. The spleen was enlarged in the leukemic E::R;cdkn2a/b+/− fish (b(X))
compared to the UAS:GFP control fish (b(IX)). Scale bars: (b(III,IV)): 10 µm; (b(V–VIII)): 100 µm;
(b(IX,X)): 1 cm.

3.5. Transcriptomic Analyses Reveal That E::R;pax5mut Zebrafish Develop B-Lineage ALL

To investigate whether the E::R;pax5mut leukemias belonged to either B- or
T-lymphoblastic lineages, we conducted transcriptomic analysis on eight samples and
compared them to three transcriptomes derived from the kidney marrow of the non-
leukemic UAS:GFP zebrafish (control), as well as to various transcriptomes available from
previous zebrafish leukemia studies [49–51].

We identified significantly (adjusted p-value ≤ 0.05) differentially expressed (DE)
genes between the control and E::R;pax5mut zebrafish and evaluated their association with
cell lineage (Figure S11 and Table S6). Consistent with high B-lineage leukemia infiltration,
many B-cell-associated genes such as ebf1, cd79a, cd79b, and syk were expressed in the
E::R;pax5mut zebrafish at significantly higher levels compared to the control fish kidney
tissue. Pax5 transcripts with the targeted mutations were predominant (Figure S11 and
Table S6). The expression of the immature lymphocyte-associated gene rag2, in turn, was
significantly higher in the leukemic E::R;pax5mut zebrafish. In line with this, rag1 expression
was also on average high in the leukemic samples; however, it was more variable (at the
control level in tumors #6 and #8) (Figure S12). The proximity of the transcriptome of tumor
#8 that resembled the controls may indicate a lower leukemic cell fraction.

To further assess whether the E::R;pax5mut zebrafish leukemias better resembled B- or
T-lymphoblastic leukemias, we downloaded publicly available transcriptomic data from
the rag2-hMYC-driven and rag2-mMyc-driven zebrafish leukemia models, both yielding
a mixture of B-ALL, biphenotypic ALL and T-ALL leukemias, as well as from a previous
rag2-TLX1-driven T-ALL zebrafish model [49–51]. DE analyses comparing the current
E::R;pax5mut and the publicly available zebrafish B-ALL samples against the T-ALL ze-
brafish models revealed that the E::R;pax5mut samples clustered closely together with
B-lineage and biphenotypic ALLs, expressing B-lineage-associated genes, including pax5,
ebf1a, cd79a, cd79b, and syk, at significantly higher levels compared to the T-ALL fish. In
contrast, the T cell-associated genes, like runx3, il7r, nfatc3a, and tox, had significantly
higher expression in the zebrafish T-ALLs (Figures 5, S13, and Table S7). Interestingly,
rag1, which is associated with immature lymphocytes, had higher expression in T-ALLs,
while notch1a and lmo2, which are associated with both B and T lineages, were expressed
at higher levels among the B-ALL and E::R;pax5mut zebrafish (Figures 5, S13, and Table
S7). When these transcriptomic signatures were compared between our E::R;pax5mut and
the T-ALL fish, a very similar expression pattern was obtained, i.e., levels of B-lineage-
associated genes were higher and T cell-associated genes were lower in the E::R;pax5mut fish
(Figure S14 and Table S8). Taken together, transcriptomic signatures suggest that the gener-
ated E::R;pax5mut zebrafish represent B-lineage ALL and are readily distinguishable from
the T-ALLs.

In E::R;pax5mut leukemias, enrichment of the KEGG pathways was determined
through gene set enrichment analysis using Goseq [56]. We observed a significant en-
richment of pathways related to DNA maintenance and repair and metabolic regulation
(Table S9), both intimately involved in the pathogenesis of leukemia.
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Figure 5. Heatmap visualization of the significantly differentially expressed B and T lineage-
associated genes between the B-ALL and E::R;pax5mut versus T-ALL zebrafish transcriptomes and
their expression across the different zebrafish leukemia types (adjusted p-value ≤ 0.05). B-ALL
and E::R;pax5mut zebrafish leukemias expressed several B-lineage-associated genes at significantly
higher levels compared to zebrafish with T-ALL, while the expression difference was the opposite for
multiple T lineage-associated genes.

4. Discussion

The E::R subtype is the second most common form of pB-ALL in children after high
hyperdiploidy. With contemporary chemotherapy, the outcome is usually favorable, yet a
significant subset of patients experience disease recurrence. Animal models that faithfully
recapitulate human disease are needed to fully understand the resistance mechanisms.
Hence, we generated a zebrafish model of E::R leukemia by using CRISPR-Cas9 genome
editing technology and introduced targeted lesions in two frequently mutated genes in this
leukemia subtype. Our results show that leukemia incidence is significantly increased by
secondary lesions in the pax5 and cdkn2a/b genes. The transcriptomic analysis confirmed
that the E::R;pax5mut leukemias represented exclusively the B-lineage ALL. Our novel
animal model provides a unique opportunity to further elucidate the disease pathogenesis
and genetic features that impact drug sensitivity.

Therapy response, as measured by minimal residual disease, is the most significant
prognostic factor in ALL [68]. A subset of E::R leukemias have inadequate early therapy
responses, subsequently increasing the risk of relapse [68]. The reasons behind the treatment
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resistance are unknown, but the genomic heterogeneity of the disease is one of the prime
candidates. The literature is conflicting regarding the contribution of secondary mutations
to the risk of relapse in genes such as CDKN2A/B or ETV6 [69,70]. Interpretation of
such data is markedly complicated by the heterogeneous mixture of mutations at disease
presentation. The same problem exists for cell culture models, such as REH cells, and
patient-derived xenografts.

Zebrafish offer a valuable platform for developing a wide range of leukemia models,
thanks to their adaptable genetics through CRISPR/Cas9, high fecundity, and conserved
hematopoietic processes. Sabaawy et al. pioneered a zebrafish model for childhood E::R
pB-ALL [31]. They established two transgenic zebrafish lines by randomly integrating
transgenes, wherein the expression of the human E::R fusion gene was driven by either the
Xenopus elongation factor 1α or the zebrafish β-actin promoter [31]. A significant limitation
was the ubiquitous expression of the E::R fusion protein, deviating from natural locations
and levels. This weakened the ability of their model to replicate human disease and led to
unintended consequences, such as the development of fatal lymphoid hyperplasia observed
in 6% of the zebrafish [31].

To address previous shortcomings, we developed a new model in which the E::R
fusion gene was expressed under the control of the endogenous etv6 promoter. This was
performed by inserting the human RUNX1 cDNA-containing gene-breaking cassette into
intron 5 of the zebrafish etv6 gene using the GeneWeld method [34,35]. This method has
previously been used in zebrafish to generate fluorescent reporter lines, Cre recombinase
driver lines, and Cre/lox-responsive conditional alleles [34,71,72]. We achieved a lower
success rate of 1%, but similar gene-breaking cassettes have previously been used effectively
in applications such as gene-breaking transposon mutagenesis in zebrafish [37,58,73,74].
Liu and colleagues reported that by incorporating gene-breaking cassettes into the introns
of genes, they were able to disrupt gene expression with an over 99% reduction in normal
transcript levels [72]. Epigenetic mechanisms like altered histone modifications and DNA
methylation patterns drive enhancer hijacking—a key feature in certain cancers [75,76]. Our
approach, combining the GeneWeld technique and elements of gene-breaking cassettes,
could be used to create zebrafish models of cancer that mimic this process by placing
oncogenes under the control of respective enhancers, offering a concise method to repli-
cate the regulatory alterations associated with enhancer hijacking and gain insights into
cancer mechanisms.

The E::R fusion gene was detected in non-leukemic E::R knock-in fish by RT-PCR, but
the fusion protein was only detected in leukemic fish. This is similar to the challenges
of detecting the E::R fusion protein in human newborns [77,78]. Our results show that
the fusion protein is expressed only in etv6-expressing cells and only at low physiological
levels. This is a strength of our model, and it may also explain why none of our zebrafish
developed fatal lymphoid hyperplasia, as described in the previous model [31]. Our E::R
knock-in zebrafish model has another advantage over the previous model: it enables the
detection of fusion protein expression through single-cell resolution GFP fluorescence.
Because zebrafish develop outside the womb (ex utero), our model is the first to enable
the observation of E::R-positive cell dynamics in the caudal hematopoietic tissue, which is
analogous to the human fetal liver, the presumed site where the translocation occurs in the
body [60,61].

Analysis of the major blood lineages in the kidney marrow, the counterpart to human
bone marrow, of E::R knock-in zebrafish revealed a significant increase in the precursor cell
population. This finding aligns with the observations of Sabaawy et al., who linked the
expansion of the precursor cell pool to disruption in B-cell maturation [31]. Likewise, in the
Sca1-driven mouse model for E::R, Rodríguez-Hernández et al. observed an aberrant B-cell
compartment [79]. This is also the case in humans, where similar expansion of the precursor
cell pool has been noted and presumed to precede the occurrence of overt disease [80].

Two percent of the E::R knock-in zebrafish developed leukemia, which is consistent
with the frequency observed in human carriers of the fusion gene [6]. This low rate suggests
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that the E::R fusion protein is a weak oncogene and that additional mutations are necessary
for leukemogenesis [63,64]. Indeed, when additional mutations were separately introduced
into the zebrafish orthologs of the human PAX5 and CDKN2A/B genes, which are deleted
in a quarter of the E::R leukemias, the incidence increased to 15% and 7%, respectively,
which is similar to what has been observed in mice [14–16,81]. Transcriptomics analyses
revealed that the E::R knock-in zebrafish mutated in the pax5 gene developed B-lineage
ALL, as indicated by high expression of the B-cell genes cd79b, pax5, blnk, and ebf1. These
genes were also upregulated in B-lineage ALL from the rag2:mMyc and rag2:hMYC;lck:eGFP
zebrafish models [50]. Differentially expressed genes also included rag1 and rag2, which
are hallmarks of human E::R-positive leukemia (MILE study; http://r2.amc.nl; accessed on
the 7 September 2023) [82]. Overall, these results highlight the similarities of our animal
model to human E::R-positive leukemia and contrast it with respective mouse models,
which often produce a mixture of leukemias from different cell lineages [12,13,83].

In discussing our findings, it is crucial to acknowledge certain limitations. Our study
of E::R;pax5mut and E::R;cdkn2a/b leukemias lacks control data without the E::R fusion gene.
Additionally, a detailed analysis of the genomic features of the two E::R-positive leukemias
that did not harbor targeted secondary lesions was not available.

5. Conclusions

In conclusion, we have developed a zebrafish model for E::R leukemia that recapit-
ulates many features of human disease. This model provides a valuable platform for
investigating disease pathogenesis, the individual contributions of secondary mutations,
and their relationship to drug sensitivity. It has the potential to inform personalized
treatment strategies for childhood B-ALL.
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