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Simple Summary: Patients with postoperative early recurrence of hepatocellular carcinoma within 2
years are at high risk for poor prognosis, and identifying high-risk patients with postoperative early
recurrence is becoming increasingly important in the clinical practice for hepatocellular carcinoma.
However, preoperatively predicting the early recurrence remains difficult. Thus, we developed a deep
learning model that accurately predicts early postoperative hepatocellular carcinoma recurrence; in
addition, the contrast-enhanced computed tomography imaging analysis was the most important factor
to predict early hepatocellular carcinoma recurrence in clinical variables of the current deep learning
model. Guiding the treatment strategy for patients with hepatocellular carcinoma may be possible using
contrast-enhanced computed tomography images by utilizing the deep learning method.

Abstract: We aimed to develop the deep learning (DL) predictive model for postoperative early
recurrence (within 2 years) of hepatocellular carcinoma (HCC) based on contrast-enhanced computed
tomography (CECT) imaging. This study included 543 patients who underwent initial hepatectomy
for HCC and were randomly classified into training, validation, and test datasets at a ratio of 8:1:1.
Several clinical variables and arterial CECT images were used to create predictive models for early
recurrence. Artificial intelligence models were implemented using convolutional neural networks
and multilayer perceptron as a classifier. Furthermore, the Youden index was used to discriminate
between high- and low-risk groups. The importance values of each explanatory variable for early
recurrence were calculated using permutation importance. The DL predictive model for postoperative
early recurrence was developed with the area under the curve values of 0.71 (test datasets) and 0.73
(validation datasets). Postoperative early recurrence incidences in the high- and low-risk groups
were 73% and 30%, respectively (p = 0.0057). Permutation importance demonstrated that among the
explanatory variables, the variable with the highest importance value was CECT imaging analysis.
We developed a DL model to predict postoperative early HCC recurrence. DL-based analysis is
effective for determining the treatment strategies in patients with HCC.
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1. Introduction

Liver resection is a curative hepatocellular carcinoma (HCC) treatment, but the re-
currence rate of HCC has been reported to be up to 70%, 5 years after resection [1,2].
HCC recurrence types are divided into early and late recurrences, and early recurrence
is considered to result from a hematogenous tumor that has spread from the primary
tumor. Patients with postoperative early recurrence within 2 years postoperative are at
high risk for poor prognosis [3,4]. Several predictive factors for early recurrence have been
identified in blood tests and pathological findings, such as serum α-fetoprotein (AFP) level,
tumor size, multiple tumors, microvascular invasion, and histologic grade [2,5]. However,
preoperatively predicting the early recurrence remains difficult. Recently, systemic therapy
using molecularly targeted agents or immune checkpoint inhibitors has provided long-term
survival in patients with HCC [6], and patients at high risk of early recurrence are potential
candidates for clinical trials of adjuvant systemic therapies [7]. Thus, identifying high-risk
patients with postoperative early recurrence is becoming increasingly important in the
clinical practice for HCC.

Contrast-enhanced computed tomography (CECT) imaging is a very useful tool in
HCC diagnosis, and its dynamic and structural information can preoperatively predict
tumor subtypes and malignant potential [8]. Previous reports indicated that preoperative
CECT findings could predict poor postoperative outcomes in patients with HCC [8,9]. How-
ever, diagnostic imaging assessment by clinicians may often be subjective, and it may be one
of the limiting factors in the precise and personalized HCC treatment. No model for predicting
postoperative early recurrence of HCC using preoperative imaging has been established.

Deep learning (DL) is emerging as an attractive technology for mining latent image
features based on complex artificial neural network architecture [10,11]. The deep convolu-
tional neural networks (CNNs) of DL are commonly utilized in image recognition, and can
automatically extract and learn deep features of input data through several consecutive
filters without the need for handcrafted design [12]. Several studies based on DL models
have reported in the field of HCC, and models that accurately predict, such as HCC diag-
nosis, pathological vascular invasion prediction, and long-term prognosis, using imaging
findings or histopathological specimens, have been published so far [13–16]. However, only
a few predictive models for early HCC recurrence using the DL method were extracted
from image findings [17].

This study aimed to establish a predictive DL model for postoperative early HCC
recurrence based on CECT imaging.

2. Materials and Methods

This retrospective study followed the ethical guidelines of the Declaration of Helsinki.
Approval was obtained from the ethics committee of Osaka Metropolitan University (No.
3166). All participants provided written informed consent.

2.1. Study Cohort

This study included 606 patients who underwent initial hepatectomy for solitary HCC
as curative (R0) resections at the Department of Hepato-Biliary-Pancreatic Surgery, Osaka
Metropolitan University from January 2007 to December 2019. Patients with undetermined
suspicious lesions, such as high-grade dysplastic nodules with early washout on CECT,
were excluded from the study after retrospectively reviewing the images. In addition, this
study excluded 63 patients who were unavailable for preoperative CECT evaluation and
included 543 patients in the study cohort (Figure 1).
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Figure 1. Flowchart of dataset selection.

2.2. Patient and Public Involvement

The present study did not involve any patient or public partnership.

2.3. Postoperative Follow-Up and Recurrence Diagnosis

Patients were followed up once every 3 months postoperatively. At each follow-up visit,
the routine examination included the HCC-specific tumor marker measurement. Additionally,
ultrasonography, CECT, or magnetic resonance imaging (MRI) was conducted. Postoperative
recurrence was diagnosed based on increased tumor markers that declined to normal range
and evidence regarding new extrahepatic or intrahepatic lesions. The preoperative images
were reviewed again to determine if the extrahepatic or intrahepatic lesions were new. The
patients with no suspicious lesions at the same site before surgery were only included in this
cohort as patients with “postoperative recurrence after curative resection”.

2.4. Data Partition

Patients were randomly divided into training, validation, and test datasets based
on random numbers using Python to achieve a ratio of 8:1:1, which included 434, 54,
and 55 patients, respectively. There was no overlap of patients among the respective
datasets (Figure 1).

2.5. Image Processing

All images were augmented using random rotation of −0.1–0.1 radians, with a random
shift of 10%, a brightness range of 10%, and reflected horizontally. We determined the most
suitable hyperparameters—optimizer, learning rate, image size, input channels, batch size,
and global pooling strategy—using a grid search. Stochastic gradient descent (0.05 to 0.001
for learning rate), Adam (default parameters), and Adagrad (default parameters) were
used as optimizers. Search ranges were 256, 320, and 512 pixels for image size. The longer
side of the image was downscaled to the size while maintaining the aspect ratio, then the
width along the shorter side was padded black to the selected size. For batch size, search
ranges were 16 to 64.

2.6. Model Development and Evaluation

Several clinical variables and arterial preoperative CECT imaging phases [8,18] were
used to create the predictive model for early HCC recurrence, including sex, age, serum
alanine aminotransferase (ALT), and alpha-fetoprotein (AFP) levels, Child–Pugh classifi-
cation, and platelet counts. This study defined postoperative early recurrence as intra- or
extrahepatic recurrence within 2 years postoperative.
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The artificial intelligence (AI) models were implemented using both CNNs and a
multilayer perceptron (MLP) as a classifier. The CNN was prepared with ResNet50 [19],
InceptionV3 [20], and DenseNet121 architectures [21], and the obtained CNN output using
images was concatenated with the obtained MLP output using clinical data variables.
These were fed into four fully connected layers, and then a final output was obtained using
cross-entropy loss. The output classifies the recurrence of liver cancer.

All models were developed using the PyTorch framework [22]. Each model was
trained from scratch with the training dataset and tuned with the validation dataset. The
performance of each model was assessed using the independent test dataset. Further
model development details are available in Figure 2, and the source code is available online
“https://github.com/lc-recurrence/ (accessed on 31 May 2022)”.
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Figure 2. Outline of the mixed artificial intelligence model. In this model, we used one variable from
convolutional neural network (CNN) output and 6 variables from clinical data. The output of CNN
and clinical data were used as input for multiple perceptrons (MLP), and the output of MLP was
arranged to show recurrence or not. Our trials evaluated InceptionV3, ResNet50, and DenseNet121 as
feature extractors. DenseNet121 achieved the highest performance in the model, which is discussed
here. First, the CT images were fed into the feature extractor that was composed of convolutional
layers, wherein the images were downsampled by half each pass through the convolutional layers.
The feature extractor results were connected to a classifier, in which the affine was followed by a
sigmoid activation function and a binary cross-entropy loss function. This process was repeated
many times with the training data to optimize parameters for a model that can determine patient
prognosis when developing the model. DenseNet121 consists of five parts, including convolutional
layer1 and Dense block1, 2, 3, and 4. Convolutional layer1 consists of one 7 × 7 convolutional layer.
Each Dense block consists of one 1 × 1 and two 3 × 3 convolutional layers. Block1 is repeated 6 times,
block2 is repeated 12 times, block3 is repeated 24 times, and block4 is repeated 16 times. A 1 × 1
convolutional layer and one max-pooling layer, collectively called the transition layer, is present at
the transition between blocks 1 and 2, blocks 2 and 3, and blocks 3 and 4. FC, fully connected layer.

https://github.com/lc-recurrence/
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2.7. Saliency Maps

The CECT was acquired in the axial plane with 1.0 mm thick sections. We evaluated
the arterial CECT phase, and one image that depicted the largest tumor diameter was
extracted and incorporated into the DL data.

A saliency map was generated for each evaluated CECT by the mixed model to
visualize the model’s focus as it classified patient prognosis [23]. A detailed explanation of
the saliency map generation model is shown in Figure 3, and the source code is available
online “https://github.com/lc-recurrence/ (accessed on 31 May 2022)”.
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Figure 3. Outline of the Grad-CAM model. In a nutshell, Grad-CAM [23] works by inputting an
image of the object to be visualized into a trained model and then outputting a heat map of the final
convolutional layer in the model that reacts to the object. Step 1 is a forward propagation phase.
A trained model is used to classify the target to be visualized. In our study, the target was a CT
image from patients predicted with early postoperative recurrence. Grad-CAM visualizes features
of these images to highlight the features that are most impacted by the model. The CT image is fed
into the model, and the output of the final convolutional layer in the model is obtained. Step 2 is
the backpropagation phase, wherein the results responding to only the class (image from patient
with recurrence) to be visualized are obtained in the backpropagation. Step 3 is an image synthesis
phase, wherein the synthesized image is obtained by multiplying the images created in Step 1 and
the matrices in Step 2. The synthesized image is normalized after passing ReLU and finally resized to
the original image size to complete the heat map creation. Finally, the heat map and original image
(CT image) are concatenated. FC, fully connected layer; ReLU, rectified linear unit.

2.8. Permutation Importance

Importance values for each explanatory variable, including CECT in the DL model,
were calculated using permutation importance [24]. Permutation feature importance is a
model inspection technique that is especially useful for nonlinear or opaque estimators
and is a decreased model score when a single feature value is randomly shuffled. This
procedure breaks the relationship between the feature and the target, thus the drop in the
model score is indicative of how much the model depends on the feature.

2.9. Statistical Analysis

Background characteristics and surgical outcomes were summarized as the median
and interquartile range for continuous variables and frequency and percentage for categori-
cal variables. The Kruskal–Wallis and chi-square tests were used to compare continuous
and categorical variables, respectively. We applied the receiver operating characteristic
(ROC) curves and their area under the curve (AUC) value to evaluate the predictive perfor-
mance of differential models. The Youden index, which was calculated by ROC curves, was

https://github.com/lc-recurrence/
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used to discriminate between high- and low-risk postoperative early recurrence. Statistical
analyses were performed using JMP version 11.

3. Results
3.1. Patient Backgrounds and Surgical Outcomes

Table 1 shows the demographic backgrounds and surgical outcomes of the patients.
The median age of the study cohort was 71 years, and 17 patients were classified into
Child–Pugh classification B. Hepatitis B (HB) surface antigen and hepatitis C virus (HCV)
antibodies were observed in 94 and 279 patients, respectively. HBV-DNA was less sensitive
to detection in 39 patients, and sustained viral reaction to HCV was achieved by interferon
or direct acting antivirals in 61 patients. The median tumor diameter was 3 cm. Partial
liver resection, segmentectomy, sectionectomy, bisectionectomy, and trisectionectomy were
performed in 329, 54, 90, 69, and 1 patient(s), respectively. Pathological liver cirrhosis and
microvascular invasion were observed in 132 and 154 patients, respectively. The median
observation period was 45 months.

Table 1. Background characteristics and surgical outcomes of the study cohort.

Variables Value

Age, years, median (range) 71 (19–87)
Sex, male/female 401/136
Comorbidities, n (%)

Diabetes mellitus 187 (34)
Hypertension 287 (53)
Dyslipidemia 107 (20)
HB surface antigen positive 94 (17)

HBV-DNA < detectable levels 39 (7.2)
HCV antibody positive 279 (51)

HCV-SVR 61 (11)
Laboratory data, median (range)

Total bilirubin, mg/dL 0.6 (0.1–2.7)
ALT, IU/L 29 (6–270)
Albumin, g/dL 4.0 (2.3–5.1)
PT, % 94 (40–147)
Platelet count, ×104/µL 15.0 (1.3–42.8)
AFP, ng/mL 9.1 (1.5–283,300)
PIVKA-II, mAU/mL 71 (2–3893,20)
Child–Pugh classification, A/B 526/17

Tumor diameter, cm, median (range) 3 (0.7–19.5)
Hepatectomy procedures

Partial resection 329 (61)
Segmentectomy 54 (9.9)
Sectionectomy 90 (17)
Bisectionnectomy 69 (13)
Trisectionnectomy 1 (0.2)

Operative time, min, median (range) 278 (75–776)
Intraoperative blood loss, g, median (range) 280 (5–7460)
Postoperative complication *, n (%) 71 (13)
Liver cirrhosis, n (%) 132 (24)
Microvascular invasion, n (%) 154 (28)
Recurrence-free survival, months, median (range) 19 (1–170)
Early recurrence within 2 years, n (%) 220 (41)

Intrahepatic recurrence 195 (36)
Extrahepatic recurrence 31 (5.7)

Observed period, months, median (range) 46 (1–170)
HBV, hepatitis B virus; HCV, hepatitis C virus; SVR, sustained viral reaction; ALT, alanine aminotransferase; PT,
prothrombin activation; AFP, alpha-fetoprotein; PIVKA-II, protein induced by vitamin K absence or antagonist-II.
* Clavien–Dindo IIIa or greater.
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3.2. Patient Characteristics in Each Dataset

Patient characteristics, including explanatory variables, which were used to predict
early HCC recurrence with the DL model in each dataset, were described in Table 2. No
significant differences were found in patient characteristics among these datasets.

Table 2. Patient’s characteristics in each dataset.

Variables Training Datasets (n = 434) Validation Datasets (n = 54) Test Datasets (n = 55) p-Value

Sex, male/female 331/103 37/17 38/17 0.26
Age, years 71 (31–87) 67 (19–84) 70 (38–82) 0.11
ALT, IU/L 29 (8–270) 28 (11–162) 28 (6–126) 0.78

AFP, ng/mL 8.9 (1.5–283,300) 10 (2.3–109,402) 9.4 (1.9–67,700) 0.87
PIVKA-II, mAU/mL 64 (2–389,320) 104 (13–57,202) 117 (9–228,533) 0.62

Child–Pugh classification B, n (%) 14 (3.2) 2 (3.7) 1 (1.8) 0.80
Platelet count, ×104/µL 15.3 (1.3–42.8) 14 (5.2–37.1) 15.2 (2.2–30.3) 0.91

Tumor diameter, cm 3 (0.9–15.0) 3 (0.7–19.5) 3.3 (0.9–18.2) 0.69
≥Bisectionectomy, n (%) 56 (13) 6 (11) 8 (15) 0.87

Operative time, min 272 (93–643) 310 (75–776) 300 (127–563) 0.17
Intraoperative blood loss, g 275 (5–7460) 275 (5–3750) 360 (5–6265) 0.23

Liver cirrhosis, n (%) 100 (23) 17 (32) 15 (27) 0.34
Microvascular invasion, n (%) 126 (29) 17 (32) 11 (20) 0.33

Recurrence-free survival, months 20 (1–161) 18 (1–113) 17 (1–170) 0.45
Early recurrence within 2 years, n (%) 173 (40) 24 (44) 23 (42) 0.79

median (range) ALT, alanine aminotransferase; AFP, alpha-fetoprotein.

3.3. Model Development

Each model was independently developed using the training dataset and tuned with a
validation dataset for 100 training epochs, and then the loss value on a separate validation
dataset determined the model performance. The final optimizer for all models was Adam
(learning ratio = 0.001) with a batch size of 64. The best-performing models were obtained
with an image size of 512 pixels in both image-based and mixed models; DenseNet was the
best-performing CNN architecture.

3.4. Model Evaluation

The original CECT images and their corresponding saliency heatmaps on the DL model
are described in Figure 4. ROC curves in the validation and test datasets are described in
Figure 5 based on the model to predict early HCC recurrence, which was established by the
DL analysis in training datasets with explanatory variables, including saliency heatmaps.
The AUC value of validation datasets was 0.73 and that of test datasets was 0.71. The
DL model categorized 15 patients of test datasets with a high risk and 40 with a low-risk
postoperative early recurrence. Postoperative early recurrence occurred in 11 (73%) patients
in the high-risk and 12 (30%) in the low-risk groups (p = 0.0057). Preoperative clinical
variables, including saliency maps, and corresponding postoperative prognosis of two
patients are described in the Figure S1.

Permutation importance is described in Figure 6. A large positive value indicates that
the feature is very relevant in detecting positive output. The color bar shows the feature
value impact on model output (early HCC recurrence). Figure 6 demonstrates that the
variable with the highest value was CECT imaging analysis in our present DL model to
predict the early HCC recurrence.
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4. Discussion

The present study suggested that our designed method could develop a DL model to
predict early postoperative HCC recurrence, mainly based on preoperative CECT imaging.
This DL model demonstrated high accuracy in predicting early recurrence with the AUC
value of 0.71 in test datasets. Furthermore, the DL model was internally validated showing
high accuracy with the AUC value of 0.73. To our knowledge, no report has shown the
DL model predicting early HCC recurrence according to the classified features from CECT
imaging through the totally CNN architecture process.

AI models, including DL, have been widely used for disease diagnosis, prognosis
predictions, risk management, and clinical decision making [13,25,26]. DL was designed to
mimic the neurological structure of the human brain [11]. Furthermore, DL does not require
a human to present the features and is, thus, considerably different from conventional
machine learning, which requires the extraction of features from images using advanced
learning by humans, whereas the application of convolutional layers allows the image to be
used during the learning process [10,11]. Hence, a computer can obtain hidden factors from
all images through self-learning that have not been noticed by humans before and has the
potential to develop completely new evaluations [27]. Gao et al. previously developed the
DL-based predictive model for early postoperative HCC recurrence using MRI [17]. Two
types of features from manually segmented tumor lesions were integrated, including the
deep features extracted by deep CNN architecture, which recognizes and classifies image
features, and the radiomics features, which were extracted from an open-source software
platform, to develop the predictive model. Meanwhile, the CNN architecture in this study
was formed using a simple CECT imaging slice by concatenating the MLP output using
clinical variables. The current predictive model for early HCC recurrence showed highly
accurate predictive ability.

Permutation importance in the present study indicated that CECT imaging analysis
was of the highest importance to predict early postoperative recurrence among clinical
variables. Several previous studies had indicated that CECT imaging findings, such as
intratumor necrosis, intratumor hemorrhage, and vessel invasion, were related to tumor
subtypes, malignancy, and HCC prognosis [8,9,28,29]. The present DL model might ac-
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curately predict early recurrence by adding image recognition methods different from
the conventional diagnosis to these previously reported factors [8,9,28,29]. The DL model
using CT and/or MRI images for the diagnosis, and microvascular invasion of HCC has
been reported with high accuracy [13,14,16], and a few previous studies have indicated
that the DL-based radiomics model can predict long-term prognosis using preoperative
diagnostic imaging analyses [15,30]. Accordingly, we indicated the possibility of predicting
early postoperative HCC recurrence using CECT images by utilizing DL with AI. However,
the DL CNN algorithm recognition is usually considered similar to a “black box” in data
analysis, and the operating procedures used by the DL models to generate radiological
features are difficult to directly interpret [31–33]. Even herein, determining which part
of the image was evaluated by DL-based image analysis was not possible. In addition,
determining who is responsible when an error occurs in DL-analyzed results is an ethical
concern [32]. These are significant concerns when using the DL model in clinical practice.
While making satisfactory diagnoses and treatment strategy decisions based on the DL
analysis results is difficult when the analysis details are unclear, the opportunity to utilize
unknown or known unintended consequences from DL in clinical practice may be lost if
DL is not used [32,33]. A recent study indicated that building accurate and explainable DL
models can be achieved by building interpretability into machine learning models from
scratch; this is important for DL-model-based analyses to gain the trust of clinicians and
patients [32]. Thus, the ongoing collaboration between AI experts and clinicians is essential
for resolving these problems and further developing DL [32].

Recently, systemic therapy using molecularly targeted agents and/or immune check-
point inhibitors was shown to provide long-term survival in patients with HCC [6]. Many
trials of immune checkpoint inhibitors are ongoing in the neoadjuvant setting [34]. Select-
ing candidates for preoperative adjuvant therapy for HCC may be possible using CECT
images by utilizing DL with AI due to the high prediction accuracy of early recurrence in
this DL model. Furthermore, when similar DL models are developed to predict the efficacy
of nonsurgical treatment, such as response rates of this systemic therapy in the future, DL
will become even more useful to decide the treatment strategy for HCC.

This study has several limitations. First, this is a single-center retrospective study
with a relatively small patient number. Second, the DL model in this study included only
the arterial CECT phase as a medical imaging dataset. Additionally, the CECT images
were analyzed using a cross-section of the largest tumor diameter; thus, the entire liver,
including the whole tumor, was not evaluated. The arterial CECT phase may be useful
to predict microvascular invasion, tumor malignancies, and prognosis [8,29], and using
only one slice of the arterial phase to accurately predict postoperative early recurrence is
surprising and highly useful owing to the simplicity of the procedure. However, combining
multiple CECT phases and slices may improve the accuracy of the predictive model, and
comparisons and validation using models that include other phases may be necessary.
In addition, similar studies using Gd-EOB-DTPA MRI, which probably exhibits higher
accurate diagnostic capabilities, should be considered. Finally, the DL model was developed
only for patients with solitary HCCs. Although the results indicate the practical utility of
our model, additional studies using the Milan criteria, which are useful for determining
resectability not only in HCC but also in metastatic liver cancer [35], should be conducted
to improve the clinical utility of the model. After attempting to improve the accuracy with
these methods, we will continue to investigate with a multicenter prospective study.

5. Conclusions

In conclusion, our DL model enables accurate early postoperative HCC recurrence
prediction based on CECT imaging analysis. The present result strongly suggests that
DL-based analysis may be effective for determining the treatment strategies in patients
with HCC.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15072140/s1, Figure S1: Preoperative clinical variables,
including saliency maps and corresponding postoperative prognosis of two patients. In Patient 1 who
was categorized into the high-risk group based on the DL model, intrahepatic recurrence (arrow) and
peritoneal dissemination (short arrow) were detected in contrast-enhanced computed tomography at
6 months postoperative. Meanwhile, Patient 2, who was categorized into the low-risk group, has
achieved recurrence-free survival for >2 years.
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