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Simple Summary: Metformin is one of the most widely used drugs in the world, since its first use in
the second part of the 1950s in France (Aron, 1957) and in the United Kingdom (Rona, 1958), and is
on the World Health Organization’s List of Essential Medicines. Traditionally, metformin is used in
diabetes mellitus, mainly in overweight and obese subjects, but also in other conditions of impaired
glucose metabolism, such as insulin resistance. In recent years, in vitro and in vivo data on this
molecule as an antiproliferative modulator have suggested a series of clinical trials in several tumors
that—at the moment—have not confirmed the expected positive results. The aim of this paper is
to offer a double vision of this molecule, with a very light side about the metabolic aspects and a
darker side concerning its antineoplastic activity, focusing on molecular and subcellular pathways
involved in both fields and discussing the contrast between preliminary cellular data and real clinical
outcomes in different neoplasms.

Abstract: The ancient Roman god Ianus was a mysterious divinity with two opposite faces, one
looking at the past and the other looking to the future. Likewise, metformin is an “old” drug, with
one side looking at the metabolic role and the other looking at the anti-proliferative mechanism;
therefore, it represents a typical and ideal bridge between diabetes and cancer. Metformin (1,1-
dimethylbiguanidine hydrochloride) is a drug that has long been in use for the treatment of type
2 diabetes mellitus, but recently evidence is growing about its potential use in other metabolic
conditions and in proliferative-associated diseases. The aim of this paper is to retrace, from a historical
perspective, the knowledge of this molecule, shedding light on the subcellular mechanisms of action
involved in metabolism as well as cellular and tissue growth. The intra-tumoral pharmacodynamic
effects of metformin and its possible role in the management of different neoplasms are evaluated
and debated. The etymology of the name Ianus is probably from the Latin term ianua, which means
door. How many new doors will this old drug be able to open?

Keywords: biguanide; metformin; glucose control; diabetes; cancer treatment; clinical trials

1. Introduction

. . .cur de caelestibus unus
Sitque quod a tergo sitque quod ante vides.

Tum sacer ancipiti mirandus imagine Ianus
bina repens oculis obtulit ora meis [1].
In ancient Italian and Latin religions, Ianus is considered a singular divinity with

mysterious features. In fact, he is the god of material and immaterial primordial times in
human history, and his figure is strictly connected to the concept of time.
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The picture of Ianus shows a double facial image in opposite vision, one to the past,
the other to the future (Figure 1).
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Figure 1. Ianus Bifrons sculpture (https://iStock.com/ accessed on 22 May 2023).

In the divinity pantheon, Ianus occupies a very relevant and superior seat; indeed, he
is also named Divus Deus (“God of Gods”), Divum Pater (“Father of the Gods”), and Ianus
Bifrons (“God with two faces”), and he is also the only idol without his own parents.

Moreover, in a mythological vision of the ancient history of Rome, Ianus was the first
king of the land of Latium, founding the ancient town on top of Gianicolo Hill, receiving
the feature of the vision of the past and of the future from the god Saturnus.

https://iStock.com/
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Just like the Father of Gods, metformin is an old, ambivalent molecule, presenting at
least a double pathophysiological connection, looking to metabolic effects and to antiprolif-
erative actions.

1.1. Historic Perspective

In 1772, the famous botanist Sir John Hill described the Galega Officinalis as “Perennial,
native of Spain and Italy; of Greece and Africa, a specious plant, of a yard high, that flowers
in August. The Stalk is juicy, and green. . . the Flowers are purples; sometimes white”
(Figure 2). This plant—also named goat’s rue, French lilac, Italian fitch, Spanish sainfoin,
professor weed, or Herba routae caprariae—was used in medieval Europe as a traditional
cure for worms, epilepsy, fever, and pestilence and to treat conditions of thirst and frequent
urination [2,3].
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Figure 2. (A,B) Frontspiece of Volume XXI of John Hill’s huge work and graphic reproduction of
Galena officinalis, p54, 1772 [2]. (C) Photo of Galena officinalis by Peter Smith, Aylestone Meadows, 10
July 2013, www.natarespot.org.uk (accessed on 22 May 2023).

In the nineteenth century, the works of Adolf Strecker and Bernhard Rathke, with the
preparation of guanidine and the fusion of two guanidine molecules to form biguanides,
respectively, were determinants [4,5]. Therefore, the synthesis of metformin (dimethyl-
biguanide) was carried out in 1922 by Wermer and Bell, showing lower toxicity than
the other mono- and diguanidines [6,7]. Later, an independent research line about anti-
malaric agents documented that metformin caused a lowering of blood glucose in animal
studies [8,9]. The most persevering and passionate scientist who dedicated his own life
to the study of metformin was Jean Sterne, a physician at the hospital in Casablanca and
later at Aron Laboratories in Suresnes, in the west of Paris, France [10]. Between 1957 and
1958, Stern showed that N,N-dimethylamine guanyl guanidine (metformin) had a blood
sugar-lowering effect, replacing the need for insulin in subjects with a relative deficiency of
insulin [11–13]. To market metformin, Aron adopted the trade name ‘glucophage’ (from
the ancient Greek language, meaning glucose eater); later, Jean Stern played a prominent
role in further research and physician education to assist the introduction of metformin
into clinical practice in Europe [14–18]. Metformin, unlike the other biguanides (mainly
phenphormin, removed from the market in the USA in 1978), showed a more favorable
safety profile, with distinct and specific differences in pharmacokinetic features [19,20].

www.natarespot.org.uk
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1.2. Chemical and Pharmacological Features

The chemical structures of guanine, guanidine, and biguanides are shown in Table 1.
Metformin (1,1-dimethylbiguanide hydrochloride) is a relatively planar hydrophilic molecule,
monoprotonated at neutral pH with several tautomeric configurations.

Table 1. Comparisons between guanine, guanidine, and biguanides (metformin, phenformin, and
buformin). LogP: octanol-water partition coefficient (Log P is positive for lipophilic and negative for
hydrophilic substances or species).

Name Chemical
Formula Chemical Structure Features and

Origin
Solubility

LogP

Binding to
Mithocondrial

Membranes

Tissue of
Anaerobic
Glycolysis

Metabolism

Risk of Lactic
Acidosis (Events

for 1000
Subjects/Year)

GUANINE C5H5N5O

Cancers 2024, 16, x FOR PEER REVIEW 4 of 31 
 

 

into clinical practice in Europe [14–18]. Metformin, unlike the other biguanides (mainly 

phenphormin, removed from the market in the USA in 1978), showed a more favorable 

safety profile, with distinct and specific differences in pharmacokinetic features [19,20]. 

1.2. Chemical and Pharmacological Features 

The chemical structures of guanine, guanidine, and biguanides are shown in Table 1. 

Metformin (1,1-dimethylbiguanide hydrochloride) is a relatively planar hydrophilic 

molecule, monoprotonated at neutral pH with several tautomeric configurations. 

Absorption. After the oral intake (approximately 35 mg/kg/day, that is 500–2550 

mg/day), metformin is absorbed mainly in the small intestine cells (20% duodenum, 60% 

jejunum, and ileum, 20% colon). After 1.5 h is the onset of action, about 1.5–4.9 h is the half-

life in circulation, and 16–20 h is the duration of action. Metformin hydrophilicity represents 

a limiting step of oral absorption due to the low intestinal permeability [21–23]. 

Distribution. The distribution of metformin is rapid and without binding to plasma 

proteins [24,25]. In hepatic tissue, the concentration is three- to five-fold higher than in the 

portal vein (40 µmol/L), so the hepatocyte is the primary site of drug function [26]. 

Generally, within 24–48 h, steady-state plasma concentrations are reached (approximately 

< 1 mcg/mL) 

The presence and expression of transporters for cationic compounds (OCT), plasma 

membrane monoamine transporter (PMAT), and multidrug and toxin extrusion proteins 

(MATE) are critical for the biodistribution and pharmacodynamics of the biguanide [27–31] 

(Figure 3). 

Metabolism and elimination. Metformin, not metabolized, is present unchanged in 

the urine, with a half-life of about 5 h. In the kidney, active tubular secretion is the main 

route of removal, with a plasma elimination rate of about 500 mL/min. [22,32]. Low 

molecular weight, absence of plasma protein binding, presence of renal transporters, and 

low lipid solubility are the main factors inhibiting passive reabsorption. The impairment 

of renal function reduces the clearance of drugs [33]. 

Therapeutic range. The therapeutic range of metformin is unclear, but it should not 

exceed 5 mg/L [22,34]. Both formulations of metformin (immediate and extended release) 

displayed similar areas under curve (AUC) and equal safety profiles and efficacy [22]. 

Lactic acidosis is the most dangerous potential risk, so in critical cases and frail subjects, 

an accurate monitoring should be performed, maintaining a drug concentration below 2.5 

mg/L [25]. 

Table 1. Comparisons between guanine, guanidine, and biguanides (metformin, phenformin, and 

buformin). LogP: octanol-water partition coefficient (Log P is positive for lipophilic and negative for 

hydrophilic substances or species). 

Name 
Chemical 

Formula 

Chemical 

Structure 

Features and 

Origin 

Solubility 

LogP 

Binding to 

Mithocondri

al 

Membranes 

Tissue of 

Anaerobic 

Glycolysis 

Metabolis

m 

Risk of 

Lactic 

Acidosis 

(Events for 

1000 

Subjects/Ye

ar) 

GUANINE C5H5N5O 

 

In 1844, the 

German 

chemist Julius 

Bodo Unger 

obtained it as 

a mineral 

formed from 

the excreta of 

Insoluble 

in water 
    

In 1844, the
German chemist

Julius Bodo
Unger obtained
it as a mineral

formed from the
excreta of sea
birds (guano).

Insoluble in
water

GUANIDINE HNC(NH2)2

Cancers 2024, 16, x FOR PEER REVIEW 5 of 31 
 

 

sea birds 

(guano). 

GUANIDINE 
HNC(NH

2)2 
 

It is a strong 

base, obtained 

from natural 

source, via the 

oxidative 

degradation of 

guanine 

Soluble in 

water and 

ethanol  

−1.7 

    

METFORMI

N 
C4H11N5 

 

N,N-

dimethylamin

e 

guanylguanidi

ne (chemical 

syntesis) 

More 

hydrophili

c  

−1.43 

Weaker 

Mostly 

intestinal 

tissue 

exposed to 

high drug 

concentrati

on 

Not 

metabolize

d, 

eliminated 

unchanged 

0.03–0.09 

PHENFORM

IN 
C10H15N5 

It was 

developed in 

1957 by 

Ungar, 

Freedman, 

and Shapiro 

More 

lipophilic 

−0.83 

Stronger 

More 

generalized

, including 

muscle 

Not 

metabolize

d, 

eliminated 

unchanged 

0.40–0.90 

BUFORMIN C6H15N5 

It is a strong 

base, and is 

freely soluble 

in water, 

methanol, and 

ethanol 

Intermedia

te 

−1.20 

Stronger 

More 

generalised

, including 

muscle 

Not 

metabolize

d, 

eliminated 

unchanged 

>0.1 

 

It is a strong
base, obtained
from natural

source, via the
oxidative

degradation of
guanine

Soluble in
water and

ethanol
−1.7

METFORMIN C4H11N5

Cancers 2024, 16, x FOR PEER REVIEW 5 of 31 
 

 

sea birds 

(guano). 

GUANIDINE 
HNC(NH

2)2 
 

It is a strong 

base, obtained 

from natural 

source, via the 

oxidative 

degradation of 

guanine 

Soluble in 

water and 

ethanol  

−1.7 

    

METFORMI

N 
C4H11N5 

 

N,N-

dimethylamin

e 

guanylguanidi

ne (chemical 

syntesis) 

More 

hydrophili

c  

−1.43 

Weaker 

Mostly 

intestinal 

tissue 

exposed to 

high drug 

concentrati

on 

Not 

metabolize

d, 

eliminated 

unchanged 

0.03–0.09 

PHENFORM

IN 
C10H15N5 

It was 

developed in 

1957 by 

Ungar, 

Freedman, 

and Shapiro 

More 

lipophilic 

−0.83 

Stronger 

More 

generalized

, including 

muscle 

Not 

metabolize

d, 

eliminated 

unchanged 

0.40–0.90 

BUFORMIN C6H15N5 

It is a strong 

base, and is 

freely soluble 

in water, 

methanol, and 

ethanol 

Intermedia

te 

−1.20 

Stronger 

More 

generalised

, including 

muscle 

Not 

metabolize

d, 

eliminated 

unchanged 

>0.1 

 

N,N-
dimethylamine
guanylguani-

dine (chemical
syntesis)

More
hydrophilic

−1.43
Weaker

Mostly
intestinal

tissue exposed
to high drug

concentration

Not metabolized,
eliminated
unchanged

0.03–0.09

PHENFORMIN C10H15N5

Cancers 2024, 16, x FOR PEER REVIEW 5 of 31 
 

 

source, via 
the oxidative 
degradation 
of guanine 

METFORMIN C4H11N5 

 

N,N-
dimethylami

ne 
guanylguanid
ine (chemical 

syntesis) 

More 
hydrophilic  
−1.43 

Weaker 

Mostly 
intestinal 

tissue exposed 
to high drug 
concentration 

Not 
metabolized, 
eliminated 
unchanged 

0.03–0.09 

PHENFORMIN C10H15N5 

 

It was 
developed in 

1957 by 
Ungar, 

Freedman, 
and Shapiro 

More 
lipophilic  
−0.83 

Stronger 

More 
generalized, 

including 
muscle 

Not 
metabolized, 
eliminated 
unchanged 

0.40–0.90 

BUFORMIN C6H15N5 

 

It is a strong 
base, and is 

freely soluble 
in water, 

methanol, 
and ethanol 

Intermediate 
−1.20 

Stronger 

More 
generalised, 

including 
muscle 

Not 
metabolized, 
eliminated 
unchanged 

>0.1 

 
Figure 3. Absorption, uptake, and elimination of metformin. After oral intake, absorption in the gas-
trointestinal tract is mediated by specific molecular transporters that allow a drug concentration in 
the portal system of 40–70 µmol/L, higher than that in systemic circulation (10–40 µmol/L). Metfor-
min is excreted unchanged in the urine, and active tubular secretion in the kidney is the main route 
of drug elimination. PMAT: plasma membrane monoamine transporter (expressed within the apical 
membranes of enterocytes in the small intestine, and variants are associated with poor tolerance in 

It was developed
in 1957 by Ungar,
Freedman, and

Shapiro

More
lipophilic
−0.83

Stronger

More
generalized,

including
muscle

Not metabolized,
eliminated
unchanged

0.40–0.90

BUFORMIN C6H15N5

Cancers 2024, 16, x FOR PEER REVIEW 5 of 31 
 

 

source, via 
the oxidative 
degradation 
of guanine 

METFORMIN C4H11N5 

 

N,N-
dimethylami

ne 
guanylguanid
ine (chemical 

syntesis) 

More 
hydrophilic  
−1.43 

Weaker 

Mostly 
intestinal 

tissue exposed 
to high drug 
concentration 

Not 
metabolized, 
eliminated 
unchanged 

0.03–0.09 

PHENFORMIN C10H15N5 

 

It was 
developed in 

1957 by 
Ungar, 

Freedman, 
and Shapiro 

More 
lipophilic  
−0.83 

Stronger 

More 
generalized, 

including 
muscle 

Not 
metabolized, 
eliminated 
unchanged 

0.40–0.90 

BUFORMIN C6H15N5 

 

It is a strong 
base, and is 

freely soluble 
in water, 

methanol, 
and ethanol 

Intermediate 
−1.20 

Stronger 

More 
generalised, 

including 
muscle 

Not 
metabolized, 
eliminated 
unchanged 

>0.1 

 
Figure 3. Absorption, uptake, and elimination of metformin. After oral intake, absorption in the gas-
trointestinal tract is mediated by specific molecular transporters that allow a drug concentration in 
the portal system of 40–70 µmol/L, higher than that in systemic circulation (10–40 µmol/L). Metfor-
min is excreted unchanged in the urine, and active tubular secretion in the kidney is the main route 
of drug elimination. PMAT: plasma membrane monoamine transporter (expressed within the apical 
membranes of enterocytes in the small intestine, and variants are associated with poor tolerance in 

It is a strong
base, and is

freely soluble in
water, methanol,

and ethanol

Intermediate
−1.20 Stronger

More
generalised,
including

muscle

Not metabolized,
eliminated
unchanged

>0.1

Absorption. After the oral intake (approximately 35 mg/kg/day, that is 500–2550 mg/day),
metformin is absorbed mainly in the small intestine cells (20% duodenum, 60% jejunum,
and ileum, 20% colon). After 1.5 h is the onset of action, about 1.5–4.9 h is the half-life in
circulation, and 16–20 h is the duration of action. Metformin hydrophilicity represents a
limiting step of oral absorption due to the low intestinal permeability [21–23].

Distribution. The distribution of metformin is rapid and without binding to plasma
proteins [24,25]. In hepatic tissue, the concentration is three- to five-fold higher than in
the portal vein (40 µmol/L), so the hepatocyte is the primary site of drug function [26].
Generally, within 24–48 h, steady-state plasma concentrations are reached (approximately
<1 mcg/mL).

The presence and expression of transporters for cationic compounds (OCT), plasma
membrane monoamine transporter (PMAT), and multidrug and toxin extrusion proteins
(MATE) are critical for the biodistribution and pharmacodynamics of the biguanide [27–31]
(Figure 3).

Metabolism and elimination. Metformin, not metabolized, is present unchanged
in the urine, with a half-life of about 5 h. In the kidney, active tubular secretion is the
main route of removal, with a plasma elimination rate of about 500 mL/min [22,32]. Low
molecular weight, absence of plasma protein binding, presence of renal transporters, and
low lipid solubility are the main factors inhibiting passive reabsorption. The impairment of
renal function reduces the clearance of drugs [33].



Cancers 2024, 16, 1287 5 of 29

Therapeutic range. The therapeutic range of metformin is unclear, but it should not
exceed 5 mg/L [22,34]. Both formulations of metformin (immediate and extended release)
displayed similar areas under curve (AUC) and equal safety profiles and efficacy [22].
Lactic acidosis is the most dangerous potential risk, so in critical cases and frail subjects,
an accurate monitoring should be performed, maintaining a drug concentration below
2.5 mg/L [25].
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Figure 3. Absorption, uptake, and elimination of metformin. After oral intake, absorption in the
gastrointestinal tract is mediated by specific molecular transporters that allow a drug concentration
in the portal system of 40–70 µmol/L, higher than that in systemic circulation (10–40 µmol/L).
Metformin is excreted unchanged in the urine, and active tubular secretion in the kidney is the main
route of drug elimination. PMAT: plasma membrane monoamine transporter (expressed within
the apical membranes of enterocytes in the small intestine, and variants are associated with poor
tolerance in subjects affected by diabetes mellitus). OCT1/2/3: organic cation transporter. MATE1/2:
multidrug and toxin extrusion proteins.

2. Metformin Target Organs
2.1. Liver

The liver and skeletal muscle have been considered the major target organs of met-
formin action for many years, while, more recently, other sites of action have been high-
lighted for an important role beyond simple glycemic control, among these: the gastroin-
testinal tract, intestinal microbial communities, and tissue-resident immune cells. The
pharmacodynamics, even at the molecular level, appear to be influenced by the dose and
duration of treatment with metformin [35]. Metformin has been defined as an insulin
sensitizer, leading to a reduction in insulin resistance and therefore optimizing cellular
glucose uptake, mainly in skeletal muscle, leading to a reduction in plasma glucose and
insulin plasma values. This effect of metformin could be attributed to its positive effects on
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insulin receptor expression and tyrosine kinase activity on the phosphorylation of insulin
receptors [36]. Most studies in the literature conclude that the main function through which
metformin reduces hepatic glucose production is the inhibition of gluconeogenesis [37,38].
Inhibition of gluconeogenesis has been explained by both demonstrating changes in enzy-
matic activity such as pyruvate kinase flux and modifications of citric acid cycle activity
and also highlighting a reduction in hepatic uptake of gluconeogenic substrates [39–42].

2.2. Gastrointestinal System

More recently, the gastrointestinal tract has been identified as an additional site of
action for metformin; in fact, a high accumulation of metformin in the intestine has been
reported, both in humans and in animal models, with concentrations up to a couple of
hundred times higher than those of plasma and other tissues, suggesting that the intestine
acts as an important reservoir of metformin. Metformin increases glucose absorption in
the basolateral intestine and, through gut–liver communication, influences hepatic glu-
cose production [43–46]. Several findings suggest that the hypoglycemic capacity of met-
formin depends both on intestinal glucose absorption along the gastrointestinal tract and
on bloodstream absorption. After entering enterocytes, anaerobic glucose metabolism
causes the accumulation of lactate and acetate in the wall of the small intestine and
its release into the circulation, creating an intestinal–liver communication to attenuate
gluconeogenesis [44,47–49]. Metformin can therefore exert its beneficial metabolic actions
through modulation of the incretin axis, enhancing circulating levels of glucagon-like
peptide 1 (GLP-1), inducing glucagon-like peptide-1 (GLP-1) receptor gene expression, and
reducing plasma dipeptidyl peptidase-4 activity through a mechanism that depends on
PPAR (peroxisome proliferator-activated receptor)-α [50,51].

2.3. Brown Adipose Tissue

An increasing number of studies have shown that BAT, in addition to having a role in
dissipating energy through heat production, contributes to the regulation of glucose home-
ostasis [52,53]. The presence of metformin has been demonstrated in the interscapular BAT
of mice using 11C-metformin PET imaging, which supports the hypothesis that BAT could
be another important target of metformin [54]. At the BAT level, metformin also appears to
be involved in lipid metabolism; in fact, by increasing the activity of hormone-sensitive
lipase and AMP-activated protein kinase (AMPK), metformin promotes intracellular triglyc-
eride uptake, lipolysis, and subsequent mitochondrial fatty acid oxidation [55,56].

3. Molecular Mechanisms Involved in Metformin’s Action
3.1. Metformin-Induced Reduction in Blood Levels of Glucose (“Metabolic Face”)

The main mechanisms producing the anti-hyperglycemic action of metformin reside
in mitochondria and lysosomes, after the interaction of metformin with organic cationic
transporter 1 [57,58].

Organic Cation Transporter 1 (OCT1), a member of the family of membrane trans-
porters named Solute Carrier 22 (SLC22), facilitates the movement of endogenous and
exogenous compounds across cell membranes and is primarily localized on the basolateral
membrane of hepatocytes. Metformin is a well-known substrate of OCT1, and genetic
polymorphisms of OCT1 are known to reduce the effectiveness of metformin by lowering
absorption and causing gastrointestinal intolerance to metformin [59–61]. A recent paper
by Zeng et al., using cryo-electron microscopy, showed the interaction between drug and
OCT1 in different conditions, substrate-free and substrate-bound, with a resolution of 3.5 Å.
Conformational changes from outward-to inward-facing states are demonstrated for the
first time in a very suggestive way [58].

3.1.1. Complex I Inhibition-Dependent Mechanism

Mitochondrial Complex-I (NADH: ubiquinone oxidoreductase) is a crucial component
for respiration in aerobic organisms, oxidizing NADH from the tricarboxylic acid cycle and
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β-oxidation. In hepatocytes, metformin induces a reversible inhibition of mitochondrial
respiratory chain complex I, as documented by studies combining cryo-electron microscopy
and enzyme kinetics [62,63]. After the intracellular uptake of metformin, three main
phenomena demonstrated in hepatic cells are a higher NADH/NAD+ ratio, a reduction in
ATP concentration, and increased levels of AMP.

3.1.2. Mitochondrial Glycerol-3-Phosphate Dehydrogenase (mGPDH)-Dependent and
Complex IV Inhibition-Dependent Mechanism

Complex-IV is a cytochrome c oxidase involved in the final steps of energy conserva-
tion. At the hepatic level, metformin acts directly and indirectly via Complex-IV, inhibiting
mGPDH, with the following results: a higher NADH/NAD+ ratio, a reduction in gluconeo-
genesis from lactate, and a reduction in the activity of the glycerol–phosphate shuttle, which
transfers NADH from the cytosol to mitochondria [64,65]. Finally, the hepatic redox state is
raised through an increase in the glutathione to oxidized glutathione ratio (GSH:GSSG),
with inhibitions of genes involved in the process of gluconeogenesis.

3.1.3. AMPK Activation-Dependent Mechanisms in Lysosomes

AMP-activated protein kinase (AMPK) is a master controller of metabolic homeostasis.
At low concentrations, metformin binds presenilin enhancer 2 (PEN2), which is recruited to
ATPase H+ transporting accessory protein 1 (ATP6AP1) independent of changes in AMP
levels, leading to inhibition of v-ATPase and phosphorylation/activation of AMPK through
the formation of a supercomplex containing the v-ATPase, AXIN, liver kinase B1 (LKB1),
and AMPK [66]. Metformin-activated AMPK from lysosomes reduces lipid accumulation in
the liver via acetyl-CoA carboxylase (ACC) inhibition and increases glucagon-like peptide
1 (GLP1) secretion in the gut, inducing reductions in blood levels of glucose.

3.2. Anticancer Molecular Mechanisms of Metformin (“Anti-Proliferative Face”)

Accumulating data from preclinical studies support the anti-neoplastic activity of
metformin in several malignancies, thus providing the rationale for further exploration of
the biguanide in more than 130 clinical trials [67]. Nevertheless, its underlying molecular
mechanisms have not been fully clarified. To date, metformin anti-carcinogenic impact has
been generally classified as direct, i.e., glucose- and insulin-independent, or indirect, i.e.,
glucose- and insulin-dependent, both activities not mutually exclusive [68] (Figure 4).
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3.2.1. Direct Anticancer Mechanisms of Metformin
The mTOR Pathway

Cancer cells, in comparison to normal ones, present an aberrant metabolism with
higher requests for catabolite uptake and utilization, which are necessary for survival and
growth. Reprogramming cellular energy homeostasis, in fact, represents one of the essential
mechanisms through which metformin appears to directly attenuate tumorigenesis and
progression [68]. A crucial anti-tumor target of the biguanide concerns the mechanistic tar-
get of rapamycin complex 1 (mTORC1), which is a major driver of protein biosynthesis, cell
growth, and metabolism as a response to different stimuli such as growth factors, nutrient
availability, energy, and oxygen intracellular levels [69]. In particular, metformin selectively
inhibits mitochondrial respiratory-chain complex 1 (NADH coenzyme Q oxidoreductase),
ultimately leading to decreased cell respiration, reduced oxidative phosphorylation (OX-
PHOS), and ATP depletion. Metformin-induced energy stress triggers the activation of
AMP-kinase (AMPK), which plays a key role in modulating critical pathways such as
mTORC1 signaling. Specifically, AMPK suppresses mTORC1 activity directly via phos-
phorylation of S722 and S792 on Raptor, its scaffolding protein, as well as through the
activation of the tuberous sclerosis complex (TSC). The inhibitory impact of TSC1 and
TSC2 is also exerted on the mTORC1 downstream major effectors such as eukaryotic ini-
tiation factor 4E-binding protein 1 (4EBP1) and ribosomal protein kinase S6 (S6K) [68].
Furthermore, metformin may suppress mTORC1 activity in an AMPK-independent way
by inhibiting Rag GTPases, essential for the amino acid signaling to mTORC1, as well as by
promoting the activation during hypoxic stress of REDD1 (regulated in development and
DNA damage responses), a hypoxia-inducible factor-1 target gene involved in cell survival
regulation [70–72].

The anticancer activities of the biguanide via repression of the mTORC1 pathway, as
above-mentioned, were documented in several preclinical studies performed in different
malignancies such as lung cancer, pancreatic cancer, prostate cancer, breast cancer, thyroid
cancer, meningioma, leukemia, and lymphoma [73–80].

The PI3K/AKT/mTOR Pathway

Another anticancer metformin mechanism of action involves the PI3K/AKT/mTOR
(PAM) pathway, which is a major signaling network modulating cell growth, metabolism,
proliferation, as well as apoptosis and autophagy [68,81]. The overactivation of the PAM
axis represents one of the main drivers of tumor pathogenesis and progression, as well as of
anti-tumor therapeutic resistance. Several preclinical studies in different cancer types have
suggested that metformin may exhibit its antiproliferative effects through the inhibition of
PI3K/AKT/mTOR. In bladder cancer cells, the biguanide in a concentration-dependent
manner led to the reduction of PI3K, AKT, and mTOR phosphorylation and was ultimately
associated with the suppression of cell proliferation and migration, the activation of the
caspase cascade, and the induction of apoptosis [82]. In a study performed by Nozhat et al.
in anaplastic thyroid cancer (ATC) cell lines, metformin in a time- and dose-dependent
way repressed cell growth, significantly altered ATC cellular morphology, and decreased
cell migration, likely by reducing the mRNA expression of PI3K and AKT, with no impact,
however, on their phosphorylation status [83]. Tang and colleagues demonstrated the
antiproliferative activity of biguanide also in esophageal cancer cells, mediated partly by
the suppressed expression of the insulin-like growth factor 1 receptor (IGF-1R) and its
downstream targets PI3K, AKT, mTOR, p70S65, and PKM2 [84]. Furthermore, metformin
not only inhibited cervical cancer cell survival and proliferation, but also increased NK
cell cytotoxicity by modulating through the PI3K/AKT axis the expression of MICA and
HSP70 proteins on the cellular surface [85]. In colorectal cancer cells (CRCs), biguanide
exhibited its inhibitory effect on CRC growth by down-regulating the PI3K/AKT pathway
and repressing the expression of inhibin BetaA (INHBA), an oncogene member of the
TGF-beta family [86]. Finally, the antiproliferative activity of metformin mediated by the
interference with the PAM axis was also documented in preclinical studies conducted in
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ovarian, endometrial, and breast cancer, hepatocellular carcinoma, and mouse melanoma
B16 cells [87–90].

The K-Ras Pathway

A novel anti-tumor target of metformin is the K-Ras pathway, which plays a crucial role
in cell signal transduction, differentiation, and proliferation. Aberrant K-Ras contributes
to oncogenesis and is frequently associated with poor outcomes and resistance to anti-
EGFR therapy. Several studies in vitro and in vivo documented the inhibitory effects of the
biguanide on the growth of K-Ras-mutated cancer cells. In particular, in endometrial cancer
models, metformin inhibited cell proliferation and triggered apoptosis in a concentration-
dependent manner by displacing the oncogenic K-Ras from the plasma membrane with the
subsequent suppression of its biological activity, as well as by down-regulating downstream
MAPK signaling [91]. In K-Ras-mutated CRC, metformin exerted antiproliferative effects
by inactivating both the RAS/ERK and AKT/mTOR pathways [92]. Moreover, in K-
Ras mutant lung adenocarcinoma and pancreatic cancer cell lines, biguanide, in a dose-
dependent manner, induced apoptosis and suppressed cell proliferation by targeting crucial
downstream effectors of K-Ras signaling such as MAPK and AKT [93].

The NKL Pathway

The anti-tumor activity of metformin is also exerted by interfering with nemo-like
kinase (NLK), a member of the MAPK family, which carries out a relevant role in cell
cycle progression and contributes to the oncogenesis of several neoplasms, including colon,
prostate, lung, and hepatocellular cancer. Data in vitro and in vivo in non-small-cell lung
cancer (NSCLC) cell lines showed that the biguanide—via inhibition of NLK expression—
induced cell cycle arrest and significant reduction of the stem cell tumor population [94].

The JNK Pathway

Metformin may exert anti-proliferative activity also by interfering with c-Jun-N-
terminal kinase (JNK, also known as stress-activated protein kinase 1—SAPK1) signaling,
another MAPK-involved pathway that regulates cell growth, survival, proliferation, and
migration [95]. In osteosarcoma cell lines, the biguanide activates the JNK cascade and
promotes cell cycle arrest and programmed cell death processes, including apoptosis and
autophagy [96]. Similarly, in lung cancer cell lines, metformin led to increased apoptosis
and suppression of cell proliferation in a dose- and time-dependent manner, either by
activating JNK/p38 MAPK signaling or upregulating the expression of DNA damage
inducible gene 153 (GADD153) [97]. In gastric adenocarcinoma cell lines, biguanide was
associated with remarkable anti-proliferative activity and apoptosis induction also through
the phosphorylation reduction of several MAPKs such as JNK, ERK, and p38, in addition
to the activation of AMPK and repression of the AKT/mTOR pathway [98].

Moreover, He et colleagues documented the inhibitory effects of metformin on the
viability of thyroid cancer TPC-1 cells via down-regulation of LRP2, a transmembrane
receptor mainly involved in lipid metabolism, ultimately leading to the suppression of JNK
signaling in a concentration-dependent way [99].

The STAT3 Pathway

Another pathway involved in the anti-neoplastic effects of metformin concerns STAT3
(signal transducer and activator of transcription 3), which is a promising cancer therapeutic
target due to its crucial role in cell survival, proliferation, and migration. Preclinical stud-
ies suggest that the biguanide activity is mediated by reducing STAT3 phosphorylation
and/or suppressing its nuclear translocation, thus also leading to the downregulation of its
target genes such as cyclin D1, Bcl-XL, and Bcl2. Cyclin D1 is a vital regulator of cell cycle
progression, which promotes cell cycle G1/S phase transition, while Bcl-XL and Bcl2 are
pro-survival genes directly transcribed by STAT3 and involved in programmed cell death
modulation [100]. In fact, by repressing the STAT3 pathway in in vitro and in vivo models,
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metformin inhibited cell proliferation and induced apoptosis and autophagy in a dose- and
time-dependent manner in several cancer types, including esophageal squamous cell carci-
noma, triple-negative breast cancer, endometrial, ovarian, bladder cancer, glioblastoma,
chronic neutrophilic leukemia with mutated CSF3R, and cholangiocarcinoma [101–107].
Furthermore, in bladder cancer models, metformin also suppressed cell migration and in-
vasion, ultimately interfering with the progression of precancerous lesions. The underlying
mechanism of action suggested is the biguanide-induced inhibition of STAT3 signaling,
which regulates the activity of matrix-metalloproteinases (MMPs), Rho, and Rac proteins
that carry out a key role in modulating cellular migration [108]. Additionally, in primary
breast cancer cells, high doses of metformin attenuated cancer progression via suppression
of the STAT3 and NF-kB pathways. In particular, the biguanide inhibited the IL-6 epithelial–
mesenchymal transition (ETM) and decreased the expression of mesenchymal markers,
which are crucial for tumor metastasis [109].

The HER2 Pathway

Metformin is also associated with anticancer activity in HER-2 positive cancer via
interference with human epidermal growth factor receptor-2 (HER-2) signaling. HER2 is a
relevant oncogene able to modulate several key genes such as TP53, CDK12, PI3KCA, and
PTEN, which furthermore contribute to tumor aggressiveness and progression [110–112].
In particular, in the study performed by Vazquez-Martin on breast carcinoma (BC) cells,
biguanide in a dose- and time-dependent manner led to a significant reduction of HER-2
expression, mainly by inhibiting the downstream effector of mTOR p70S6K1, also in an
AMPK-independent way [113]. In another preclinical model of HER-2 BC cells, metformin
inhibited cell proliferation and induced apoptosis, likely due to the inhibition of heat shock
protein 90 (HSP90), which downregulates the AKT and MAPK pathways [114].

Moreover, metformin may abrogate HER-2-induced tumor angiogenesis via target-
ing the HER2/HIF-1α/VEGF pathway and is associated in a dose-dependent manner
with inhibition of HER2-positive gastric cancer cell growth, also via reduction of HER 2
phosphorylation [111,115].

The NF-κB Pathway

Other antitumor effects of metformin are mediated by interference with the nuclear
factor κB pathway (NF-κB), which is involved in cancer development, invasion, and metas-
tasis via modulation of EMT, as well as in therapeutic resistance [116]. In the study of Li
and colleagues, conducted in EGFR-mutant lung cancer models with acquired resistance to
EGFR tyrosine kinase inhibitors (TKIs), the biguanide inhibited cell proliferation, induced
apoptosis, reversed or delayed the TKIs resistance, and repressed cancer cell stemness by
inactivating ERK/NF-κB signaling in an AMPK-dependent way [117]. Metformin is able
to trigger caspase3/GSDME-mediated pyroptosis of cancer cells via stimulation of the
AMPK/SIRT1/NF-κB pathway and mitochondrial dysregulation [118]. Furthermore, in
primary breast cancer cell lines, metformin presents an inhibitory effect on tumor invasion
and metastasis due to the dual suppression of NF-kB activity and nuclear translocation
mediated by MMP-9 downregulation [119], and in prostate cancer models, metformin
appeared to attenuate metastasis by repressing NF-Kb signaling, thus leading to the sup-
pression of tumor necrosis factor-α-induced EMT [120]. In a preclinical study performed
on ovarian cancer cells, biguanide was shown to suppress cancer progression and reduce
chemoresistance via modulation of NF-κB and IL-6 signaling [121].

3.2.2. Indirect Anticancer Mechanisms of Metformin

The indirect antineoplastic effects of metformin are exerted by modulating blood
glucose and insulin concentration. In fact, the biguanide down-regulates insulin and
insulin-binding proteins, leading to decreased levels of insulin growth factor-1 [68]. The
IGF axis plays a crucial role in cell growth and metabolism. Moreover, IGF-1 and IGF-2,
in particular, promote both mitogenic as well as antiapoptotic signaling via activation of
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other key pathways such as PI3K/AKT/mTOR and RAS/RAF/MAPK [122]. Additionally,
metformin-induced AMPK activation reduces insulin receptor substrate-1 (IRS-1) phospho-
rylation, which interferes with the PI3K/AKT/mTOR axis too [68]. Finally, in endometrial
cancer cells, metformin presented antiproliferative effects by reducing IGF-1 secretion
and IGF-1R expression, ultimately leading to the inhibition of downstream PI3K/AKT
signaling [123], whereas considering breast tumors, in triple-negative cancer cell lines, a
synergistic effect of metformin combined with an insulin/IGF-1 inhibitor in suppressing
cell growth and proliferation was documented [124,125].

4. Clinical Trials on Metformin Use
4.1. Clinical Studies on Hyperglicemic Conditions (“Metabolic Face”)
4.1.1. Type 2 Diabetes Mellitus

The series of United Kingdom Prospective Diabetes Studies (UKPDS) represent the
main source about the normoglycemic role of metformin, involving subjects with type 2 di-
abetes mellitus in intensive and conventional dietary treatment. In overweight individuals
taking metformin, reductions in the risk of myocardial infarction of 39% (p = 0.01) and of
death from any cause of 36% (p = 0.01) were observed [126–129].

Moreover, Holman and colleagues conducted post-trial monitoring of UKPDS, demon-
strating that in the overweight group (342 subjects in metformin), compared with subjects
in conventional therapy, differences in glycated hemoglobin levels were lost after the first
year, but significant risk reductions persisted for several end points. This phenomenon
was called the “legacy effect”, the persistence of clinical benefits despite the early loss of
within-trial differences in glycometabolic balance [130].

In a systematic review and meta-analysis about diabetes medications as monotherapy
or metformin-based combination treatment, Maruthur et al. demonstrated that major hypo-
glycemic risk and cardiovascular mortality were lower for metformin versus sulfonylureas
and that reductions in glycated hemoglobin values were similar across monotherapies
and metformin-based combinations, except for DPP-4 inhibitors, which showed a smaller
effect. Metformin, DPP-4 inhibitors, and GLP-1 receptor agonists were similar in reducing
or maintaining body weight, which increased with sulfonylureas, thiazolididinediones,
and insulin (differences up to 5 kg). As expected, genital infections were increased with
glifozins, while gastrointestinal adverse events were highest with metformin and GLP-1
receptor agonists [131].

Furthermore, it is also important considering the pleiotropic actions of metformin and the
worsening of neuropathic symptoms in subjects with vitamin B12 deficiency due to the chronic
assumption of biguanide, so periodic testing of vitamin B12 is recommended [132,133].

Several institutional guidelines do not suggest metformin as a first-line treatment in
secondary cardiovascular prevention, lacking protective impact on major adverse cardio-
vascular events, cardiovascular death, myocardial infarction, heart failure, and stroke, as
demonstrated in an umbrella review of a group from Sun Yat-sen University [134].

4.1.2. Pre-Diabetes

The main projects aimed at analyzing subjects at very high risk of developing diabetes
were the Diabetes Prevention Program (DPP) at the end of the last century (1996–2001) and
later the DPP Outcome Study (DPPOS, 2002–2013). These trials demonstrated that intensive
lifestyle treatment and biguanide therapy were favorable vs. placebo in preventing the onset
of diabetes (7.0%, 5.7%, and 5.2% per year for placebo, metformin, and lifestyle, respectively)
and 27% and 18% lower for lifestyle and metformin vs. placebo, respectively [135].

In a very recent review, Patel and colleagues—in a total sample size of 30,474 subjects—
showed the effectiveness of metformin in diabetes prevention in terms of a reduction in the
risk of progressing to type 2 diabetes mellitus in prediabetic individuals receiving the drug
(pooled RR 0.58, indicating a 42% lower risk [136].
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4.1.3. Type 1 Diabetes

In the Standards of Care by the American Diabetes Association (ADA), metformin is
also considered in paragraph “Non insulin treatment for type 1 diabetes” [137]. Meng et al.
evaluated the effect of metformin in 1183 subjects with type 1 diabetes, demonstrating that
metformin was associated with reductions in BMI (−1.14, 95% CI −2.05 to −0.24, p = 0.01),
insulin requirements (−0.47, 95% CI −0.70 to −0.23, p = 0.0001), total cholesterol (−0.23,
95% CI −0.34 to −0.12, p < 0.0001), and low-density lipoprotein cholesterol (−0.20, 95%
CI −0.29 to −0.11, p < 0.0001) in type 1 diabetic patients. No clear evidence indicated
that metformin improved HbA1c, triglyceride, or high-density lipoprotein cholesterol
levels [138]. The REMOVAL study focused on cardiovascular and metabolic effects of
metformin in adults aged 40 years and older with type 1 diabetes of at least 5 years’
duration, demonstrating that progression of mean carotid intima-media thickness (IMT)
was not significantly reduced with metformin, and that glycated hemoglobin was reduced
on average over 3 years by metformin, but this was accounted for by a reduction at the
3-month timepoint that was not sustained thereafter. Bodyweight and LDL cholesterol
were reduced with metformin over 3 years of treatment, and eGFR was increased. Finally,
the insulin requirement was not reduced on average over 3 years [139].

4.2. Clinical Studies on Tumoral Conditions (“Anti-Proliferative Face”)

The promising in vitro and in vivo evidence regarding the antiproliferative activity
of metformin has provided the rationale for the conduct of more than 130 clinical studies
included up-to-date in the registry of clinicaltrials.gov. The aim of our paper is to focus on
phase III clinical trials and major phase II trials when phase III is absent. The trials to evalu-
ate metformin in oncology were prevalently performed in colorectal, breast, endometrial,
and prostate cancer. Despite the increasing number of clinical studies, the data available
concerning the potential antitumor effect of biguanide remain limited and inconsistent;
therefore, more robust and large-scale trials are warranted to further investigate metformin
administration in the neoplastic setting (Table 2).

Table 2. Type of study, intervention/treatment, patients, and outcomes in main clinical trials in
different neoplasms (colorectal cancer, breast cancer, prostate cancer, and GEP-NET).

Trial Title Tumor Type of
Study Intervention/Treatment Patients,

n

Primary
Outcome

(s)
Results References

Phase 2 Trial of
Metformin

Combined With
5-Fluorouracil in

Patients With
Refractory Metastatic

Colorectal Cancer

Colorectal
cancer

Single-arm,
phase II

study

Metformin 850 mg bid
plus 5-FU 425 mg/m2

and leucovorin 50 mg
i.v. weekly

50 DCR at 8
weeks

Modest activity of
metformin plus
5-FU with major

benefits observed in
patients with

BMI ≥ 30 kg/m2

11 (22%) patients
presented DCR at

8 weeks with mPFS
= 5.6 months and

mOS = 16.2 months

Miranda
et al., 2016

[140]

Phase II trial of
nivolumab and

metformin in patients
with

treatment-refractory
microsatellite stable
metastatic colorectal

cancer.

Colorectal
cancer

Single-arm,
phase II

study

Metformin 1000 mg bid
plus Nivolumab
480 mg i.v. every

4 weeks

24 ORR

No ORR was
observed; the study

did not proceed
with further
enrollment

Akce et al.,
2023 [141]
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Table 2. Cont.

Trial Title Tumor Type of
Study Intervention/Treatment Patients,

n

Primary
Outcome

(s)
Results References

Impact of Metformin
Use and Diabetic

Status During
Adjuvant

Fluoropyrimidine-
Oxaliplatin

Chemotherapy on the
Outcome of Patients
with Resected Colon

Cancer: A TOSCA
Study Subanalysis

Colon
cancer

Substudy
of phase III

TOSCA
trial

Metformin plus
adjuvant

fluoropyrimidine-
oxaliplatin

3759 OS and
RFS

No impact on OS or
RFS

Vernieri
et al., 2019

[142]

Effect of Metformin
vs. Placebo on

Invasive Disease-Free
Survival in Patients
With Breast Cancer:

The MA.32
Randomized Clinical

Trial

Breast
cancer

Phase III,
placebo-

controlled,
double-

blind RCT

Drug: metformin
850 mg/day for 4

weeks, then 850 mg bid
for 5 years plus

adjuvant standard
breast cancer treatment

Control arm: placebo
plus adjuvant standard
breast cancer treatment

3649

Invasive
disease-

free
survival

No significant
improvement of the
invasive disease-free

survival

Goodwin
et al., 2022

[143]

Efficacy of Metformin
as Adjuvant Therapy
in Metastatic Breast
Cancer Treatment

Breast
cancer

Prospective,
placebo-

controlled
RCT

Drug: metformin
500 mg bid plus

adjuvant CT

Control arm: adjuvant
CT

107 PFS and
RR

No significant
benefits on PFS and

RR

Essa et al.,
2022 [144]

Metformin as an
Adjuvant Treatment

in Non-Diabetic
Metastatic Breast

Cancer

Breast
cancer

Phase II
RCT

Drug: metformin
1000 mg bid plus

adjuvant CT

Control arm: CT

50 OS and
PFS

Metformin group vs.
control group
presented no

significant
improvement of OS

and PFS, but
higher radiological
response (p = 0.002)

Salah et al.,
2021 [145]

The C Allele of
ATM rs11212617
Associates With

Higher Pathological
Complete Remission
Rate in Breast Cancer
Patients Treated With

Neoadjuvant
Metformin
(METTEN)

Breast
cancer

Phase II,
open-label,
multicen-
ter RCT

Drug: metformin
850 mg bid for
24 weeks plus

anthracycline/taxane-
based CT and
trastuzumab

Control arm:
neoadjuvant

anthracycline/taxane-
based CT and
trastuzumab

79 PCR

Metformin group
was associated with
a higher PCR than

control group

Cuyàs et al.,
2019 [146]
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Table 2. Cont.

Trial Title Tumor Type of
Study Intervention/Treatment Patients,

n

Primary
Outcome

(s)
Results References

Neoadjuvant
chemotherapy with

or without
metformin in

invasive
nonmetastatic breast
cancer. Randomized

controlled trial

Breast
cancer

Phase II/III
RCT

Drug: metformin
850 mg/day, then
850 mg bid plus
neoadjuvant CT

Control arm:
neoadjuvant CT

140 Tumor
RR

Metformin plus
neoadjuvant CT was

associated with
higher PCR,
especially in

ER-negative BC
(63.2% vs. 22.2%,

p = 0.02)
and ER-negative BC

(50% vs. 34.6%,
p = 0.3)

Othman
et al., 2023

[147]

Metformin with
neoadjuvant

chemotherapy in
stage II-III breast
cancer: A phase II

clinical trial.

Breast
cancer

Phase II
RCT

Drug: metformin
850 mg bid plus
neoadjuvant CT

Control arm:
neoadjuvant CT

60 OPR

A higher pCR was
observed in the

metformin group,
but without

statistical
significance

(p = 0.09)

Azazy et al.,
2020 [148]

The effect of
metformin when
combined with

neoadjuvant
chemotherapy in

breast cancer
patients.

Breast
cancer

Prospective
study

Drug: metformin
850 mg bid plus
neoadjuvant CT

Control arm:
neoadjuvant CT

59 PCR

The addition of
metformin may
improve PCR
particularly in

individuals with
triple-positive BC

and
BMI ≥ 25 kg/m2

El-Khayat
et al., 2021

[149]

Neoadjuvant
docetaxel, epirubicin,

and
cyclophosphamide

with or without
metformin in breast
cancer patients with

metabolic
abnormality: results

from the randomized
Phase II

NeoMET trial

Breast
cancer

Phase II
RCT

Drug: metformin
850 mg/day for the

first cycle, then 850 mg
bid plus neoadjuvant

CT (TEC)

Control arm:
neoadjuvant CT (TEC)

92 PCR No improvement of
PCR

Huang et al.,
2023 [150]

A phase II
randomized clinical
trial of the effect of
metformin versus

placebo on
progression-free

survival in women
with metastatic

breast cancer
receiving standard

chemotherapy

Breast
cancer

Phase II,
double-

blind, RCT

Drug: metformin
850 mg bid plus CT

Control arm: placebo
plus CT

40 PFS No significant
impact on PFS

Pimentel
et al., 2019

[151]
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Table 2. Cont.

Trial Title Tumor Type of
Study Intervention/Treatment Patients,

n

Primary
Outcome

(s)
Results References

Metformin plus
chemotherapy versus
chemotherapy alone

in the first-line
treatment of

HER2-negative
metastatic breast

cancer. The MYME
randomized, phase 2

clinical trial.

Breast
cancer

Phase II
RCT

Drug: metformin
2000 mg/day plus CT

Control arm: CT

122 PFS No significant
impact on PFS

Nanni et al.,
2019 [152]

A randomized phase
II study of aromatase

inhibitors plus
metformin in
pre-treated

postmenopausal
patients with

hormone receptor
positive metastatic

breast cancer.

Breast
cancer

Phase II
RCT

Drug: metformin
500 mg bid plus

aromatase inhibitor
(exemestane 25 mg/d
or letrozole 2.5 mg/d)

Control arm:
aromatase inhibitor

(exemestane 25 mg/d
or letrozole 2.5 mg/d)

60 PFS No significant
impact on PFS

Zhao et al.,
2017 [153]

SAKK
08/14—IMPROVE

Investigation of
metformin in patients

with metastatic
castration-resistant

prostate cancer
(mCRPC) in

combination with
enzalutamide vs.

enzalutamide alone.
A randomized, open
label, phase II trial.

Prostate
cancer

Phase II,
open-label,
multicen-
ter RCT

Drug: metformin
850 mg bid plus

enzalutamide 160 mg

Control arm:
enzalutamide 160 mg

169
DCR at

15
months

No benefits on DCR
Rothermundt

et al., 2022
[154]

TAXOMET: A French
prospective
multicentric
randomized

controlled phase II
study comparing

docetaxel plus
metformin versus

docetaxel plus
placebo in mCRPC.

Prostate
cancer

Phase II,
placebo-

controlled,
multicen-
ter RCT

Drug: metformin
850 mg bid plus

docetaxel 75 mg/m2

every 21 days plus
prednisone 5 mg bid

Control arm: placebo
plus docetaxel

75 mg/m2 every
21 days plus

prednisone 5 mg bid

99

PSA
response
≥ 50%
from

baseline

No significant
benefits on PSA

response, PFS, OS or
ORR

Martin et al.,
2021 [155]
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Table 2. Cont.

Trial Title Tumor Type of
Study Intervention/Treatment Patients,

n

Primary
Outcome

(s)
Results References

Repurposing
metformin as

anticancer drug:
Randomized

controlled trial in
advanced prostate

cancer (MANSMED)

Prostate
cancer

Phase II
RCT

Drug: metformin plus
standard of care

Control arm: standard
of care

124 CRPC-FS

A significantly
higher CRPC-FS
(29 months vs.

20 months, p = 0.01)
was observed in the

metformin group,
especially in

individuals with
high-risk localized

disease or metastatic
low tumor

volume disease

Alghandour
et al., 2021

[156]

PRE-surgical
Metformin In Uterine

Malignancy
(PREMIUM): a
Multi-Center,
Randomized
Double-Blind,

Placebo-Controlled
Phase III Trial

Endometrial
cancer or

AEH

Phase III,
multicen-

ter,
double-

blind RCT

Drug: neoadjuvant
metformin 850 mg/d

for 3 days, then 850 mg
bid for 1 to 5 weeks

Control arm: placebo
for 1 to 5 weeks

until surgery

88

Post-
treatment
IHC ex-
pression
of Ki-67

No differences in
Ki67 expression
were detected

Kitson et al.,
2019 [157]

Phase II study of
medroxyproges-

terone acetate plus
metformin as a
fertility-sparing

treatment for atypical
endometrial

hyperplasia and
endometrial cancer.

Endometrial
cancer or

AEH

Single-arm,
phase II

trial

Drug: metformin
(750–2250 mg/day)

plus
medroxyprogesterone
acetate 400 mg/day

17 with
AEH

and 19
with EC

RFS after
remis-
sion

Beneficial effect of
metformin in

inhibiting disease
relapse (3-year RFS

rate = 89%)

Mitsuhashi
et al., 2016

[158]

METNET: a phase II
trial of metformin in

patients with
well-differentiated

neuroendocrine
tumours.

GEP-NET or
pulmonary

NET

Single-arm,
phase II

trial

Drug: metformin
850 mg bid 28 DCR at

6 months

Modest
antineoplastic

activity of
metformin in

well-differentiated
GEP or lung NET

26 patients had
progression, 13
(46%) of whom

presented DCR at
6 months and mPFS

6.3 months

Glasberg
et al., 2022

[159]

Abbreviations: RCT: randomized clinical trial, bid: twice a day, 5-FU: 5-flurouracil, i.v.: intravenous, DCR:
disease control rate, BMI: body mass index, PFS: progression-free survival, mPFS: median PRS, OS: overall
survival, mOS: median OS, ORR: overall response rate, RFS: relapse-free survival, CT: chemotherapy, RR: response
rate, PCR: pathological complete response, OPR: overall pathological response, BC: breast cancer, TEC: TEC
docetaxel 75 mg/m2, epirubicin 75 mg/m2, and cyclophosphamide 500 mg/m2, d1, q3w; PSA: prostate-specific
antigen, CRPC-FS: castration-resistant prostate cancer-free survival, AEH: atypical endometrial hyperplasia, IHC:
immunohistochemical, GEP: gastreoenteropancreatic, and NET: neuroendocrine tumor.

Colorectal Cancer (CRC)

The antiproliferative efficacy of metformin explored in the therapeutic strategy for
colorectal cancer (CRC) is still controversial. In a few prospective studies, the poten-
tial chemopreventive role of biguanide in CRC carcinogenesis was documented [142].
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Hosono et al. evidenced that low-dose metformin treatment (250 mg daily) led to the in-
hibition of colonic epithelial proliferation and of colorectal aberrant crypt foci (ACF) in
non-diabetic patients with ACF [160]. Furthermore in a phase III, multicenter, double-blind,
and placebo-controlled RCT, metformin (250 mg daily)—administered for 1 year—was
associated with a significantly lower prevalence of metachronous adenomas or polyps in
non-diabetic patients at high risk of CRA relapse after polypectomy [161].

A similar chemopreventive effect was seen in a particular setting of patients with an in-
creased risk of colonic polyps: acromegalic patients. In a recent exploratory cross-sectional
study [162], we evaluated the prevalence of colonic polyps in acromegalic patients treated
or not with metformin and explored its possible protective role against the development
of colon polyps. We subdivided our cohort into patients with and without polyps. Only
24% of subjects with polyps were under metformin vs. 57% of patients without polyps,
data confirmed by multivariate analysis (OR 0.224, 95% CI 0.065–0.770, p = 0.01). In our
study, metformin was used as an antidiabetic treatment, so this finding could suggest that
metformin therapy may counterbalance the dual risk factors of diabetes and acromegaly.
These data suggest a potential protective role for metformin in a subset of individuals
affected by this specific endocrine disease.

On the other hand, as usual in the scientific literature, other experiences yield dif-
ferent results. A phase IIa study involving non-diabetic and obese (BMI ≥ 30 kg/m2)
subjects with a recent history of CRA undergoing metformin therapy 1000 mg twice daily
for 12 weeks showed no reduction in rectal tissue pS6Ser235/236 or Ki67 immunostaining
levels [163]. Similarly, in individuals already affected by CRC, the impact of the biguanide
is still unclear and warrants further exploration. In a retrospective study conducted by Han
et al. in 232 patients with rectal cancer who underwent curative resection after preoperative
chemo-radiotherapy (CCRT), neoadjuvant metformin administration before CCRT resulted
as a relevant factor in predicting tumor downstaging and good response rates of tumor
regression grade [164]. Moreover, in a phase II trial, Miranda et al. described an overall
modest activity of metformin 850 mg twice daily added to 5-fluorouralcil (5-FU) in 50 sub-
jects with refractory CRC. In particular, 11 (22%) patients met the primary endpoint, which
was disease control rate at 8 weeks, and among all patients, those with BMI ≥ 30 kg/m2

appeared to benefit more from the combined therapy. The median Progression Free Sur-
vival (mPFS) was 2 months and the median Overall Survival (mOS) was 7.9 months [140].
Less promising findings were detected in a phase II study by Akce et al., who documented
that in patients with refractory microsatellite stable metastatic CRC undergoing combined
treatment of metformin and nivolumab, no objective response was observed, hence the
trial did not proceed with further enrollment; mOS and mPFS were respectively 5.1 and
2.3 months [141]. Accordingly, in a sub-study of the TOSCA trial involving individuals
with high-risk stage II or stage III colon cancer undergoing 3 months versus 6 months of
fluoropyrimidine–oxaliplatin adjuvant therapy, the addition of metformin impacted neither
the OS nor the relapse-free survival (RFS), regardless of its dosage [142]. Similarly, no
correlation between the biguanide and the survival outcomes, including OS, disease-free
survival (DFS), and time to recurrence (TTR), was identified by Singh et al. in the setting of
the phase III N0147 study involving 1958 patients with stage III colon cancer (CC) receiving
adjuvant chemotherapy [165]. At present, there are two ongoing phase III RCTs enrolling
individuals affected by CRC. In particular, Abdelhafeez et al. are investigating in stage IV
CC the effect of metformin combined with the standard therapy FOLFOX/XELOX in com-
parison with their counterparts receiving only FOLFOX/XELOX. The primary outcomes
concern the Disease Control Rate (DCR) and PFS [166]. Kim et al. are also conducting an
open-label RCT to examine the impact of adjunctive metformin in patients with recurrent
stage II high-risk and stage III colorectal cancer who have already undergone surgery
and/or neo-adjuvant chemoradiation. The primary endpoint is the comparison of the
3-year DFS between metformin and non-metformin cohorts [167].
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5. Breast Cancer (BC)

The potential antineoplastic role of metformin explored in the setting of both neo-
and adjuvant therapy in patients affected by breast cancer is still unclear. In the phase III,
double-blind and placebo-controlled RCT conducted in 3649 non-diabetic patients with
BC, the addition of metformin to standard adjuvant therapy did not lead to a significant
improvement in invasive disease-free survival [143]. Similarly, no significant survival
benefits were detected in terms of PFS or response rate (RR) related to the combination of
biguanide and chemotherapy in a study involving 107 non-diabetic patients with metastatic
BC [144]. However, slightly higher OS and PFS, but with no statistical significance, were
associated with metformin and adjuvant chemotherapy in the phase II trial of Salah. et al.,
enrolling 50 individuals with stage IV BC. The radiological response, instead, resulted
significantly better in the metformin cohort in comparison to the placebo one [145]. In-
stead, more encouraging results were observed when metformin was administered in
the neoadjuvant setting. In fact, in the METTEN phase II trial involving 79 individuals
affected by HER2-positive BC bearing the rs11212617 C allele, metformin combined with
neoadjuvant chemotherapy (anthracycline/taxane-based regimens) and ERBB2-targeted
therapy (i.e., trastuzumab) was associated with a higher pathological complete response
(pCR) compared to the non-metformin counterparts (81.2% vs. 35.3%, respectively) [146].
Moreover, Othman et al., in a phase II/III RCT, placebo-controlled study, involving 140 sub-
jects with invasive non-metastatic BC, demonstrated that positive Her2 or negative estrogen
receptor (ER) status seemed to predict pCR in the metformin-treated arm. In particular,
ER-negative BC metformin therapy presented a significantly higher pCR compared to the
control group (63.2% vs. 22.2%, respectively, p = 0.02). In HER-2-positive BC, a greater pCR
was documented in the metformin arm, but no statistical significance was reached [147].
Similarly, Azazy et al. performed a phase II randomized and placebo-controlled trial in
60 non-diabetic patients with stage II–III BC and documented a higher pCR in the group
receiving metformin (850 mg b.i.d.) and neoadjuvant chemotherapy without reaching any
significance (p = 0.09) [148]. It is also documented that metformin has a positive impact
when combined with neoadjuvant chemotherapy on the pCR rate, particularly in individu-
als with stage II-III triple-positive BC without diabetes and with a BMI ≥ 25 kg/m2 [149].
Discordantly, no improvement of pCR in patients affected by BC and metabolic abnormali-
ties was observed in the phase II NeoMET study in the arm receiving both the biguanide
and neoadjuvant chemotherapy (docetaxel, epirubicin, and cyclophosphamide) [150]. Also
in the setting of metastatic or locally advanced, unresectable BC metformin treatment in
conjunction with chemotherapy or hormone therapy tested in several phase II studies
failed to present a relevant impact on the survival outcomes [151–153]. In conclusion, the
anticancerogenic effect of biguanide in breast cancer remains controversial and warrants
further investigation in robust RCTs. An ongoing phase III RCT is currently exploring the
eventual role of metformin in preventing BC development in patients affected by atypical
hyperplasia or in situ breast cancer. The results are going to be published in the forthcoming
years and could also provide information regarding the potential chemopreventive activity
of metformin [168].

6. Prostate Cancer

In prostate cancer, evidence shows inconsistent findings regarding the antitumor
role of biguanide. In a meta-analysis comprising three phase III, double-blind, and place-
controlled RCTs (AFFIRM, PREVAIL, and PROSPER) aimed at studying enzalutamide in
castration-resistant prostate cancer (CRPC) patients, metformin treatment failed to present a
significant impact on the survival outcomes [169]. Similarly, no benefits in terms of disease
control rate (DCR) and OS were observed in the metformin-treated cohort in combination
with enzalutamide compared to enzalutamide alone in SAKK 08/14, a phase II multicenter
RCT involving 169 subjects with metastatic CRPC [154]. Also in TAXOMET, a phase II
multicenter study comparing docetaxel plus metformin versus docetaxel plus placebo in
metastatic CRPC, no meaningful benefits in terms of OS, PFS, ORR, and PSA response rate



Cancers 2024, 16, 1287 19 of 29

were documented [155]. Discordantly, a significantly higher prostate cancer-free survival
(29 months vs. 20 months, p = 0.01), especially in individuals with high-risk localized
disease or metastatic low tumor volume disease, was observed in MANSMED, a phase
II RCT enrolling 124 patients with CRPC in the metformin plus androgen-deprivation
therapy (ADT) arm versus ADT only [156]. Due to the insufficient data available, some
randomized trials are currently ongoing. The MAST study, a phase III, double-blind,
and placebo-controlled RCT, is evaluating the eventual impact of metformin in reducing
disease progression in men affected by low-risk, localized prostate cancer on expectant
management [170]. Another active study is STAMPEDE, a multi-arm and multi-stage phase
II/III RCT already involving 11992 participants, aimed at exploring several therapeutic
strategies, including metformin, in high-risk locally advanced and metastatic hormone-
naïve prostate cancer [171]. In the forthcoming future, we are going to publish the findings
of METAL, a phase IV placebo-controlled RCT finalized to investigate the role of biguanide
in a neoadjuvant setting in early-stage prostate cancer patients [172].

7. Endometrial Cancer (EC)

There is limited data provided by prospective clinical trials regarding the potential
antitumor effect of metformin in endometrial cancer. PREMIUM, a multi-center, placebo-
controlled phase III RCT, conducted in 88 patients with atypical hyperplasia or endometri-
oid endometrial cancer, showed that neoadjuvant treatment with metformin (850 mg daily
for 3 days and twice daily thereafter) for 1 to 5 weeks did not present a favorable impact
on tumor proliferation. No differences were detected regarding the immunohistochemical
expression of Ki-67, neither of the markers of PI3K-Akt-mTOR nor the insulin signaling
pathway [157]. Conversely, Mitsuhashi et al., in a phase II, single-arm study enrolling
17 women with atypical endometrial hyperplasia (AEH) and 19 with EC, documented
that metformin (750–2250 mg/day) was beneficial in preventing disease recurrence after
medroxyprogesterone acetate (MPA) administration for fertility-sparing therapy, showing
an 89% 3-year relapse-free survival (RFS) rate [158]. Such findings have provided the
rationale for the commencement in 2019 of the FELICIA trial, a randomized phase IIb study,
finalized particularly to investigate the adequate dose of metformin in addition to MPA
in AEH and EC patients and identify the 3-year RFS rate. The trial results are still to be
published [173]. In another ongoing phase III, randomized and placebo-controlled study,
the role of biguanide is also being explored in the chemoprevention setting in obese (BMI
≥ 30 kg/m2) and hyperinsulinemic women affected by EC [174]. Other currently active
trials are evaluating, in advanced or recurrent EC, the impact of metformin combined with
everolimus and letrozole in a single-arm study [175], as well as metformin combined with
paclitaxel plus carboplatin in a phase II/III placebo-controlled RCT [176].

8. Other Malignancies

Some interesting data on the antineoplastic efficacy of metformin derive from an Italian
multicenter retrospective study on neuroendocrine tumors [177]. In this trial (PRIME-NET
Study), the authors demonstrated a significantly longer PFS in diabetic patients with pan-
creatic neuroendocrine tumors (panNET) treated with metformin, everolimus, and/or
somatostatin analogs, compared to diabetic patients with panNET treated with the same
oncological therapy but with another antidiabetic agent instead of metformin. The PFS in
the first group of diabetic patients with panNET was significantly longer, even compared
to those of non-diabetic patients with panNET treated in the same manner, but without
metformin. Clinical prospective data about the antineoplastic effect of metformin on
other malignancies is still scarce and inconclusive. Regarding neuroendocrine neoplasms
(NENs), METNET, a phase II single-arm trial, showed a modest antineoplastic activity
of the biguanide (850 mg twice daily) in progressive metastatic well-differentiated NENs
of gastroenteropancreatic (GEP) or pulmonary origin. In this study, 46% of the patients
presented with DCR at 6 months and a mPFS of 6.3 months; however, this study enrolled
only 28 subjects [159]. In consideration of the beneficial activity of metformin when added
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to everolimus and/or somatostatin analogs in NENs patients with diabetes, as evidenced by
the preliminary findings of the PRIME-NET study [177], two phase II studies have been ini-
tiated. The MetNET-1 and MetNET-2 trials aim at evaluating the antiproliferative potential
of the biguanide combined, respectively, with everolimus plus octreotide LAR in advanced
well-differentiated pancreatic NENs or combined with lanreotide in well-differentiated
GEP and lung NENs [178,179]. The results are still to be published and could provide the
rationale for further exploration of metformin combined with target therapies in this cohort
of patients. Preclinical evidence of the antiproliferative activity of metformin in other
malignancies has also led to the design of some phase II or III RCTs, aimed at investigating
the efficacy of the biguanide in lung cancer when added to tyrosine kinase inhibitors [180],
in melanoma when combined with dacarbazine or with pembrolizumab [181,182], in hep-
atocellular carcinoma when administered with sorafenib [183], as well as in pancreatic
cancer when combined with chemotherapeutic agents [184,185].

9. Conclusions and Future Research Directions

Metformin is an old drug with multiple target organs. Over the years, different mech-
anisms of action, such as the subcellular mechanisms involved in metabolism in cellular
and tissue growth, not previously known, have been highlighted, arousing interest about
the possibility of using this molecule in fields other than the one for which it is commonly
used (T2DM). In addition to confirming the safety and effectiveness of metformin in re-
ducing hba1c in the treatment of T2DM, this review confirms its role in situations where
prediabetes are able to prevent the evolution of T2DM. In this last context, in our opinion,
it should also be considered what it means to mask an evolution to T2DM and to establish
the timing of complications checks and targets of other metabolic or clinical parameters (for
example, blood pressure), which would otherwise be defined in the case of an evolution to
T2DM. Data are not enough to allow important conclusions about the use of metformin
in T1DM, where most likely the patient’s constitutional habit, beyond insulin deficiency,
makes the difference in the sensitivity of organs to the response to metformin.

As regards the “antiproliferative face” of metformin, scientific knowledge to date
suffers from a contrast between the encouraging in vitro results and the still inconclusive
in vivo findings of some trials.

The most promising areas appear to be colon and breast cancers, although some very
encouraging data derive from neuroendocrine neoplasms, though from retrospective data,
on a large series of cases.

Therefore, further, more rigorous observational studies, or RCTs, should be designed
properly, aimed at exploring the potential benefits of the biguanide in specific popula-
tion subgroups accurately selected according to glycemic and metabolic status, cancer
histological features, molecular profiling, and staging.

Considering the current data globally, it seems that the use of metformin in RCTs for a
short period has not led to clinical benefits, while in some more prolonged experiences or
in retrospective studies, in which patients had been taking the drug for other reasons for
several years, the data are more suggestive of a certain benefit.

However, we have probably also considered this aspect, the duration of the patient’s
exposure to the drug metformin, in order to evaluate the potential antiproliferative effect
and its effectiveness.

Hence, proper data analysis methods should be implemented to avoid time-related
biases that could have erroneously led to beneficial effects of metformin in cancer preven-
tion and treatment in the non-randomized studies conducted since 2005, as highlighted
by Hoi Yun Yu et al. [186]. In particular, several observational studies have been affected
by the immortal time bias, which is defined as the time between cohort entry and met-
formin initiation, which could amplify the potential benefits of metformin by extending
the exposure time to the biguanide and the survival time of the patient [186]. Therefore, a
careful definition of drug exposure is another fundamental criterion for providing robust
and accurate evidence.
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The most interesting role of metformin could be its preventive impact against the
development of neoplasia in populations at increased risk, rather than its implementation
as an antiproliferative therapy in already diagnosed neoplasia.

As reported by Lord and Harris in a recent perspective article, metformin and its
efficacy in cancer prevention have been underexplored in prospective studies [187].

Some data in the literature [161,162] provide a strong rationale for testing this drug in
selected groups of patients, for example, acromegalic, obese patients, or insulin-resistant
subjects [187].

Given the difficulty in obtaining results in the cancer prevention aspect, because the
studies would require very large populations and very long follow-up, Lord and Harris
emphasize that an attempt should instead be made to study the preventive power of
metformin in those populations who have a higher risk of cancer, such as in some genetic
syndromes or metabolic conditions [187].

An interesting translational study published a few years ago in the Journal of Clinical
Investigation demonstrated an advantage in terms of increased cancer-free survival in a
mouse model of Li–Fraumeni syndrome treated with metformin [188].

This effect was determined by the inhibition of mitochondrial respiration exerted by
metformin and occurred in the same way both in the murine model and in vivo in patients
affected by this syndrome. The authors therefore concluded that, having demonstrated that
metformin was able to inhibit mitochondrial respiration in humans as well, it could be used
to prevent the onset of cancer in this particular population of patients with Li–Fraumeni
syndrome [188].

These data are also suggested by the literature available so far and will certainly
be clarified in the future when the results of several currently ongoing studies are pub-
lished [166–168,172,178,179].

For the future, instead, we should expect to find metformin increasingly under the
magnifying glass of many authors as a possible association with immunotherapies. In
fact, despite its high efficacy in many cancers, immunotherapy could be limited by the
modulation of the tumor immune microenvironment.

A very recent review shows how metformin can be an important “booster” for im-
munotherapy, according to some preclinical studies (in vitro and animal models) and a few
phase II studies on human tumor specimens derived from patients pretreated or not with
metformin [189–192].

Some evidence from these studies shows how metformin, through mechanisms not
yet fully elucidated, can modulate the tumor immune microenvironment, thus enhancing
the response to immunotherapy.

In summary, we do not yet have a conclusive vision of the potential applications of
metformin in the oncology field. At this moment, the evidence about its effectiveness in the
treatment of cancers is disappointing; however, the data regarding its role in preventing
cancer are intriguing and worthy of further exploration with ongoing trials and others that
may clarify the “anti-neoplastic face” of metformin in the future.
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