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Simple Summary: Temporal muscle thickness has become an interesting parameter in recent neuro-
oncological research due to promising results regarding the estimation of patients’ prognosis. The aim
of our study was to assess its usefulness in terms of estimating prognosis after the surgical resection of
brain metastases compared to functional scales. This research did not confirm previously published
data postulating a significant influence of thicker temporal muscle on patient survival, but proved no
association with better outcomes after neurosurgical therapy.

Abstract: Metastases are the most frequent intracranial malignant tumors in adults. While Karnofsky
Performance Status (KPS) and Clinical Frailty Scale (CFS) are known to have significant impact on
overall survival (OS), temporal muscle thickness (TMT) has been postulated to be a promising new
parameter to estimate prognosis. Patients who received a resection of one to three brain metastases in
our institution were included. Temporal muscle thickness was measured in preoperative MRI scans
according to a standardized protocol. In 199 patients, the mean TMT was 7.5 mm (95CI 7.3–7.7) and the
mean OS during follow-up was 31.3 months (95CI 24.2–38.3). There was no significant correlation of
TMT and preoperative or follow-up CFS and KPS. While CFS and KPS did significantly correlate with
OS (p < 0.001 for each), no correlation was demonstrated for TMT. CFS showed a superior prognostic
value compared to KPS. TMT failed to show a significant impact on OS or patient performance, whereas
the clinical scales (KPS and CFS) demonstrate a good correlation with OS. Due to its superiority over
KPS, we strongly recommend the use of CFS to estimate OS in patients with brain metastases.

Keywords: frailty; temporal muscle thickness; brain metastases; neurosurgery; prognosis

1. Introduction

Neurosurgical therapy for patients suffering from brain tumors has not been restricted
to the young and healthy population but has continuously been adapted and applied
to patients with all kinds of conditions and comorbidities. Not only cancer but also
various other medical conditions result in increased patient frailty–characterized by reduced
physiologic function and diminished strength and endurance. Frail patients develop a
higher vulnerability to being dependent and, further, an increased mortality [1].

Previous research demonstrated that frailty has a significant impact on overall survival
(OS) in patients with brain metastases, resulting in poorer functionality and shorter OS [2].
To assess functionality or frailty, there are several scales and methods which characterize the
performance levels of our patients. In metastasized malignant disease, sarcopenia could be
an objective diagnosis to estimate the systemic tumor burden. In recent neuro-oncological
research, the measurement of temporal muscle thickness (TMT) has been suggested as a
useful prognostic marker for OS in patients with brain metastases of breast cancer, melanoma,
and non-small-cell lung cancer (NSCLC) [3–6]. In neuro-oncological patients, for example,
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patients with brain metastases, clinical visits are usually accompanied by cranial magnetic
resonance imaging (MRI), offering the opportunity to quantitatively assess sarcopenia using
TMT as a direct surrogate to assess skeletal muscle mass (SMM) [7–10]. A scoring system to
quantify frailty is the Clinical Frailty Scale (CFS) by Rockwood et al., with its updated version
(CFS 2.0) published in 2020 (Figure 1) [11]. It includes a variety of physical and mental
health factors and allows doctors to assess patients and easily categorize them into one of
nine groups, ranging from “very fit” to “terminally ill”. Initially, CFS was implemented
in geriatric medicine where the main contributing factors, in addition to sarcopenia, are
abnormal endocrine and inflammatory function as well as poor energy regulation [12,13].
Furthermore, the scoring system has been introduced to other medical specialties, such as
intensive care medicine, where it predicts long-term mortality [14]. At the same time, CFS
started to play a role in operative disciplines, forecasting revision surgeries and associated
morbidity in orthopedic surgery [15]. CFS recently proved to be a reliable tool to predict
OS in neuro-oncological patients and has shown superiority to the Karnofsky Performance
Status Scale (KPS) in patients with high-grade glioma and brain metastases [2,16].

In glioblastoma patients, various studies suggested TMT to be a useful parameter for
OS because of significantly better OS with a thicker TMT [17,18]. Recent investigations,
however, contradicted these results by showing no influence of TMT on OS [19–21]. So far,
data for TMT in patients with brain metastases are lacking, although TMT could be a
promising independent marker for OS in these patients.

The objective of this study was to determine whether TMT as a quick and radiologically
easily applicable parameter is of additional usefulness for the clinical assessment of patients’
frailty (using CFS) in predicting OS in patients with brain metastases before and after
undergoing neurosurgical resection. Further, we aimed to identify realistic cut-off values
based on measurements of patients harboring metastases in our neuro-oncological database.
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Figure 1. The updated Clinical Frailty Scale by Rockwood et al. divides patients into nine groups 
according to their grade of frailty, including factors such as physical activity, independence, and 
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2. Materials and Methods 
Patients undergoing a resection of 1–3 brain metastases in our institution were in-

cluded. Surgical decisions were taken according to the interdisciplinary neuro-oncology 
tumor board. Only surgical patients were included. In a retrospective approach, TMT was 
measured using previously published protocols [4]: in the preoperative MRI scan, meas-
urements were taken in axial images of contrast-enhanced T1-weighted scans. The orbital 
roof served as a landmark for cranio-caudal orientation, which was verified in the sagittal 
plane. For fronto-occipital orientation, the Sylvian fissure was used. There, we measured 
the temporal muscle from the inner to the outer margin, whilst its fascia was meticulously 
excluded from measurements. Bilateral measurements of TMT were performed and the 
mean was calculated. In postoperative measurements of patients with a history of surgical 
temporal muscle dissection, we performed exclusively unilateral measurements of the 
non-dissected side. An example of a TMT measurement is shown in Figure 2. 
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2. Materials and Methods

Patients undergoing a resection of 1–3 brain metastases in our institution were
included. Surgical decisions were taken according to the interdisciplinary neuro-oncology
tumor board. Only surgical patients were included. In a retrospective approach, TMT
was measured using previously published protocols [4]: in the preoperative MRI scan,
measurements were taken in axial images of contrast-enhanced T1-weighted scans. The
orbital roof served as a landmark for cranio-caudal orientation, which was verified in
the sagittal plane. For fronto-occipital orientation, the Sylvian fissure was used. There,
we measured the temporal muscle from the inner to the outer margin, whilst its fascia
was meticulously excluded from measurements. Bilateral measurements of TMT were
performed and the mean was calculated. In postoperative measurements of patients with
a history of surgical temporal muscle dissection, we performed exclusively unilateral
measurements of the non-dissected side. An example of a TMT measurement is shown in
Figure 2.

Cancers 2024, 16, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 2. TMT measurement in a patient from our cohort with a left frontal brain metastasis. Sagittal 
and axial T1 contrast-enhanced images are shown. The orange lines on the axial image depict the 
measurement of TMT. 
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Figure 2. TMT measurement in a patient from our cohort with a left frontal brain metastasis. Sagittal
and axial T1 contrast-enhanced images are shown. The orange lines on the axial image depict the
measurement of TMT.

Each patient’s CFS and KPS were retrospectively analyzed by reviewing patients’
charts from the preoperative visit, postoperatively before patient discharge, and at a
first follow-up visit three to six months after surgery. Our neuro-oncological database
additionally provided epidemiological and neuropathological data as well as the number
of metastases, the origin of primary tumor, and the extent of resection according to the
surgeon’s estimation and to postoperative MRI scans.

This study was approved by the Ethics Committee of the Medical University of Inns-
bruck (1333/2021) and conducted according to the ethical standards of the 1975 Declaration
of Helsinki, amended in 2013.

Statistical analysis: IBM SPSS Statistics (IBM SPSS Statistics for Mac OS, Version
27.0. Armonk, NY: IBM Corp.) was used for processing statistical analysis and graphs.
Correlations were detected using Pearson analysis. A T-test supported monovariate
analysis and the influence of multiple variables was assessed using linear regression. OS
was assessed using Kaplan–Meier processing with log-rank test. Cox regression was used
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for calculating death hazard ratios for independent parameters. The TMT cut-off value
was determined by means of receiver operating characteristic (ROC) analysis and area
under the curve (AUC) with subsequent Youden Index assessment. p values < 0.05 were
considered statistically significant.

3. Results
3.1. Cohort Description

This study included a total of 199 patients, consisting of 106 (53.3%) men and 93
(46.7%) women. Measurements in this study cohort showed a mean TMT of 7.8 mm (95CI
7.4–8.2) in male and 7.3 mm (95CI 6.9–7.7) in female patients, and the overall mean TMT
was 7.5 mm (95CI 7.3–7.8). The mean preoperative CFS was 3 (95CI 3.1–3.4), while the
mean preoperative KPS was 80 (95CI 73–86). In the follow-up visit, patients scored a mean
CFS of 3 (95CI 2.6–3.2) and a mean KPS of 80 (95CI 81.8–87.4). The mean age in this cohort
was 60 years (95CI 58.8–62.1). The most common primary tumor was NSCLC, followed by
breast and colorectal cancer (Table 1).

Table 1. Most common primary tumors responsible for brain metastases in this study cohort. NSCLC
= non-small-cell lung cancer; SCLC = small-cell lung cancer; ER = estrogen receptor; HER = human
epidermal receptor; RCC = renal cell carcinoma; CUP = cancer of unknown primary.

Primary Tumor n (%)

Lung 89 (44.7%)
NSCLC 75 (37.9%)
SCLC 12 (6.1%)

Mamma 23 (11.6%)
ER+ 4 (2%)
HER2+ 7 (3.5%)
ER+/HER2+ 3 (1.5%)
Triple- 8 (4%)

RCC 5 (2.5%)
Colon 8 (4%)
CUP 6 (3%)
Other 41 (20.6%)

In 86.9% (n = 173) of cases, a singular metastasis was resected, whereas in 12.6%
(n = 25), a resection of two metastases was performed, and in one case, three metas-
tases were removed. A total of 82.4% of all metastases were located supratentorially
and 17.6% infratentorially; 25.1% were in eloquent brain areas and 74.9% in areas
without eloquence.

During the follow-up period of this study, 19% of patients showed a local progres-
sion, 30.3% developed distant cerebral progression, and 40.5% showed extra-cerebral
progression of the disease. A total of 10.2% showed no ongoing disease. Following
resection, 46.2% received whole brain radiotherapy, 25.9% were radiated locally, and in
26.4%, no postoperative radiotherapy was performed. In 1.5%, there were no data about
adjuvant radiotherapy.

3.2. TMT and Functional Scores

TMT measurements obtained in preoperative MRI scans demonstrated no significant
correlation with KPS or CFS in preoperative, postoperative, or follow-up assessments.
Detailed results are depicted in Tables 2 and 3.
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Table 2. Mean TMT in mm for each score of KPS assessed preoperatively (“preop.”), postoperatively
(“postop.”), and in the follow-up visit (“FU”). TMT data are left blank when no patients showed the
corresponding KPS.

KPS Preop. (n) TMT (95CI) KPS Postop. (n) TMT (95CI) KPS FU (n) TMT (95CI)

10 10 10
20 20 (1) 20
30 30 30 (2) 6.1
40 (1) 40 (2) 7.4 40 (2) 8.0
50 (2) 5.6 50 (5) 6.3 (5.2–7.4) 50 (4) 7.4 (3.6–11.3)
60 (6) 6.5 (5.2–7.9) 60 (16) 6.8 (6.1–7.6) 60 (10) 7.5 (6.2–8.8)
70 (32) 7.1 (6.7–7.6) 70 (13) 7.2 (6.3–8.1) 70 (12) 7.0 (6.0–8.1)
80 (58) 7.6 (7.1–8.1) 80 (28) 7.4 (6.8–8.0) 80 (23) 8.4 (7.5–9.2)
90 (61) 7.8 (7.4–8.2) 90 (94) 7.7 (7.4–8.0) 90 (47) 7.4 (7.0–7.9)
100 (39) 7.6 (7.1–8.1) 100 (39) 7.9 (7.3–8.5) 100 (45) 7.4 (7.0–7.9)

Table 3. Mean TMT in mm for each score of CFS assessed preoperatively (“preop.”), postoperatively
(“postop.”), and in the follow-up visit (“FU”). TMT data are left blank when no patients showed the
corresponding CFS.

CFS Preop. (n) TMT (95CI) CFS Postop. (n) TMT (95CI) CFS FU (n) TMT (95CI)

1 (16) 7.6 (7.0–8.2) 1 (16) 7.3 (6.5–8.2) 1 (34) 7.4 (6.8–7.9)
2 (42) 7.6 (7.0–8.1) 2 (76) 7.9 (7.5–8.3) 2 (36) 7.6 (7.1–8.2)
3 (51) 7.7 (7.3–8.1) 3 (50) 7.6 (7.1–8.1) 3 (27) 7.3 (6.8–7.8)
4 (62) 7.8 (7.3–8.2) 4 (26) 7.2 (6.6–7.8) 4 (26) 8.1 (7.3–8.9)
5 (22) 6.6 (5.9–7.2) 5 (15) 7.4 (6.7–8.2) 5 (11) 7.7 (6.5–8.9)
6 (3) 6.1 (4.9–7.3) 6 (8) 6.1 (5.4–6.8) 6 (4) 6.4 (4.0–8.9)
7 (3) 8.6 (4.1–13.2) 7(5) 7.6 (4.1–11.1) 7 (1)
8 8 (3) 6.7 (2.4–11.0) 8 (6) 7.6 (5.4–9.8)
9 9 9

3.3. Interrelations of TMT

No significant correlation of TMT with the number of metastases, metastasis volume,
resected volume, edema volume, or functional status assessed with KPS and CFS could be
demonstrated (p = n.s.). Postoperative functional scores, however, demonstrated a corre-
lation of a thinner TMT with poorer KPS and CFS (r = 0.188, p < 0.01 for KPS, r = −0.158,
p < 0.05 for CFS). Further, there was no correlation of TMT with local, distant, or systemic
tumor progression after surgery (p = n.s.). Only female gender and metastasis location in
the left hemisphere showed a significant correlation with a thinner TMT (p < 0.05 each).

3.4. Overall Survival (OS)

The mean OS in the follow-up period of this study was 31.3 months (95CI 24.2–38.3).
In Cox regression, TMT showed no significant impact on OS (p = n.s.). Regarding functional
scores at the time of TMT measurement, however, a reduction in OS by 30% (95CI 16.3–43.8,
p < 0.001) per 10 units’ deficit in KPS and a reduction by 35% (95CI 1.19–1.52, p < 0.001)
per increasing step in CFS score was demonstrated. Age appeared to have a significant
impact on OS by raising the hazard of death within our follow-up by 2.4% (95CI 1.01–1.04,
p < 0.01) per increased year of patients’ age.

3.5. ROC/AUC Data

No significant AUC values could be demonstrated for TMT measurements regarding
6-, 12-, and 24-month OS (p = n.s.). Preoperative functional scores showed significant results
for 6-month (AUC = 0.617, p < 0.01) and 12-month (AUC = 0.640, p < 0.01) OS regarding KPS.
Analogically, CFS showed significant values in 6- (AUC = 0.615, p < 0.01), 12- (AUC = 0.649,
p < 0.001), and 24-month (AUC = 0.592, p < 0.05) OS. Additionally, patient age appeared
to have significant influence on OS greater than 6 and 12 months (AUC = 0.592 and 0.569,
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p < 0.05 for each). The respective graphs are shown in Figure 3. An optimal TMT cut-off
value to estimate its influence on OS, using this study’s ROC data, was set at 5.45 mm
(p = n.s.) for OS > 6 months, 6 mm (p = n.s.) for OS > 12 months, and 5.83 mm (p = n.s.) for
OS > 24 months.
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4. Discussion

The predictive value of TMT on OS in cancer patients with brain metastases has been
described very promisingly in the existing literature, which inspired this investigation
of patients in our institutional database and the comparison of TMT with CFS, another,
already established, prognostic marker of OS in these patients. Unexpectedly, the results
contradict many previously published results.

This study could not prove any predictive value of TMT on OS in patients with
brain metastases either in Cox regression or in ROC analysis. Additionally, no significant
association of TMT with functional scores (CFS, KPS) assessed before surgery and at follow-
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up could be confirmed. At the same time, CFS and KPS proved to have a significant
correlation with OS depicting the probability to die within our follow-up period raised by
30% per worsened step in preoperative KPS and by 35% per worsened step in preoperative
CFS. In long-term follow-up, CFS showed a significant effect on OS longer than six, twelve,
and twenty-four months, whereas KPS only showed significant AUC values in OS greater
than six and twelve months, indicating the superior prognostic value of CFS.

While preoperative and follow-up functional scores demonstrated no correlation with
TMT, postoperative scores assessed before patient discharge did significantly correlate
with TMT, suggesting a higher perioperative vulnerability of patients with sarcopenia.
This complements the literature stating that patients with sarcopenia are more prone to
postoperative complications and have a higher in-hospital mortality rate [23]. While TMT
cut-off thresholds for longer OS were recommended at 7.0 mm for female and 7.7 mm
for male patients in one study [3], the preoperative risk for sarcopenia and subsequently
increased risk of death were defined at TMT ≤ 6.3 mm in male patients and ≤5.2 mm in
female patients and TMT < 11 mm for both genders by other groups [6,24]. Recommended
TMT cut-off values strongly vary in the literature. Our findings somewhat agreed with
one of the studies [24]; however, no significant results for the cut-off values were achieved.
We tried to find an impact of lower TMT on OS in different follow-up periods (>6, >12, and
>24 months), but could not detect any significant effect. In the literature, cut-off values
have been inconsistent and therefore cannot be uniformly applied. Thus, no meaningful
recommendation for a reasonable TMT cut-off value can be made at this point of national
and international research.

Measurements of TMT in preoperative MRI scans can be elicited quite quickly and
effortlessly if the image viewing software used provides a respective measuring tool. How-
ever, there remains space for errors while doing so, depending on the quality and thickness
of MRI slices and also the preciseness of the professional performing the measurement.
Preoperative CFS, on the other hand, is a self-explaining scale supported by eye-catching
pictograms, which make a fitting assignation to one of the nine possible groups and the
subsequent quantification of patients’ frailty extraordinarily easy. The assessment can
be performed anywhere and does not require any hardware or technical skills; therefore,
it can be performed not only by clinical professionals but also by other healthcare workers,
students, or even the patients themselves.

Female gender was significantly associated with a thinner TMT. This coincides with
previously conducted studies on TMT in high-grade gliomas [21] and in healthy individuals,
where men were proven to have physiologically thicker TMT than women [25,26]. However,
this does not equally apply at every age: the most remarkable gender-related difference can
be found early in life, where TMT growth in male individuals accelerates at the onset of
puberty, reaching a plateau in their early twenties [27], potentially because of testosterone-
associated effects on the growth of muscle mass [28]. A study on normal values of TMT in
the Japanese population showed no significant differences of TMT in patients by the age of
seventy and above [26].

There are several factors and circumstances that might have an effect on TMT apart from
sarcopenia and chronic disease. While malnutrition and a loss of body weight could decrease
TMT as they lead to a decrease of general muscle mass, excessive chewing and different
food preferences have not yet been investigated regarding their impact on TMT. Increased
masticatory and dietary demands during childhood result in altered horizontal and vertical
muscle growth [29], which has an effect on muscle thickness due to different dietary habits.
Some cases of stress hypertrophy affecting the temporal muscle have been described [30].

How a left-hemisphere tumor location is linked to a thinner TMT remains unclear.
A more rapid decrease in general physical activity with commonly dominant hemisphere
involvement, possibly due to aphasia and consecutive social withdrawal, can be postulated;
further studies are needed to investigate this assumption.

Even though metastatic cancer disease obviously has an effect on patients’ perfor-
mance, sarcopenic patients (given the threshold of CFS > 4 defining a patient as frail) are
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a minority in neurosurgery, where those patients who are usually admitted for surgical
treatment represent the best subpopulation of cancer patients.

5. Conclusions

TMT did not prove any usefulness in the prognosis of OS. Measuring TMT in preop-
erative MRI scans is easily conductible in neuro-oncological patients, but so is assessing
preoperative CFS. Regarding our results, we do not recommend TMT but CFS for the
estimation of OS in patients with brain metastases.

Limitations: This study was performed as a retrospective analysis of data from the
neuro-oncology database. The cohort was partly heterogeneous, with some patients (13.1%)
receiving more than one surgery, and therefore TMT measurements were conducted on
previously operated crania. Even though TMT was then measured on the side where no
previous craniotomy had been performed, there might still have occurred changes in TMT
due to the influence of previous therapy (including surgery, radiation, and chemotherapy)
on patients’ general condition and SMM. The study represents a selected cohort of patients
who were eligible for neurosurgical treatment.
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