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Simple Summary: Survivin is overexpressed in a wide variety of human cancers and is associated
with increased chemotherapy resistance, recurrence, and shorter patient survival. Although survivin
was first identified as an inhibitor of apoptosis based on its sequence homology, recent studies
show that survivin primarily plays a role in the regulation of cell division, as a component of the
chromosome passenger complex, which can be localized to the centromere, the spindle midzone, or
midbody in a cell cycle-dependent manner. Disruption of survivin function generally leads to mitotic
catastrophe and is associated with elevated levels of aneuploidy. In contrast, ectopic expression of
survivin can promote cell survival under certain conditions and is implicated in mediating resistance
to various cancer drugs, possibly by interactions with molecules that modulate apoptotic pathways.
A potential role of survivin in the regulation of mitochondrial functions and processes of autophagy
has emerged. Because of its prevalent overexpression in cancer and very limited expression in normal
tissues, survivin has been proposed as an ideal therapeutic target, and various approaches have been
investigated for survivin inhibition. Here we provide a critical review of our current understanding of
the role of survivin in promoting malignancy and strategies for the development of survivin-targeted
therapy for cancer.

Abstract: Survivin was initially identified as a member of the inhibitor apoptosis (IAP) protein
family and has been shown to play a critical role in the regulation of apoptosis. More recent
studies showed that survivin is a component of the chromosome passenger complex and acts as an
essential mediator of mitotic progression. Other potential functions of survivin, such as mitochondrial
function and autophagy, have also been proposed. Survivin has emerged as an attractive target for
cancer therapy because its overexpression has been found in most human cancers and is frequently
associated with chemotherapy resistance, recurrence, and poor survival rates in cancer patients.
In this review, we discuss our current understanding of how survivin mediates various aspects of
malignant transformation and drug resistance, as well as the efforts that have been made to develop
therapeutics targeting survivin for the treatment of cancer.
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1. Survivin and Cancer

Survivin overexpression has been found in most human cancers and is associated
with poor prognosis [1–8]. In particular, high levels of survivin expression are linked with
the metastasis of various forms of human cancers, including the presence of circulating
tumor cells [9–13]. Overexpression of survivin can facilitate the bypassing of cell cycle
checkpoints and promote the survival of aneuploid cells [14,15]. Survivin renders cancer
cells resistant to radiation [16,17].

While survivin plays an essential role in early embryogenesis [18,19], its expression
levels are very low or undetectable in adult tissues and are usually restricted to stem
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cells and progenitor cells [15,20–23]. As shown in conditional knockout mice, survivin is
required for T-cell development and homeostasis and triggers p53-dependent cell cycle
arrest [24,25]. Similarly, survivin also plays an essential role in B-cell expansion [26].
Moreover, survivin is essential for pancreatic beta cell expansion [27–29], early brain
development [30], and intestinal epithelial progenitor cells [31].

Survivin, encoded by the BIRC5 gene, is a polypeptide of 142 amino acid residues
(Figure 1). The transcription of the BIRC5 gene is mediated through a TATA-less promoter
that contains multiple Sp1 sites, a CpG island subjected to potential epigenetic modifica-
tions, and cell cycle-dependent element (CDE)/cell cycle homology region (CHR) boxes
that mediate cell cycle-dependent gene expression [32,33]. Survivin expression can be
upregulated by multiple pathways that are commonly activated in human cancers, such as
EGFR, p185Her2/neu, PI-3 kinase, MAPK, NF-κB, and mTOR [34–38]. The transcriptional
events from the survivin promoter can also be modulated by Wnt/β-catenin [39], notch [40],
YAP [41], and hedgehog signaling pathways [42,43]. In addition, survivin is regulated by
Forkhead box m1 (Foxm1), a transcriptional factor critical for G1/S transition and mitotic
progression [44]. Conversely, survivin expression can be downregulated by several tumor
suppressors, such as TP53, PTEN, Rb, and BRCA1 [45–48], which are frequently silenced in
human cancers.
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Figure 1. Schematic representation of survivin structure features involved in dimerization (red),
chromosome passenger complex (CPC) binding (green), histone H3 threonine 3 phosphorylated
peptide (H3T3ph) and DIABLO binding (black), nuclear export (NES, blue), and mitochondria
targeting (MTS, arrowhead). The amino acid residues that have been reported to be modified by
acetylation or phosphorylation, as well as the kinases involved, are also indicated.

At least five splicing variants of survivin have been described, which include survivin-
∆Ex3 [49,50], survivin-2α [51], survivin-3α [52], survivin-2B [53], and survivin-3B [54]. The
differential splicing events lead to the generation of proteins with a shortened BIR domain
or truncated polypeptides that do not have the intact NES or the coiled-coil region in the
c-terminus, which can exhibit distinct localization patterns. For example, survivin-Ex3 lacks
the NES but contains a distinct bipartite nuclear localization signal (NLS) that mediates its
localization to the nucleus [49]. In contrast, in survivin-2B, the BIR motif is interrupted by
an in-frame insertion of a cryptic exon, generating a protein predominantly localized to
the cytoplasm. Survivin-Ex3 and survivin-2B showed reduced affinity to CPC and cannot
compensate for the loss of survivin functions [54]. The survivin splicing variants have been
reported to be associated with certain transformed phenotypes and clinical outcomes [55].
However, it should be noted that these studies were all focused on the detection of the
RNA forms of the splicing variants [49,50,52–54]. There has been limited success in the
development of antibodies specific for the survivin variants [51,53,54]. Overall, the protein
forms of the variants at the endogenous level remain to be convincingly demonstrated
in cell lines or pathological specimens. Moreover, it is controversial whether the splicing
variants play an important role in mediating cellular functions [54,56,57].

2. Role of Survivin in Cell Division

Survivin plays an essential in cell division, and a loss of survivin leads to mitotic
failure and cell death [32,58,59] (Figure 2A). Survivin participates in mitotic checkpoint
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regulation as a component of the chromosomal passenger complex (CPC) that also includes
aurora kinase B, INCENP, TD-60, and borealin [60]. The BIR domain of survivin can
interact with a phosphorylated form of histone H3 (Histone H3T3ph), which is mediated
by the histone H3-associated kinase HASPIN and required for recruitment of the other CPC
proteins to the inner centromere [61–63]. Interference with the survivin–histone H3T3ph
interaction leads to mislocalized aurora kinase B and mitotic defects [61–63]. Upon entry
into mitosis, survivin is localized to the centromere region in a manner that is dependent
on the inner centromere protein (INCENP) and cooperates with Aurora kinase B and other
CPC proteins to modulate spindle formation and proper chromosome alignment [64,65].
Thus, the essential role of survivin in CPC assembly and mitotic progression, mediated by
the BIR domain, may be exploited for the development of survivin-targeting therapeutics.
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Figure 2. Functions of survivin. (A) Survivin is required for mitosis and cytokinesis. Survivin
is associated with INCENP and borealin as components of the chromosome passenger complex
(CPC) localized to the centromere during mitosis. Survivin remains associated with the spindle
midbody from the anaphase of mitosis until the end of cytokinesis. (B) Survivin can protect cells
from apoptosis. The binding of survivin to DIABLO may prevent the latter from inactivating other
inhibitor of apoptosis (IAP) family proteins. Alternatively, survivin may directly inhibit caspase
activity. (C) Survivin can be localized to the mitochondria and protect cells from mitochondria-
mediated apoptosis. (D) Survivin can be associated with beclin or ATG5 and is postulated to be
involved in aspects of autophagy.

When chromosome segregation occurs at the initiation of anaphase, survivin is sepa-
rated from the centromere but remains in the spindle midzone, subsequently becoming
associated with the midbody. The molecular mechanism involved in the relocation of
survivin to the midbody is not well understood. Nonetheless, survivin has been shown
to interact with non-muscle myosin II, and midbody-localized survivin is implicated in
playing a role in the formation of the contractile ring during cytokinesis [66]. Survivin
abnormality is commonly accompanied by aneuploidy [32,58,59,67,68], which supports the
notion that it plays an essential role in the regulation of mitotic checkpoints and cytokinesis.
Notably, a loss of p53 function is required for re-entry into the cell cycle following the
depletion of survivin [69,70].
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3. Role of Survivin in Apoptosis

Survivin was first identified as a member of the Inhibitor-of-Apoptosis (IAP) protein
family, also known as the Baculoviral IAP repeat-containing (BIRC) proteins, based on the
presence of a Baculovirus IAP Repeat (BIR) in the N-terminus [32,58] (Figure 1). The IAP
family proteins share the common feature of having at least one BIR domain, which consists
of ~70 amino acid residues and is involved in mediating protein–protein interactions [71].
While ablation of survivin can lead to apoptosis, overexpression of survivin can protect
cells from apoptosis under various experimental conditions [32,58,72,73] (Figure 2B).

Some IAP family proteins can inhibit apoptosis by directly binding to the activated
form of caspase and blocking its enzymatic activities [74,75]. For example, the second
BIR domain and a linker region of XIAP can directly bind to caspase and hinder substrate
access [76–79]. In addition, some IAPs also contain either a RING domain—which functions
as an E3 ubiquitin ligase—or a ubiquitin-associated domain, which mediates the ubiquitin-
mediated proteolytic degradation of caspase [80]. In comparison, survivin contains only a
BIR domain, and, to date, no compelling evidence is available to show that survivin can
directly bind and inhibit caspase activities (Figure 2B).

Survivin has been reported to bind to the mitochondrial protein DIABLO/SMAC [81,82].
DIABLO/SMAC can potentiate certain forms of apoptosis by blocking the action of IAPs
and thereby activating caspases [83,84]. Thus, it has been proposed that survivin may inhibit
apoptosis by neutralizing the capacities of DIABLO/SMAC to promote apoptotic signaling
(Figure 2B). However, it remains to demonstrate that, as endogenous expression levels, the
survivin-DIABLO interactions indeed participate in protection from apoptosis [85].

4. Role of Survivin in Mitochondrial Function and Autophagy

Survivin has been shown to inhibit mitochondrial-dependent apoptotic events [73].
It has been reported that the N-terminus of survivin contains a mitochondria-targeting
sequence that can direct protein localization to the mitochondria when fused with a reporter
protein [86] (Figure 1). Interestingly, survivin can be detected in the mitochondrial fraction
in cancer cells but not in non-transformed cells [87,88], which suggests that the role of
survivin in mitochondria function may be dependent on cell content, including the genetic
or epigenetic background. The overexpression of mitochondria-targeted survivin can
protect cells from apoptosis and enhance transformation (Figure 2C), which may involve
its binding to another IAP family member XIAP [87,89]. The localization of survivin to the
mitochondria can also promote cancer cell invasion and metastasis [90]. The overexpression
of survivin appears to alter the dynamic of mitochondrial fission and fusion [91] or inhibit
mitophagy [88].

Paradoxically, it has been reported that both the knockdown [90] and overexpression
of survivin [88,91] can disable mitochondrial functions and reduce oxidative phosphory-
lation in cancer cells. It should be noted that the studies on mitochondrial survivin were
conducted using a fusion protein of survivin with the mitochondrial targeting sequence
of cytochrome c, and the knockdown approach used in the study does not specifically
target the mitochondrial pool of the protein [87,88,90]. Clearly, additional work is needed
to unravel the mechanism and the biological significance of mitochondrial localization
of survivin.

Survivin has been reported to physically interact with several proteins that are in-
volved in autophagy (Figure 2D), a process by which cancer cells can adapt to physiological
or pathological challenges by degrading and recycling subcellular components of the
cell [92]. For example, beclin, a key regulator of autophagy [93], was found to bind to sur-
vivin, which may be involved in regulating survivin protein levels [94]. Intriguingly, ATG5,
a protein known for its role in the formation and elongation of autophagosome [95], was
reported to form a complex with survivin in the nucleus upon exposure to DNA damage,
leading to mitotic catastrophe in an autophagy-independent manner [96]. Conversely, the
interaction between survivin and ATG5/ATG12 may also impact autophagy-mediated
events responsive to DNA damage [97]. The induced ectopic expression of survivin appears



Cancers 2024, 16, 1705 5 of 15

to be required for autophagy induced by the inhibition of glycolysis [98]. However, these ob-
servations were made only in cell lines with forced overexpression of survivin. It remains to
determine whether survivin directly participates in the regulation of autophagic processes.

5. Survivin Localization

Survivin contains a nuclear export signal (NES) that binds to the nuclear export
receptor Crm1, which is required for survivin cytoplasmic localization during the inter-
phase [49,99–101]. Alteration of the NES, which is located between BIR and the c-terminal
coiled-coil structure, can disrupt the nuclear export and localization of survivin to the
centromere or to the midbody but not its homodimerization or binding to several CPC
proteins [100–102]. The NES mutations caused a shift from a cytoplasmic localization
pattern to a nuclear one, which is associated with the loss of survivin function to protect
cells from apoptosis induced by genotoxic damage or external stimulus [99,101]. In addi-
tion, the nucleus-directed survivin protein appears to enhance cancer cell sensitivity to
apoptosis [103,104].

These observations led to the notion that cytoplasmic survivin is primarily involved
in protection from apoptosis. However, it should be noted that the survivin localization
patterns in the cytoplasm or nucleus may not be a reliable biomarker for clinical outcomes,
as it has been linked to both favorable [8,105–107] and unfavorable prognosis of cancer
patients [108–113].

6. Survivin Protein Structure and Post-Translational Modification

The survivin protein structure in the form of a homodimer has been determined by both
crystallography [114–116] and nuclear magnetic resonance (NMR) [117]. The N-terminal BIR
domain consists of a three-stranded β-sheet and four α-helices, with a zinc-binding fold, and
the survivin protein forms a bow-tie-shaped dimer via part of the N-terminal region and
the linker region between the BIR domain and the C-terminal helix [114,115]. Notably, the
ubiquitination of survivin on several lysine residues within the BIR domain is implicated in
playing a role in modulating its localization to the centromere [118].

The structure of survivin that features a heteromeric complex formed with borealin
and INCENP has also been resolved [119]. In this structure, the C-terminus of survivin,
which contains an extended α-helical coiled-coil domain, forms a three-helical bundle
with elements of borealin and INCENP in 1:1:1 stoichiometry [119]. These interactions are
essential for the central spindle and midbody localization of the complex. More recently, the
crystal structure of survivin with the N-terminal tail of histone H3 has also been reported,
which identified structural features in the BIR domain that are important for binding to
histone H3T3ph [120].

An accumulating body of evidence shows that survivin can be regulated by phos-
phorylation. Phosphorylation of survivin at threonine 34 by CDK1 has been shown to be
important for its anti-apoptotic role [121,122]. In addition, phosphorylation by PKA at
serine 20 is also involved in protection against apoptosis by mediating the interaction with
XIAP [89]. Moreover, survivin can be phosphorylated by aurora B at threonine 117 and
negatively regulates its localization to the centromere region and function in mitosis [123].
CK2 can phosphorylate survivin at threonine 48 in the BIR domain, which is critical for its
mitotic and antiapoptotic functions [124]. Furthermore, PLK1 phosphorylates survivin at
threonine 20, which seems to be involved in chromosome orientation during mitosis [125].

Survivin is subject to other forms of post-translational modification. For example,
survivin can be acetylated at lysine 129 (K129), which affects its homodimerization, binding
to Crm1, and nuclear export [126]. Survivin can also be modified via K48- and K63-linked
ubiquitination during mitosis, which mediates survivin localization to the centromere and
mitotic progression [118].
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7. Therapeutic Strategies to Target Survivin

Efforts have been made in recent years to develop therapeutic strategies to disable
survivin functionally. However, suvivin is an unconventional drug target, due to its
unique structure and lack of enzymatic activity. It is important to include cell-based
assays that evaluate the phenotypic changes affected by inhibition of survivin. Because
survivin is required for cell division and knockdown of survivin generally causes mitotic
failure [32,58,59,67,68], it is plausible that the gross inhibition of survivin by small molecules
would lead to similar effects. Currently, only a limited number of survivin inhibitors have
been developed with success.

YM155, an imidazolium-based compound identified by a high-throughput screen,
is one of the first small-molecule antagonists known for its ability to inhibit survivin
expression. YM155 targets the survivin promoter region to inhibit gene transcription [127].
Preclinical research showed that YM155 can effectively decrease survivin expression levels
in various cancer cell lines and inhibit tumor growth in xenografts mouse models, including
prostate cancer, non-Hodgkin lymphoma, and lung cancer [127,128]. Several phase I and
phase II studies showed that YM155 generally shows low toxicity but has limited antitumor
efficacy when used as either a single agent or in combination with other therapeutic
agents [129–134]. However, recent studies indicate that YM155 can elicit DNA damage in
cells [135–137], which indicates that the compound may target other proteins and signaling
events. Indeed, when tested in vitro, YM155 induces cell death without causing any delay
in mitosis, despite that it significantly reduces survivin expression [135,136]. These findings
suggest that the primary mechanism by which YM155 induces cytotoxicity is likely not
through disabling survivin functions.

Several other molecules that suppress survivin expression levels have been described.
For example, FL-118 has been identified by an HTS screen of a library of compounds as a
molecule that can reduce expression levels of survivin, as well as those of other IAP family
members [138]. FL-118-induced cell death accompanies a reduction in BrdU-incorporating
cells, but does not with any effect on mitosis [138]. By using a similar approach to screen for
drugs that can inhibit survivin promoter activities, a cytotoxic molecule, termed WM127,
was also found to be capable of reducing survivin expression levels [139]. WM127 reduces
cancer cell proliferation and causes an accumulation of cells in the G2/M stage of the cell
cycle [139], although further analysis of its effect on mitotic progression remains to be
carried out. In addition, EM-1421 (also known as terameprocol) has been described as a
small molecule that targets Sp1-dependent promoters and reduces the expression levels
of survivin and the mitosis regulator cdk1 [140–142]. Moreover, GDP366 is another small
molecule that can reduce survivin expression at both mRNA and protein levels and increase
aberrant cell division and polyploid cells [143]. However, because GDP366 can also inhibit
the expression of stathmin 1 [143], which encodes a protein that mediates the dynamics of
the microtubule network and mitotic progression [144–146], the mechanism of action by
this molecule remains to be clarified. Thus, these efforts to target survivin expression have
identified molecules that are not specific for survivin.

Strategies designed to reduce survivin protein stability have been reported. Heat
shock protein 90 can bind to survivin and protect it from proteasomal degradation, and
the disruption of this interaction can lead to apoptosis [147]. Sheperdin, a peptidomimetic
derived from the survivin region that is sufficient to bind to Hsp90, showed the ability to
bind the ATP pocket of HSP90 and disrupt the interaction with several of its client proteins,
including survivin [148]. This causes the degradation of survivin, among other proteins,
leading to apoptosis in tumor cells [148]. Of note, sheperdin treatment caused rapid cell
death without triggering any apparent delay in mitosis [148].

In another example, using a virtual screen of compounds that mimic the DIABLO/SMAC-
IAP interaction, a series of small-molecule IAP inhibitors have been developed [149,150]. These
molecules can inhibit survivin and, to a lesser extent, XIAP, by downregulating their protein
levels and showed efficacy to inhibit tumor growth [149,150]. Other small molecules that
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block the interaction between survivin and DIABLO/SMAC have been described and showed
anti-cancer activities [151,152].

A high-throughput, affinity-based NMR screen has led to the identification of several
survivin-binding molecules that bind to the dimer interface [153–156]. Several of the
compounds identified in the screen displayed activities to inhibit the growth of tumor
cells and appeared to cause cell cycle delay in the G0/G1 stage, rather than in the mitotic
stage [154]. One of the molecules was shown to sensitize colon cancer cells to topoisomerase
inhibitor irinotecan [156].

We employed a unique structure-based approach to identify survivin inhibitors that
bind directly to the protein and modulate its functions [157,158]. The method, termed
Cavity-Induced Allosteric Modulation (CIAM), was previously used to successfully de-
velop inhibitors for other targets, such as TNFR1 [159]. With the CIAM method, we have
identified a cavity close to the survivin dimeric interface. The compounds that fit into this
cavity in silico were further tested for the ability to bind the survivin protein and affect
mitotic arrest, as one would expect from a loss of survivin function. Several compounds
identified by this approach, including S12, exhibit efficacy to inhibit the growth of human
cancer cell lines both in vitro and in vivo [26,43,157,158]. This was the first set of small-
molecule inhibitors that have been shown to directly bind to the intended target site in
the survivin protein and cause phenotypic changes in cancer cell cells that are consistent
with what is expected from loss of survivin function. Notably, the knockdown of YAP can
increase the sensitivity of cancer cells to S12 [158], which suggests that simultaneously
targeting survivin and YAP may achieve enhanced therapeutic effects. Finally, S12 has been
modified to be potentially used for imaging survivin in tumors by single-photon emission
computerized tomography [160].

More recently, a separate group performed a virtual screen of molecules that tar-
get the survivin dimeric interface and identified a series of molecules (e.g., LQZ-7F and
LQZ-7I) that can induce the proteasomal degradation of survivin [161,162]. These molecules
were also shown to cause apoptosis and inhibit tumor growth in xenograft tumor mod-
els [161,162]. It is not clear how disruption of the survivin homodimer by these small
molecules leads to a reduction in protein stability. The effect of these molecules on cell
cycle progression has not been well characterized [161,162].

Survivin-based immunotherapy has been developed. The Cytotoxic T lymphocyte
(CTL) response to survivin can be detected in patients [163]. The survivin-derived, MHC-
restricted T cell epitope has been identified and can be harnessed to trigger the CTL response
against survivin-expressing cancer cells [164]. In addition, DNA vaccine-encoding survivin
and CCL12 can trigger a strong immune response against lung cancer cells in an animal
model [165]. Recent studies showed that long synthetic peptides derived from the survivin
protein can generate both cytotoxic CD8+ and CD4+ T-cell responses, leading to tumor
regression and the prevention of relapse in animal models [166]. In particular, the survivin
peptide mimic SurVaxM showed efficacy in stimulating anti-tumor immune responses
against brain tumors in animal models and early promise in clinical trials [167–169]. A
whole protein survivin dendritic cell vaccine has also been developed and tested for the
treatment of myeloma patients [170,171].

8. Conclusions and Perspective

Because of its high expression levels in most tumors and absence in most normal
tissues, survivin has been considered a promising therapeutic target. Studies in the past
25 years have established that survivin plays a vital role in the regulation of cell division
as a component of the CPC in the mitotic apparatus. However, despite its structural
similarities to the other IAP family proteins, how survivin acts as an inhibitor of apoptosis
remains elusive. The overexpression of survivin may lead to aberrant localization of the
protein, which can contribute to aspects of tumorigenesis in a cell content-dependent
manner. Studies on survivin protein ensembles in various subcellular pools, such as the
mitochondria and the interphase or mitotic cytoplasm, may unravel a mechanism by which
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survivin links mitotic checkpoint regulation with apoptotic pathways. Progress has been
made to develop survivin-targeted therapy, including small molecules that directly bind
and disable survivin. With the advent of artificial intelligence-aided structural modeling
and drug design, it is expected that more survivin-targeting entities will be available for
testing. It should be mentioned that well-designed biophysical analysis and cell-based
assays are critical for the identification of small molecules that elicit more specific anti-
survivin activities. Finally, understanding the signaling pathways that determine cancer
cell sensitivity to survivin-targeted therapy may help to develop more effective therapeutic
strategies. Conceivably, the combination of survivin inhibition with chemotherapy or other
targeted therapeutics may achieve the maximal clinical benefit.
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