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Simple Summary: Neuroblastoma (NB) presents with two patterns of disease: with or without
metastasis. Both types of disease presentation include tumors with high-risk (HR) features. The
management of HR-NB includes chemotherapy, surgery, radiotherapy, and anti-GD2 immunotherapy.
Anti-GD2 monoclonal antibodies (mAbs) have significantly improved the outcome of HR-NB patients
but they are mostly effective against disease affecting the bone and/or bone marrow (known as
the osteomedullary compartment), and less so against soft tissue disease. The question arises as
to whether anti-GD2 immunotherapy might benefit HR-NB patients with disease compounded by
only soft tissue. In this retrospective review, we found that achieving first complete remission with
chemotherapy, surgery, and radiotherapy does not prevent the risk of relapse. However, adding
anti-GD2 mAbs once the patient has achieved complete remission significantly decreases the chances
of relapse by 80%. Our study provides further support to indicate anti-GD2 mAbs in all cases
with HR-NB.

Abstract: Neuroblastoma presents with two patterns of disease: locoregional or systemic. The poor
prognostic risk factors of locoregional neuroblastoma (LR-NB) include age, MYCN or MDM2-CDK4
amplification, 11q, histology, diploidy with ALK or TERT mutations, and ATRX aberrations. Anti-
GD2 immunotherapy has significantly improved the outcome of high-risk (HR) NB and is mostly
effective against osteomedullary minimal residual disease (MRD), but less so against soft tissue
disease. The question is whether adding anti-GD2 monoclonal antibodies (mAbs) benefits patients
with HR-NB compounded by only soft tissue. We reviewed 31 patients treated at SJD for HR-NB
with no osteomedullary involvement at diagnosis. All tumors had molecular genetic features of
HR-NB. The outcome after first-line treatment showed 25 (80.6%) patients achieving CR. Thirteen
patients remain in continued CR, median follow-up 3.9 years. We analyzed whether adding anti-GD2
immunotherapy to first-line treatment had any prognostic significance. The EFS analysis using Cox
models showed a HR of 0.20, p = 0.0054, and an 80% decrease in the risk of relapse in patients treated
with anti-GD2 immunotherapy in the first line. Neither EFS nor OS were significantly different by
CR status after first-line treatment. In conclusion, adding treatment with anti-GD2 mAbs at the stage
of MRD helps prevent relapse that unequivocally portends poor survival.

Keywords: neuroblastoma; locoregional disease; INRG; INSS; anti-GD2 immunotherapy; first complete
remission; recurrence; genetic features

1. Introduction

Neuroblastoma (NB) is a pediatric cancer that arises from precursor cells of the pe-
ripheral sympathetic nervous system. Neuroblastoma is clinically heterogeneous and
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may present with two well recognized patterns of disease: (A) locoregional (International
Neuroblastoma Staging System [INSS] Stages 1, 2, and 3; and International Neuroblastoma
Risk Group (INRG) classification system L1 and L2); and (B) systemic (INSS stage 4/4S
or INRG stage M/MS). Both disease presentations include low- and high-risk subgroups
defined by clinical-biological variables that are relatively well defined within the major
cooperative groups [1,2].

Locoregional neuroblastoma (LR-NB) is characterized by lack of distant metastases
and represents approximately 40% of NB at presentation. Most commonly, patients present
asymptomatic or with symptoms related to local compression of the tumor mass to neigh-
boring organs. These tumors usually have a good prognosis even without cytotoxic therapy.
However, some will recur locally, or worse yet, progress to stage 4/M disease [3]. The
risk factors that predict disease progression or recurrence in LR-NB known to date include
age, MYCN amplification, 11q status, histology, and DNA ploidy [1]. A retrospective
analysis of the MSKCC cohort of conservatively managed LR-NB identified that MYCN
amplification strongly associated with diploid DNA index, the best predictor of adverse
clinical outcome in this cohort [4]. As such, ploidy is now part of the stratification criteria
used by the COG [5]. More recently, aside from amplified-MYCN, ALK mutations, ATRX
aberrations, MDM2-CDK4 amplification, and TERT mutations have been associated with
adverse prognosis and thus with HR disease [6–9]. Despite this, the excellent survival rate
of LR-NB patients suggests that LR-NB identified according to the current clinical staging
by INRG is strongly associated with low-risk biology and therefore can be successfully
managed without cytotoxic therapy [1].

Systemic or metastatic disease (so called INSS stage 4 or INRG stage M) represents
approximately 60% of all NB. This phenotype is biologically defined by tumor cells with the
ability to metastasize distally. The ability of the tumor cells to reach certain organs correlates
with clinical outcomes [10]. For instance, the involvement of cortical bone and/or bone
marrow (BM) is one of the major definitions of high-risk disease, occurring respectively in
>60% and 80% of stage 4/M cases [11]. However, a minor subset of stage 4/M cases will
involve distant metastases limited to lymph nodes (LNs), the so-called stage 4N (nodal),
usually with a more indolent course [12]. NB metastasizes to bone (B)/BM hematogenously,
but nodal invasion occurs via the lymph node drainage chain or the thoracic duct. The
latter accounts for the predominance of left neck/supraclavicular sites in 4N cases [12]. The
pattern of metastasis is also well circumscribed in another subgroup of disseminated cases,
the stage 4S/MS (S as Special). Stage 4S/MS cases are characterized by a metastatic pattern
limited to skin, liver, and BM without bone involvement [10]. Most recently, a dissemination
pattern involving the skeletal muscle has been described and found to resemble the 4S/MS
phenotype with similar low-risk biological characteristics and favorable prognosis [13].

Whether locoregional or systemic, approximately 50% of NB present with high-risk
(HR) disease [14–16]. High-risk disease is most frequently associated with age (older than 18
months) and the pattern of metastases in the osteomedullary compartment, B/BM [17–21].
Accordingly, the unique pattern of distant metastasis for the small subset of patients with
stage 4N, with no B/BM involvement, has been correlated with superior event-free survival
(EFS). In fact, 4N patients stand out as virtually the only survivors of metastatic HR-NB
in the era before myeloablative therapy (MAT) and anti-GD2 immunotherapy became
standard therapies [12,22]. A study of stage 4 patients who received MAT but no anti-GD2
immunotherapy showed a better prognosis among those with only extra-skeletal disease
and no B/BM metastases [23]. A large retrospective study from the INRG found the 4N
subgroup to have significantly better EFS and overall survival (OS) compared to other stage
4/M patients even though the 4N patients received less intensive treatment [12]. The INRG
investigators recommended considering less intensive therapy for 4N but the most recent
risk classification system did not clear 4N [5]. Genetic aberrations in this small subgroup of
stage 4 patients seem not to be different from osteomedullary-involved stage 4/M disease.
In a recent study, the frequencies of ALK and ATRX defects were as expected for HR-NB.
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The frequency of MDM2-CDK4 co-amplification seemed to be greater and TERT aberrations
were the most common aberration after MYCN amplification [8].

Gangliosides are carbohydrate-containing sphingolipids (glycosphingolipids) embed-
ded in the outer cell membrane, carrying on the outside two or three monosaccharide
units terminating in one or two N-acetylneuraminic acids (Neu5Ac or NANA) [24]. The
ganglioside GD2 carries two NANA (disialoganglioside) that participate in the interaction
with membrane proteins and lipids to regulate cellular signaling [25], while facilitating cell–
cell recognition and adhesion [26]. Disialoganglioside 2 (GD2) is expressed in neural and
mesenchymal stem cells during fetal development. Postnatal expression in healthy tissues
is restricted to the peripheral neurons, central nervous system, and skin melanocytes [27].
The density of GD2 in neuroblastoma is unusually high, with millions of molecules per
cell [28]. Lower GD2 expression can also be found in osteosarcoma [29–32], melanoma, and
some brain tumors [33–35].

Anti-GD2 monoclonal antibodies (mAbs) bind GD2-expressing tumor cells, engage
FcR-bearing myeloid effectors to perform antibody-dependent cell-mediated phagocytosis,
engage FcR-bearing natural killer cells to perform Ab-dependent cell-mediated cytotoxicity,
activate complements to perform complement-dependent cytotoxicity, and may even
cause direct induction of apoptosis [36]. The first-in-human anti-GD2 mAb, the murine
3F8, was developed in 1985 [37,38] and published in 1987 [39]. After demonstrating its
potential against BM disease in patients with primary refractory NB, or those in complete
remission [40], mouse 3F8 was humanized [36], brought to the clinic in 2011, and FDA-
approved in 2020 with the name naxitamab (Danyelza) [41].

Anti-GD2 immunotherapy has significantly improved the outcome of HR-NB patients
and is mostly effective against osteomedullary disease, but less so against soft tissue
disease [40,42]. Current standard therapy for HR-NB comprises a backbone of induction
chemotherapy and surgery, followed by consolidation with MAT and autologous stem
cell transplant (ASCT), and post-consolidation therapy with radiotherapy and anti-GD2-
based immunotherapy. The relevance of each of these components has been dissected
recently, and the role of MAT and ASCT in the era of anti-GD2 immunotherapy is, at
least, questionable since no randomized trial has demonstrated an impact in OS. Clinical
trials using anti-GD2 immunotherapy demonstrated a significant improvement in EFS and
OS in the context of minimal residual disease (MRD) [43,44]. Most recently, naxitamab
has demonstrated efficacy in eradicating clinically measurable disease when limited to
B and/or BM [45]; however, its efficacy remains limited against soft tissue disease. Only
recently has chemo-refractory soft tissue NB been shown to be responsive to anti-GD2
immunotherapy when combined with chemotherapy [46]. Indeed, recent strategies of
chemo-immunotherapy have been adopted to overcome early resistance in HR-NB [47,48].

While anti-GD2 mAbs alone are effective against B/BM disease and the benefit re-
garding soft tissue disease is less certain, the question arises as to whether anti-GD2
immunotherapy might benefit high-risk LR-NB and stage 4N patients given that the dis-
ease is compounded by only soft tissue. In this study, we retrospectively reviewed all
patients with HR-NB referred to our center for treatment with anti-GD2 immunotherapy
diagnosed with non-osteomedullary subtypes of disease. Our goal was to ascertain the rel-
evance of each of the treatment modalities included in the management of HR-NB patients
with disease affecting only the soft tissue compartment.

2. Patients and Methods

This retrospective report covers all patients from June 2017 until December 2023,
treated at SJD Barcelona Children’s Hospital for HR-NB with no osteomedullary involve-
ment at diagnosis, i.e., LR-NB or stage 4N (stage 4/M NB based solely on distant LN
involvement and without metastases in B/BM). High-risk disease was defined as follows:
MYCN non-amplified stage 4N diagnosed at age ≥18 months or MYCN-amplified stage 4N
at any age; MYCN-amplified LR-NB at any age or MYCN non-amplified LR-NB diagnosed
at age ≥18 months and with biological HR features (diploidy plus any of the following: seg-
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mental copy number variations (CNVs) plus ALK mutations, ATRX or TERT aberrations).
All the treatment modalities the patients received in their referral centers were reviewed.
The imaging at diagnosis was reviewed at SJD to confirm no osteomedullary involvement
at diagnosis.

Treatment at SJD included chemotherapy, surgery, radiation, and naxitamab-based
immunotherapy strategies, as previously reported [49]. The outcome of the first-line
treatment, as well as the treatment for subsequent relapses, was documented. Specifically,
we interrogated whether at any time the disease progressed to invade the osteomedullary
compartment. All the clinical events of the patients were charted in detail to record the
prolonged history (as long as 24 years) of the multiply recurrent tumors.

2.1. Disease Evaluations and Treatment Monitoring

As previously reported [49], disease status at SJD was thoroughly assessed by BM
aspirates obtained from bilateral posterior and bilateral anterior iliac crests, 123I-MIBG
SPECT scans, and whole-body and craniospinal MRI. 18F-FDG-PET/CT was used for
MIBG non-avid cases at diagnosis. Disease response was defined according to the revised
INRC [2]. A quantitative reverse transcription-polymerase chain reaction was used to
assess minimal residual disease (MRD) status, as described previously [50]. During the
follow-up, the disease status was assessed every 3 months for 2 years by BM aspirates
(x4) and MRD in addition to 123I-MIBG/FDG-PET scans. Once a year, a craniospinal MRI
was added.

2.2. Statistical Analysis

Continuous variables are described using the median, minimum, maximum, and
categorical variables by absolute frequencies and percentages. The starting time-point for
survival times was the date of the first cycle of immunotherapy for those who received
anti-GD2 mAbs at the end of first-line treatment, and the end of first-line treatment for
those who did not receive immunotherapy. Therefore, event-free survival was defined as
the time from starting point to progressive disease (PD), relapse, secondary malignancy,
or death, whichever occurred first, and was censored at the last follow-up in the absence
of these events. Overall survival was defined as the time from starting point to death and
was censored at the last follow-up if no death occurred. The Kaplan–Meier method [51]
was used to estimate the EFS and OS curves. The prognostic impact of qualitative clinical
and biological features on survival (either EFS or OS) was tested by the log-rank test [52].
Cox models [53] were used to derive hazard ratios (HRs) and their corresponding 95%
confidence intervals and p-values for clinical and biological features on EFS and OS.

3. Results
3.1. Patient Characteristics and Treatments

From June 2017 to December 2023, 278 HR-NB patients were treated at SJD; 244 (88%)
had disease affecting the osteomedullary compartment—classical stage 4/M—and 34 (12%)
had soft-tissue-only disease (LR or stage 4N). Out of the 34 non-osteomedullary disease HR-
NB patients, 26 had locoregional disease (INSS stages 1,2, or 3 and INRG stages L1 and L2)
and 8 had INSS stage 4N. Three of the thirty-four non-osteomedullary HR-NB cases when
reviewed did not meet the inclusion criteria (lack of conclusive staging tests at diagnosis or
lack of molecular genomics to qualify for high-risk disease) for this retrospective study. This
study reports on 31 NB patients who retrospectively had confirmed clinical, histological,
and biological criteria for HR disease and no evidence of osteomedullary involvement at
diagnosis (Table 1).
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Table 1. Clinical characteristics and outcomes of all patients reported.

ID Stage Age at DX
(Years) Molecular Features First-Line

Treatment

First Line
Treatment

with Anti-GD2
IT

First Line
Outcome # RELAPSES Treatment at

Relapse Stage 4 Treatment at
Stage 4

Rescue TX
Outcome Status

1 4N 8.0 Diploid. ATRX.
NF1 p.K1457E Chemo, SX, RDT No CR 3

Chemo, SX, RDT,
ASCT, Naxi,

HITS
No SD AWD

2 4N 27.6 Diploid. ATRX Chemo, SX, RDT No Residual
mass 3 Chemo, HITS No SD AWD

3 LR 4.2 Diploid. MYCN A Chemo, SX, RDT No CR 3 Chemo, SX, RDT,
DINU, HITS No CR NED

4 LR 5.5 Diploid. ATRX Chemo No CR 4
Chemo, SX, RDT,

HITS, C/T +
Naxi, Dinu + I/T

No SD AWD

5 4N 6.3 Diploid. CNV Seg Chemo, SX, RDT No CR 1 Yes Chemo, Naxi,
vaccine CR DOD

6 4N 5.2 Diploid. ATRX Chemo, SX No CR 1 SX, RDT,
DINU+I/T Yes

Chemo, HITS,
NICE,

Lutathera, RIST

Osteomedullary
CR AWD

7 LR 10.2 Diploid. CNV Seg Chemo, SX, RDT No CR 5
Chemo, SX, RDT,

ASCT, MIBG,
RDT, HITS

Yes Chemo, HITS Osteomedullary
CR DOL

8 LR 4.7 Diploid. ALK
F1245V Chemo, SX, RDT No CR 1 Yes Chemo, Naxi,

HITS CR AWD

9 LR 0.9 Diploid. CNV Seg Chemo No CR 1 rCOJEC + SX +
RDT Yes Chemo, RDT,

HITS PD DOD

10 LR 4.2 Diploid. CNV Seg Chemo, SX, RDT No CR 1 Yes Chemo, Naxi,
NICE, RDT

Osteomedullary
CR AWD

11 LR 3.4 Diploid. ALK
F1174L Chemo, SX No Residual

mass 3 GPOH Chemo +
BEACON Yes HITS PD DOD

12 LR 5.8 Diploid. CNV Seg Chemo, SX,
ASCT, RDT No CR 2 Chemo, ASCT,

RDT, SX, Raco Yes
Chemo,

Thalidomide,
SX, HITS, NICE

CR AWD

13 LR 10.1 Diploid. MAP2K1
K57N. ATRX Chemo, SX No CR 1 Yes Chemo, HITS,

SX, RDT
Osteomedullary

CR AWD

14 LR 0.6 Diploid. ALK
F1174L Chemo, SX No Residual

mass 1 Yes Chemo, HITS,
SX, RDT CR NED

15 4N 4.7 Diploid. CNV Seg Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

16 4N 4.4 Diploid. CNV Seg Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

17 LR 4.7 Diploid. CNV Seg Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED



Cancers 2024, 16, 1735 6 of 14

Table 1. Cont.

ID Stage Age at DX
(Years) Molecular Features First-Line

Treatment

First Line
Treatment

with Anti-GD2
IT

First Line
Outcome # RELAPSES Treatment at

Relapse Stage 4 Treatment at
Stage 4

Rescue TX
Outcome Status

18 LR 4.3 Diploid. MYCN A Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

19 LR 2.3 Diploid. MYCN A Chemo, SX,
ASCT, RDT, Naxi Yes CR 0 No CR NED

20 LR 1.7 Diploid. MYCN A Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

21 LR 2.2 Diploid. MYCN A Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

22 LR 2.0 Diploid. MYCN A Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

23 LR 2.2 Diploid. MYCN A Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

24 LR 3.5 Diploid. c-MYC A Chemo, SX, RDT,
Naxi Yes PD 0 No PD DOD

25 LR 2.5 Diploid. MYCN A Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

26 LR 1.6 Diploid. MYCN A Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

27 LR 4.0 Diploid. CNV Seg Chemo, SX, RDT,
Dinu Yes Primary

refractory 1 Chemo, RDT,
HITS No PD DOD

28 LR 1.4 Diploid. MYCN A Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

29 LR 0.2 Diploid. MYCN A Chemo, SX, RDT,
Naxi Yes CR 0 No CR NED

30 4N 3.4 Diploid. CNV Seg Chemo, SX, RDT,
Naxi Yes CR 1 SX, HITS Yes Chemo, RDT,

HITS CR NED

31 LR 6.1 Diploid. ATRX Chemo, SX, RDT,
Naxi Yes Residual

mass 1 Chemo, HITS,
RDT Yes Chemo, RDT,

ICI
Osteomedullary

CR AWD

Legend: Age at DX = diagnosis; Molecular features: MYCN A = amplified; CNV seg: copy number variation with predominant segmentary pattern. First-line treatment:
Chemo = chemotherapy; SX = surgery; RDT = radiotherapy; Anti-GD2 IT = Immunotherapy; Outcomes: CR = complete remission. Treatment at relapse: ASCT = Autologous
stem cell transplant; HITS = chemo-immunotherapy regimen including naxitamab plus sargramostrim, Irinotecan, and Temozolomide; DINU = Dinutuximab Beta; MIBG = MIBG
therapy; Chemotherapy regimens including rapid COJEC, GPOH, SIOP BEACON; Raco = racotumomab; NICE = chemo immunotherapy including naxitamab plus sargramostim and
ICE chemotherapy; vaccine = MSKCC GD2 vaccine; Lutathera = DOTATE Lu-177 radiotherapy. Outcome: SD = stable disease; PD = progressive disease. Status: AWD = alive with
disease; NED = no evidence of disease; DOD = Dead of Disease; DOL = Dead of secondary Leukemia.
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All tumors at diagnosis had molecular genetic features characteristic of HR disease: all
were diploid plus other genomic aberrations including 11 with MYCN and 1 with c-MYC
amplification; 3 with ALK mutations; 6 with ATRX rearrangements; and 10 with predomi-
nant segmental CNV profile. As first-line treatment, all patients received chemotherapy—
different standard regimens—and surgery and radiotherapy for the large majority. Only
two patients had received MAT and ASCT in their local centers. The outcome after first-line
treatment showed 25 (80.6%) of the 31 patients achieving CR. The only patient with c-MYC
amplification had a very rapid disease course with progressive disease unresponsive to all
rescue therapies succumbing 8 months after diagnosis (Table 1, case#24). Five (16.1%) did
not achieve CR with persistent metabolically active (MIBG and PET-FDG positive; n = 1)
and non-active (MIBG positive and PET-FDG negative; n = 4) residual soft tissue masses.
Seventeen (54.8%) patients, including all but one (n = 11) of the MYCN/MYC amplified
cases, received anti-GD2 immunotherapy (mostly naxitamab) plus GM-CSF at the end of
first-line treatment.

Disease course after first-line treatment showed relapse occurring in 17 (56.7%) of the
30 non-progressive cases. During the time of the study, 10 (58.8%) of the 17 cases have
recurred once, and seven have recurred twice or more. Interestingly, 12 (70.6%) of the
17 relapses at some point affected the osteomedullary compartment (stage 4/M) and none
involved the central nervous system. Six (19.4%) of the 31 patients died during the course
of the study, all after relapse (n = 5) or progression through first-line treatment (n = 1). Out
of the 17 relapsed cases, only 2 have no evidence of disease at the time of the study analysis;
the rest have either died (n = 5) or are alive with disease. In contrast, 13 patients have
not relapsed and remain in continued CR. The median follow-up for living patients was
3.9 years.

3.2. Survival Analysis

For the whole cohort, three-year EFS is 45.2%, 95%CI: 29.7–68.8%; and 3-year OS is 88.9%,
95%CI: 77.8–100.0%. Median follow-up for survivors is 3.9 years (range: 0.01–24.7 years).
Figure 1 shows EFS and OS curves for the whole cohort.
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Given the significant prognostic relevance of achieving CR after the first treatment in
HR-NB according to our and others’ experience [49,54–56], we tested whether achieving
CR after first-line treatment in this cohort of HR-NB patients would predict the outcome.
Twenty-five (80.6%) of the thirty-one patients achieved CR after first-line treatment. To
analyze survival, we used Cox models to compare both groups. Neither EFS nor OS were
significantly different by CR status after first-line treatment. The EFS analysis showed
a hazard ratio [95% CI] of 2.53 [0.86; 7.45] for patients in CR at the starting time-point
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compared to those who did not achieve CR, p = 0.092. The OS analysis showed a hazard
ratio [95% CI] of 2.91 [0.56; 15.2], p= 0.21. According to this result, achieving CR is not
enough to predict relapse in this subgroup of HR-NB patients. However, the sample size
of the non-CR group is very small (n = 6); therefore, this result should be validated in
future studies.

Next, we tested whether adding anti-GD2 immunotherapy in first-line treatment
for this subgroup of patients had any prognostic significance. As a limitation of the
study, it should be noted that there was an age difference between patients who received
immunotherapy (median 5.3 years [0.6; 27.6]), versus those who did not (median age 2.5
[0.2; 6.1] years), p = 0.012. The EFS analysis using Cox models showed a hazard ratio [95%
CI] of 0.20 [0.06; 0.62], for patients who received anti-GD2 immunotherapy compared to
those who did not, p = 0.0054, which reflects an 80% decrease in the risk of event in patients
treated with anti-GD2 immunotherapy in the first line (Figure 2). The OS analysis, however,
was not statistically significant (hazard ratio [95% CI] of 1.66 [0.20; 14.10], p = 0.64). The low
number of deaths in this series might be the reason for this lack of statistical significance.
These results suggest, rather counterintuitively, that anti-GD2 immunotherapy in first-line
treatment can reduce the risk of relapse.
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4. Discussion

The large majority of HR-NB cases affect the osteomedullary compartment; however,
a small percentage of cases, despite being biologically aggressive, show no avidity for the
bone and/or bone marrow niche. The mechanisms that prevent these otherwise aggressive
tumor cells from metastasizing the osteomedullary compartment are unclear. Recently, we
and others have reported the molecular pathways that play a critical role in cell survival and
progression in the BM niche [57,58]. The interaction between the BM microenvironment
and NB cells is mediated, in part, by the MIF/CXCR4 signaling axis irrespective of the
tumor cell biology. The tumors hereby analyzed have a restricted pattern of dissemination
based exclusively on locoregional or distant lymph nodes (so-called stage 4N). This clinical
pattern suggests that the mechanisms involved in LN invasion are different from those
involved in osteomedullary metastasis. Recent evidence from deep sequencing showed
the same clone from the primary site seeding both locoregionally (soft tissue, LN) and
osteomedullary sites [9], suggesting that genetic aberrations do not define the capacity of
tumor cells to metastasize to different niches. Instead, the complex interactions established
between the tumor cells and the tumor microenvironment might determine the ability of the
tumor cells to home and establish metastatic growth. In this regard, the study of the innate
immune system of patients with non-osteomedullary disease may provide interesting clues.
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Clinical risk-staging methodologies (INSS and INRG) have tried to capture the biology
of the distinct patterns of dissemination using locoregional stages (INSS stages 1, 2, and 3;
INRG stages L1 and L2) and less clearly stage 4N (although not appreciated in the most
recent INRG staging system). However, the currently used risk-staging categories do not
distinguish soft-tissue-only-based HR-NB cases versus those with osteomedullary involve-
ment (stage 4/M). Thus, all HR-NB cases are managed similarly and results are reported as
one single disease stratum [16]. In the era of anti-GD2 immunotherapy, however, and given
the recognized selective benefit of mAbs against B/BM disease, the real benefit provided
by anti-GD2 mAbs to patients with only soft tissue disease had not been investigated. This
report helps to clarify the benefit of anti-GD2 immunotherapy for these patients, similar to
what was proven for stage 4/M when achieving MRD status, significantly increasing their
EFS. The limitations of this study, including the retrospective nature of the analysis and the
limited number of patients, likely prevent the demonstration of overall survival benefit.
Nevertheless, the significant effect of anti-GD2 immunotherapy in first-line treatment to
prevent relapses clearly supports the indication of anti-GD2 immunotherapy for all HR-NB
patients, regardless of the pattern of dissemination shown at presentation.

Most patients with localized (non-stage 4) neuroblastoma harbor low-risk biology
tumors and thus do not relapse/progress. In a series of 182 patients with localized, MYCN
non-amplified neuroblastoma, in which genotype was determined, only 4% of patients
relapsed in metastatic sites [3]. The INRG reported similar rates in a cohort of >1000 patients
with stage 2/3, with only those patients aged >18 months harboring 11q aberrations and
unfavorable histology doing poorly [1]. In 2001, we reported that LR-NB tumors with
diploid DNA index, regardless of other biologic features, had a significantly increased
risk of local recurrence and stage 4 progression [4]. Ploidy is now included in the current
COG risk group criteria, although considered only for patients less than 18 months of
age [5]. Therefore, most patients are currently risk stratified in the cooperative groups
with minimal biological information. For instance, locoregional patients >18 months with
undifferentiated neuroblastoma (unfavorable histology) would qualify for high-risk in the
COG risk criteria [5]. However, it is known that most of such cases would be aneuploid
and harbor low-risk biological features [3].

Whole genome analysis using array comparative genomic hybridization provided
more powerful prognostic information than individual genetic markers. The presence of a
segmental chromosome aberration profile was associated with an increased risk of relapse
in locoregional patients [59]. More recently, extensive genomic profiles have further de-
scribed genetic features that portend a worse prognosis and promote tumor progression [9].
Besides MYCN amplification, TERT and ATRX events and MDM2-CDK4 amplification
define clinical subtypes with increased risk of relapse [9]. Furthermore, this same study has
provided evidence to demonstrate that cytotoxic therapy selects for particularly resistant
and aggressive subclones with superior metastatic potential that may pre-exist within the
tumor at diagnosis [9]. In our study, genomic information enabled the biological characteri-
zation of high-risk tumors within our cohort of soft-tissue-only NB. These included diploid
tumors with further high-risk genetic features like MYCN amplification, segmental pattern
of CNVs, or ATRX aberrations with ALK mutations. The c-MYC amplified case was initially
classified as low-risk according to the SIOPEN standard risk group criteria by the local
institution. This case exemplifies how currently used cooperative group risk criteria cannot
capture the high-risk biology among LR-NB cases. The highly aggressive behavior of this
tumor prompted a more in-depth biological study, which identified overexpression of
c-MYC mediated by chromosomal translocation, resulting in a malignant, highly aggressive
phenotype [60]. This experience, and that of others with very rare genomic aberrations
including MYCN amplification along with ALK amplification [61], MYCN promoter aberra-
tions, or rare cases with newly diagnosed tumors with p53 mutations, may well describe
an ultra-high-risk subgroup of LR-NB cases that deserve special attention. It is, therefore,
of utmost importance to characterize NB tumors with non-osteomedullary involvement.
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If diploid, they should be genetically analyzed in detail to reveal the biology behind each
tumor and establish accordingly an appropriate treatment plan.

The role of anti-GD2 immunotherapy in the management of HR-NB has been well
demonstrated in large randomized clinical trials whereby patients in first CR were shown to
significantly increase their survival rates (both OS and EFS) when anti-GD2 immunotherapy
was added [44,62]. The best survival curves shown by cooperative groups like COG and
SIOPEN show EFS rates at 2 and 3 years for first-CR patients treated with dinutuximab-
based immunotherapy post-ASCT of 55–65% and OS 85%. The most recent update from
COG shows 5-year EFS of 64.2 and OS of 72.7% [63]. Our limited single-institution study
showed 5-year EFS of 51.9% and OS of 76.9% for patients treated with naxitamab and
GM-CSF without the use of high-dose chemotherapy and ASCT or cis-RA [49]. In this
study, we analyzed whether HR-NB patients with only soft tissue disease benefitted from
anti-GD2 immunotherapy given that anti-GD2 mAbs are not as active against soft tissue
as osteomedullary disease. Our results demonstrate survival benefit for soft-tissue-only
HR-NB patients when anti-GD2 mAbs were added to first-line treatment. This evidence
reinforces the significance of anti-GD2 mAbs against MRD in HR-NB and their effectiveness
in significantly reducing the chances for the soft tissue masses to regrow. Strikingly, none
of the MYCN-amplified cases in our cohort, when managed with anti-GD2 mAbs in first
CR, have relapsed, with a median follow-up of almost 4 years, which is enough time for
MYCN-amplified tumors to recur. MYCN-amplified cases are well-recognized high-risk
tumors regardless of age or stage, and the critical importance of achieving first CR in this
subgroup of HR-NB has been previously reported by Kushner et al. [64]. In this study,
we show that anti-GD2 immunotherapy appears quite effective in this very well-defined
subgroup of HR-NB cases and suggest that overall treatment could be minimized. High-
dose chemotherapy and ASCT would not seem to be required in this subgroup of HR-NB
cases in the anti-GD2 immunotherapy era since similar excellent results have been reported
for locoregional MYCN-amplified patients receiving [65] or not receiving myeloablative
therapies [49,66,67].

In our experience, the majority of patients experiencing relapse show, at some point,
invasion of the osteomedullary compartment. This observation suggests that the treatment
might be interfering with the natural equilibrium established between the host and the
tumor cells to prevent their growth in the osteomedullary niche at diagnosis. However,
contrary to the majority of stage 4 HR-NB cases, the rescue treatment was able to easily
eradicate bone disease when it occurred, whereas the soft tissue disease remained the most
resistant and difficult site to eradicate. This observation, once again, points toward the
special features that characterize the soft-tissue-only subgroup of HR-NB.

5. Conclusions

In this retrospective study, we learned some key points about how to improve the
management of HR-NB cases characterized by no osteomedullary involvement. First, and
most important, these cases should be identified and biologically characterized (diploidy
being the baseline feature) during initial disease work-up. Second, these tumors should be
managed with the aim of achieving complete remission as soon as possible. Third, anti-
GD2 immunotherapy should be indicated at the stage of MRD to prevent relapse, which
unequivocally portends poor survival. In the case of achieving CR and using anti-GD2
immunotherapy upfront, the outcome of this subgroup of HR-NB is excellent.
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