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Abstract: This research article delves into the development of a reinforcement learning (RL)-based
continuous authentication system utilizing behavioral biometrics for user identification on computing
devices. Keystroke dynamics are employed to capture unique behavioral biometric signatures, while
a reward-driven RL model is deployed to authenticate users throughout their sessions. The proposed
system augments conventional authentication mechanisms, fortifying them with an additional
layer of security to create a robust continuous authentication framework compatible with static
authentication systems. The methodology entails training an RL model to discern atypical user
typing patterns and identify potentially suspicious activities. Each user’s historical data are utilized
to train an agent, which undergoes preprocessing to generate episodes for learning purposes. The
environment involves the retrieval of observations, which are intentionally perturbed to facilitate
learning of nonlinear behaviors. The observation vector encompasses both ongoing and summarized
features. A binary and minimalist reward function is employed, with principal component analysis
(PCA) utilized for encoding ongoing features, and the double deep Q-network (DDQN) algorithm
implemented through a fully connected neural network serving as the policy net. Evaluation results
showecase training accuracy and equal error rate (EER) ranging from 94.7% to 100% and 0 to 0.0126,
respectively, while test accuracy and EER fall within the range of approximately 81.06% to 93.5%
and 0.0323 to 0.11, respectively, for all users as encoder features increase in number. These outcomes
are achieved through RL’s iterative refinement of rewards via trial and error, leading to enhanced
accuracy over time as more data are processed and incorporated into the system.

Keywords: behavioral biometrics; continuous authentication; keystroke dynamics; Markov decision
process (MDP); Q-learning; reinforcement learning (RL); static authentication; user authentication;
identification

1. Introduction

In today’s fast-paced business environment, traditional methods of security are becom-
ing increasingly inadequate [1]. With the rise of sophisticated cyberattacks, it has become
easier for hackers to gain access to systems and steal user identities. Even if an organization
has a strong security system in place, employees may still inadvertently compromise secu-
rity by sharing passwords or digital keys [2,3]. As a result, businesses are facing significant
losses due to weakened security systems that rely solely on static authentication methods.
Research studies have shown that relying solely on static authentication methods, such
as usernames and passwords, is no longer enough in preventing cyberattacks. In fact,
according to the Verizon 2021 Data Breach Investigations Report [4], stolen credentials were
the most common initial access vector in data breaches. This highlights the need for a more
reliable and secure authentication system.

Moreover, many businesses have experienced significant financial losses due to data
breaches. For example, the Equifax data breach in 2017 cost the company over USD
1.4 billion in settlements and legal fees. Therefore, implementing a trusted authentication
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system that continuously verifies user identity is crucial for businesses to protect their
assets and maintain customer trust.

Furthermore, traditional authentication methods such as knowledge-based authenti-
cation (KBA) or two-factor authentication (2FA) have been proven to be ineffective against
social engineering attacks, where attackers manipulate users into revealing sensitive in-
formation [5]. This emphasizes the need for a more advanced and secure authentication
system that can resist such attacks.

To mitigate these risks, it is crucial for businesses to have a system that is reliable and
trusted for identifying and authenticating users, to protect sensitive assets and financial data.
To further strengthen security, it is important for the system to continuously authenticate
users in addition to static authentication methods. Authentication can be broadly classified
into two types: static (one-time) authentication and continuous authentication. Static
authentication typically involves the use of a password or multifactor authentication
methods [6-8], where users enter their credentials at the time of logging in to the system,
and the backend database is where the verification takes place. The user is allowed to
enter, access, or remain in the system if their credentials match and typing pattern matches;
else, access is refused [9]. Contrarily, continuous authentication calculates the probability
that a user who logs in repeatedly during a session is the same person they first claimed
to be. This is carried out by analyzing the user’s behavior, such as keystroke dynamics,
without the need for external devices. It is important to use both static and continuous
authentication methods to provide a more secure and user-friendly authentication system.
Static authentication provides an initial level of security while logging in, while continuous
authentication continuously monitors the user’s behavior to ensure that the same person is
accessing the system throughout the session.

This article presents a new approach to continuous authentication using a reinforce-
ment learning (RL)-based anomaly detection method to be integrated with the current
exiting static authentication architectures. To achieve this goal, the following has been
investigated and proposed:

* Innovative Approach to existing Continuous Authentication: Investigated the most
advanced continuous authentication technology currently available, with a focus on
keystroke dynamics as a form of the behavioral biometrics. This approach aims to
enhance existing static authentication systems.

*  Development of Reinforcement Learning Model: Developed a novel reinforcement
learning-based anomaly detection model for continuous authentication of keystroke
dynamics. Evaluated the proposed model using real-world data, and a comparison
with existing methods. The reinforcement learning (RL) environment gym is devel-
oped and the proposed model has been implemented from scratch to provide a proof
of concept application.

*  Open Source Contribution: This reinforcement learning (RL) gym-based environ-
ment code is made available on GitHub (GitHub: to the domain researchers to
explore and utilize. https:/ /github.com/PriyaBansal68/Continuous- Authentication
-Reinforcement-Learning-and-Behavioural-Biometrics) (accessed on 18 April 2024).

The rest of article is structured as follows. Section 2 reviews the existing research
on behavioral-based user authentication using machine learning. Section 3 explains how
reinforcement learning fits into the broader field of machine learning and reviews the
essential concepts. The proposed methodology comes in Section 4 after introducing the
general reinforcement learning framework and exploring the different methodologies that
can be used to train the reinforcement learning models. Finally, the results of this research
are presented and discussed in Section 5.

2. Background and Literature Review

Continuous authentication involves continuously verifying and validating a user’s
identity during their entire session or interaction with a system, rather than relying solely
on a single authentication event at the beginning. It helps to enhance security [10] by
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constantly monitoring and assessing the user’s behavior, characteristics, or biometrics to
ensure their identity remains valid and authorized. The following are some of the ways user
can be authenticated continuously are behavioral biometrics, Facial or voice recognition.

Significant endeavors have been dedicated to the development of user recognition
systems based on keystroke dynamics, aiming to enhance efficiency. This becomes par-
ticularly crucial considering the substantial volume of data produced by users, which
may fluctuate over time due to contextual factors. While the quantity of studies exploring
keystroke dynamics specifically in relation to text-based input is comparatively lower
than those examining fixed text, there have been several notable studies conducted in this
domain. During our background review on this topic, we encountered both supervised
and unsupervised techniques, but we did not come across any noteworthy information
regarding reinforcement learning. The remainder of this section will concentrate on the
most significant studies in the subject of behavioral biometrics in Table 1.

Table 1. Comparison study of the features, model, dataset used, and models of the recent literature.

Study #of Users  Behavioral Biometrics Features Used ML Type ML Model Performance
Hold and flight time,
[11] 5 Keystroke latency, interkey time, Supervised Neural network FAR ZE%O{%’ 5F 55%?67%’
acceleration :
Dwell and flight time, . Bayesian network Accuracy 82.18%, FAR
2] 10 Keystroke latency, interkey time Supervised classifier 2.0%, FRR 17.8%
. . Random forest
[13] 42 Keystroke lli‘tAe];li a?gtgrllgg ¥ ?irrrri’ Supervised classifier, Bayes EER 3% (2-class), EER
Yy }é y p network classifier, 7% (1-class)
and pressures K-NN
[14] 15 Keystroke and Hold tirr}e, flight t?me, Supervised Distance algqrithm, EER 6.93%
gyroscope latency, interkey time 1-class classification
Accuracy 99%, EER
Keystroke and finger Dwell and flight time, . Probabilistic neural hold-time (H) 35%, EER
1151 10 pressure latency, interkey time Supervised network interkey (I) 40%, EER
finger pressure (P) 1%
Dwell and flight time, Weighted probabilistic o
[16] 63 Keystroke latency, interkey time Supervised classifier, Bayesian-like Accuragayli?wo/oﬂ oto
and pressures classifiers ’
Dwell and flight time, Unsupervised, K-means, Bayes net, o o
(171 N/A Keystroke latency, interkey time supervised and neural networks FRR 1.45% FAR 1.89%
EER random forest
Dwell and flight time, Random forest classifier: for
[18] 54 Keystroke latency, interkey time, Supervised classifier, Bayes net second-order feature
key pressures algorithms, and KNN set 5%; for full feature
set 3%
Dwell and flight time, _ Random impostor:
[19] 81 Mouse latency, interkey time, Supervised II;I(;?EOSI_}K?E;;% 80-87%; AUC skilled
touch pressure y impostor: 62-69% AUC
. 1-dimensional CNN, Test accuracy 85.73%
[20] 40 Mouse S}rfg\?e’r;léﬂff’ Supervised artificial neural for the top 10 users,
network (ANN) peak accuracy 92.48%
Buffalo dataset:
down-down time, Accuracy: 98.56%, EER:
[21] 73/80 Keystroke down-up time up-up Supervised MLP, CNN, RNN, 0.0088; Clarkson
- . CNN-RNN ,
time, up—down time Dataset: Accuracy:
91.74, EER:0.0755
Interval, dwell time, Neural network
[22] 54 Keystroke latency, flight time, up Supervised layers—convolutional, Accuracy: 88%
toup recurrent, and LSTM
. . SVM, random forest Accuracy (93% to 97%),
[23] 103 Keystroke ]lDa‘tl\;lli arilgtgrllg‘l;t ttlirrrr:, Supervised (RF), multilayer Type I and Type II
Y, y perceptron (MLP) errors (3% to 8%)
Train: Acc: 94.77%,
dwell and fliah ; . ble deep O EER: 0.0255, FAR:
. Key, dwell and flight Reinforcement learning Double deep 0.0126, FRR: 0.045, Test:
This study 17 Keystroke time, interkey (RL) networks (DDQN) Acc: 81.06%, EER:

0.0323, FAR: 0.0356,
FRR: 0.0174

In a paper, Asma Salem et al. [11] investigated if an identity and verification system
can be used on touch-screen-based mobile devices. Using WEKA, the authors build a
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multilayer perceptron (MLP) neural network-based categorization model. Timing and
non-timing elements are combined in the article, and it concludes that non-timing features
raise the bar for security. Five users are included in the study, and the dataset has four
attributes that are taken out. The writers bring up the issue of using different keyboards
and create a virtual keyboard for collecting the data.

Jeanjaitrong et al. [12] conducted a literature review on keystroke dynamics and
touch dynamics, highlighting the authentication process based on biometric behavior. The
authors stressed the significance of protecting mobile devices because they are essential to
daily life and pose a high risk of data theft. To categorize the data, the scientists retrieved
4 features: dwell duration, interval timing ratio, button spacing, and interval time. Ten users
were asked to choose one of sixteen four-symbol passwords to enter data. To determine
the relationship between feature elements, the authors created a Bayesian network and
compiled it throughout the classification phase.

Antal M. et al. [13] conducted research on mobile device keystroke authentication
using one-class and two-class classification algorithms. To examine the EER values for
two-class classification, they trained a dataset on random forest classifiers and Bayesian
networks. One-class classification was used to identify the user, whereas two-class classi-
fication was used to validate the user after separating them from outliers. According to
the authors’ research, random forest has the highest EER value for a dataset of 42 users
and 71 characteristics, and all one-class classifiers performed better when categorizing the
negative class than the positive class.

Lee et al. [14] used one one-class classification technique to perform research on
keystroke authentication for mobile devices. To determine the user’s typing pattern, the
authors presented a feature ex-traction method combining accelerometer and gyroscope
sensors. The model was developed using a test population of 15 users, and the authors
preprocessed, scaled, and standardized their data to provide good EER results.

A classification accuracy of 99% was attained with efficiency by P. Bhattarakosol
etal. [15]. Using a notebook as the input device, they gathered data from eight females
and four male users. The k-NN model was created by the authors using three features:
hold time, the interkey, and finger pressure. The accuracy falls to 71% when only hold
duration and the interkey elements are used, but increases to 91% when all three features
are utilized, according to the authors.

In order to address cybersecurity issues such as network intrusion and malicious
assaults, Monrose [16] used factor analysis to evaluate user typing patterns to provide a
lower dimensional representation based on correlations and dependencies among features,
which he then used to build dynamic biometric approaches. The generated feature subset
contained examples of both common and uncommon user typing patterns. Monrose
employed a k-NN (nearest neighbour) classifier to classify data by visualizing covariance
matrices for several features. Keystroke dynamics has the potential to be coupled with any
authentication system to increase its security layer, according to Monrose’s conclusion.

The goal of the research by C. F. Araujo et al. [17] is to develop time delay features
that will enhance authentication and reduce the incidence of erroneous rejection and false
acceptance rates. They suggest an adaptive method that replaces outdated templates with
fresh ones made from fresh samples. This method creates a two-trial authentication system
by altering the conventional deviation and thresholds for each feature. While the user types
on the screen, the biometric system logs keystroke information such as key up, key down,
and ASCII codes. When the password is not a secret, the authors improve the current
password authentication process using four key elements.

Antal, M. et al. [18] discussed different types of biometric systems used for authentica-
tion, including static and dynamic methods, as well as continuous authentication, which
involves monitoring how the user interacts with the system over time. The author does,
however, draw attention to the difficulty of cross-device authentication, which necessitates
a model trained to identify users across various computing devices due to the possibility of
differing keyboard layouts and screen coordinates.
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A standardized experimental methodology and benchmark have been created by G.
Stragapede, et al. [19], to allow for fair comparisons of emerging approaches with currently
used ones in the area. They suggest a system that employs an LSTM architecture (long
short-term memory). At the score level, the architecture has triplet loss and modality fusion.
The average AUC of the individual modalities is 58.75%, whereas the best modality’s
average AUC is 66.22%, representing a relative improvement of 12.71%. With a score of
68.72% AUC, the model performs best when all modalities are combined for the keystroke
task. As comparison to using touch data alone, the combination of modalities yields an
improvement of about 10%. The other modalities” performance is comparable.

N. Siddiqui, et al. [20] used three distinct machine learning and deep learning algo-
rithms to evaluate a dataset of 40 users. The authors looked at two evaluation scenarios,
one using multi-class classification and the other utilizing binary classifiers for user au-
thentication. A one-dimensional convolutional neural network, which had the average
test accuracy of (average) 85.73% for top ten users, was the best performer for binary
classification. The maximum accuracy on the chosen dataset was attained with the help of
artificial neural network (ANN) for multiclass classification, which reached a peak accuracy
of 92.48%.

A group of researchers from Syracuse University [21] analyzed typing behavior to
categorize it under benign or adversarial activity. They collected the data from users and
asked the users to perform certain tasks. They proposed 14 additional features for analysis.
The data were trained using SVM, RF, and NLP models using the eight least correlated
features. As a result of the experiments, they were able to achieve 97% accuracy and a typel
(false positive) and type?2 (false negative) error less than 3%.

Attina et al. [22] propose a convolutional neural network (CNN) with cut-out regu-
larization. A hybrid model combining a CNN and a recurrent neural network (RNN) is
also developed. The study uses the Buffalo free-text keystroke dataset. Two models are
evaluated, with a CNN applied to the KDI image-like features, while a hybrid CNN-RNN
model is applied to the KDS features. The Clarkson II keystroke dataset is also analyzed,
which is a free-text keystroke dynamics dataset collected from 101 subjects in a completely
uncontrolled and natural setting over a period of 2.5 years.

The study uses five time-based features—duration, down-down time (DD-time), up—
down time (UD-time), up—up time (UU-time), and down-up time (DU-time)—extracted
from consecutive keystroke events. The performance of the models is evaluated using
accuracy and equal error rate (EER). The results show that the CNN model generated
better results than the RNN-CNN model, and the performance on the Buffalo dataset
was better than that of the Clarkson II dataset, likely due to noisier data in the latter.
In conclusion, the study proposes effective feature engineering strategies and compares
two feature structures for authentication based on free-text keystroke dynamics. Pawel
Kasprowski, Zaneta Borowska, and Katarzyna Harezlak [23] investigated the impact of
altering neural network architecture and hyperparameters on biometric identification using
keystroke dynamics. A publicly available dataset of keystrokes was utilized to train models
with diverse parameters. The neural network configurations encompassed convolutional,
recurrent, and dense layers in various arrangements, combined with pooling and dropout
layers. The outcomes were subsequently compared with those achieved by the state-of-the-
art model, using the identical dataset. The results exhibited variability, with the highest
attained accuracy reaching 82-88% for the identification task involving 20 subjects.

All the existing approaches are performed on fixed text, whereas this study takes
into account the free text and any change in environment that can cause change in user
behavior. It can detect unusual patterns and detect suspicious activities by interacting with
an environment, receiving feedback in the form of rewards or penalties, and maximizing
cumulative rewards over time.
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3. Deep-Dive Analysis for the Proposed Methodology

A subset of machine learning called reinforcement learning (RL) sheds light on teach-
ing models for how to make decisions in ambiguous situations. In the context of behavioral
biometrics, reinforcement learning can be used to train models to make decisions about
a user’s identity dependent on their typing dynamics, mouse movement, and other be-
havioral patterns. The main idea behind reinforcement learning [24] is to train an agent
to make decisions that will lead to the best outcome, or reward, over time. However, its
application to user authentication is relatively new.

In the case of behavioral biometrics, the agent would be trained on a dataset of typing
dynamics or other behavioral patterns from a set of users. The agent would then use this
training to make decisions about whether a new user is the same person as the one who
was previously authenticated, or if they are an imposter [25].

One of the advantages of using reinforcement learning for behavioral biometrics is
that it allows for continuous and dynamic adaptation of the model to the user’s behavior
changes over time. This is because the agent can learn from its past decisions and update
its decision-making strategy accordingly. Additionally, reinforcement learning can be used
in a transparent way to the user, which means that the user does not have to actively
participate in the authentication process [26].

In the subsequent section, we will delve into the conventional framework employed
for behavioral biometrics, prior to introducing our proposed RL framework.

3.1. Traditional Frameworks

In the machine learning subset, supervised learning is where a labeled dataset is
used to train an algorithm, with each input having a corresponding known output or
target. The objective is to develop a function that can map inputs to their respective
outputs, allowing the model to forecast fresh events and unseen data [24]. In the context
of keystroke dynamics, this involves training a supervised learning model on a dataset of
keystroke data from known users, where the output is the user’s identity. Thus, the model
can predict the user identity depending on their keystroke data, as shown in Figure 1.

USER INTERACTION PRE-PROCESSING TRAINING & TESTING EVALUATION
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1 including keyboard typing I{a::(ml:“ L _

§ and mouse movements BOFF @

H I \

r \

g W \

» Acquire Data N

@

E]

Features

«datastore»
Extracted

Features

ML model recognises
the user based on a
label that is passed as
user id and
understands it pattern

Send user
keystrokes
and mouse
movement
data along
with the
expected
user ID

Some User

Receive New
sample from | N Deploy trained
User and ML model
propose user id T

| Pattern match betw een |
typing user pattern and

v historical data \2 -
End User User Session
session is maintained

T ¥

L |

- - - — 9@& - - —

Figure 1. Existing continuous authentication framework for behavioral biometrics.
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3.2. The Proposed RL Framework

To begin with reinforcement Learning, we formulated our problem in reinforcement
learning (RL) mathematically in MDP [24]. The mathematical framework known as the
Markov decision process is the foundation of any RL to model sequential decision-making
problems. It consists of various states, actions, and rewards, and some rules for transitioning
between states based on the actions taken. In the context of behavioral biometrics, MDP
(in Figure 2) can be used to model the process of authenticating a user depending on their
keystroke dynamics. The states in the MDP could represent different observations of the
user’s keystrokes, such as the timing between two subsequent key presses, the duration
of time between of each key press, or the sequences of characters typed. The actions in
the MDP could represent different authentication decisions, such as allowing access or
denying access [27]. And the rewards in the MDP could represent the level of confidence in
the authentication decision, with higher rewards assigned to more confident decisions and
lower rewards assigned to less confident decisions.

AGENT
( ———————— > (Authentication — — — — — — — — \
—————— > System)

STATE (St)
Continuous
capturing
combination of
different patterns

|
|
|
|
|
| _|R2: Negative for incorrect user identification A2: Deny Access
|
|
|
|
|

777777 ENVIRONMENT

|

|

|

I .
REWARD (RY): | _IACTON (A0
R1: Positive for correct user identification —]A1: Allow Access

|

|

|

|

|

|

|

(Behavioral Biometrics) « — — — — —

Figure 2. Proposed MDP diagram for continuous authentication using behavioral biometrics.

The proposed reinforcement learning (RL)-based model (shown in Figure 3) for
keystroke dynamics that provide continuous authentication would involve the follow-
ing main elements which is in continuous interaction with agent unlike the traditional
framework in Figure 1:

1. Agent: The agent is the system that makes decisions based on the keystroke data.
The agent is responsible for analyzing the user’s keystroke patterns and determining
whether the user is who they claim to be.

2. Reward: The reward is a scalar value that the agent receives after each step of the
authentication process. A positive reward is given when the agent correctly identifies
the user, while a negative reward is given when the agent fails to identify the user.
The agent attempts to maximize the long-term reward accumulated.

3. Action: This is the decision that the agent makes, based on the keystroke data. In this
case, the action would be to either authenticate or reject the user.

4. Environment: This is the overall system that the agent interacts with. It includes the
user’s keystroke data, the decision-making process of the agent, and the feedback
from the system.

5. State: The state represents the current typing pattern of a user, including factors such
as typing speed, rhythm, and key press duration. The state could also include other
features such as mouse movement, website activity, and other behavioral data that
can be used to identify the user [28]. The state is an essential component of the MDP
because it is used to inform the decision-making process of the agent and determine
which action to take. This process is dependent on the present/current state and the
rewards it receives for different actions.

The below image (Figure 3) shows how a reinforcement learning model integrated to
develop a learning-based user authentication system analyzing keystroke dynamics.
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Figure 3. Proposed RL framework.

4. Methodology

By combining the two approaches of reinforcement learning and behavioral biometrics,

we have developed a framework as shown in Figure 3 from scratch that can continuously
learn and adapt to changing user behavior and environmental conditions, providing reliable
user authentication. We will discuss the various components of the proposed methodology,
including data collection, feature extraction, reinforcement learning algorithms, and eval-
uation metrics [29]. Additionally, we will provide insights into the implementation and
experimental results of our proposed method.

The following is a high-level overview of our approach to construct the reinforcement

learning (RL)-based user authentication system using keystroke dynamics. The detailed
construction is described in the subsections that fellow.

1.

Collect a dataset of keystroke dynamics data from several users. This should include
a variety of different typing patterns, such as the time difference between key presses
and the duration of time of each key press. In our case, we used the data from
IEEE dataport website called BB-MA DATASET [30], as the data collection is a time-
consuming task. As an addition, we collected our own data of keystrokes and trained
the agent for testing purposes.

Preprocess the data to extract relevant features that can be used as inputs to the
reinforcement learning algorithm. This might include mean, median, or the standard
deviation of various keystroke features, and other statistical measures.

Define the reinforcement learning (RL) environment. This could be a simple decision
tree, where the agent must choose between two actions: “accept” or “reject” the user’s
authentication request.

Define the reward function. This will determine what the agent is trying to optimize
for. In the case of user authentication, the reward could be dependent on the accuracy
of the agent’s predictions. For example, the agent could receive a high reward for
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correctly accepting an authentic user and a low reward for incorrectly rejecting an
authentic user.

Collect
Information :
Generic user

Profile

Collect data for
Training Model:
Pre-exit
Information

Failed Verification | |

5. Train the agent using the collected keystroke dynamics data and the defined reward
function. This could be performed using a variety of reinforcement learning (RL)
algorithms, such as Q-learning or SARSA.

6. Test the trained agent on a separate dataset to evaluate its performance.
Figure 4 shows the flow of data and how the user would be authenticated at each step:
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