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Abstract: This paper describes an integrated monitoring system designed for individualized envi-
ronmental risk assessment and management in the workplace. The system incorporates monitoring
devices that measure dust, noise, ultraviolet radiation, illuminance, temperature, humidity, and
flammable gases. Comprising monitoring devices, a server-based web application for employers,
and a mobile application for workers, the system integrates the registration of workers’ health his-
tories, such as common diseases and symptoms related to the monitored agents, and a web-based
recommendation system. The recommendation system application uses classifiers to decide the
risk/no risk per sensor and crosses this information with fixed rules to define recommendations. The
system generates actionable alerts for companies to improve decision-making regarding professional
activities and long-term safety planning by analyzing health information through fixed rules and
exposure data through machine learning algorithms. As the system must handle sensitive data, data
privacy is addressed in communication and data storage. The study provides test results that evalu-
ate the performance of different machine learning models in building an effective recommendation
system. Since it was not possible to find public datasets with all the sensor data needed to train
artificial intelligence models, it was necessary to build a data generator for this work. By proposing
an approach that focuses on individualized environmental risk assessment and management, consid-
ering workers’ health histories, this work is expected to contribute to enhancing occupational safety
through computational technologies in the Industry 5.0 approach.

Keywords: occupational safety; environmental risk assessment; ai-driven monitoring; industry 5.0;
personalized management; health history registration; monitoring devices; environmental parameters;
decision-making; long-term safety planning

1. Introduction

Annually, approximately 2 million people die because of work-related causes world-
wide [1]. According to Ncube and Kanda [2], the incidence of fatalities in workplaces varies
considerably between developed and developing countries. In low- and middle-income
countries, the lack of adequate Occupational Safety and Health (OSH) services and legisla-
tion contributes to the high rate of occupational diseases and accidents. The highest death
rates because of work occur in agriculture, forestry, mining, and construction, particularly
in companies with less than 50 employees [3].
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Occupational diseases are characterized by a causal link between the damage to the
worker’s health and work-related exposures, such as physical, chemical, and biological
agents. Occupational diseases and accidents can cause negative impacts on the quality of
life of workers and their families, impact the productivity, competitiveness, and reputation
of companies, and increase public costs [4,5].

Regarding approaches to improving OSH services, the concepts of Industry 4.0 and
Industry 5.0 are currently being discussed. Industry 4.0 defines a new level of organiza-
tion and control over the entire value chain and emphasises automation, innovation, data
collection, cyber-physics systems, processes, and people to achieve efficiency, flexibility,
and continuous improvement [6,7]. Industry 5.0, in turn, is a concept that reinforces the
contribution of industry to society, aiming to apply research and innovative technologies
to achieve human-centric and sustainable manufacturing systems. In this approach, the
welfare of workers shall be at the center of the manufacturing process [8].

Concerning technologies, the terms Internet of Things (IoT), Industrial Internet of
Things (IIoT), and machine learning (ML) are widely used nowadays. IoT refers to a
set of technologies to provide the integration of everyday objects with the Internet and
technologies that facilitate devices communicating with each other and with the cloud. IIoT
stands for Industrial Internet of Things and refers to the use of IoT technologies to connect
machines, equipment, and sensors in industrial applications. ML, in turn, is an area of
artificial intelligence that uses data and statistical methods to train algorithms to make
classifications or predictions and gradually improve their accuracy. These technologies are
essential to supporting Industry 4.0 and 5.0 [6,9].

IoT, IIoT, and ML can be applied in workplaces to monitor workers’ movements to
prevent accidents, to identify harmful situations and their exposure to harmful agents, and
to check the use of Personal Protective Equipment (PPE) [6,9]. Regarding recent research
covering these topics, in the study conducted by Lemos, Gaspar, and Lima [10], a review of
technologies and trends regarding OSH in Industry 4.0 was presented. A survey of Industry
4.0-compliant solutions for OSH management is shown by Jiang, Bakker, and Bartolo [11].
A systematic review of the application of immersive technologies for OSH management
in the construction industry was conducted by Babalola et al. [12]. Examples of research
involving smart PPE and monitoring systems are presented in several studies [13–19]. The
big data collected by these systems can be analyzed to help companies both immediately
identify dangerous conditions in workplaces and improve long-term decision-making
in OSH.

This paper proposes a modular monitoring system to perform personalized en-
vironmental risk assessment. The system measures dust, noise, ultraviolet radiation,
illuminance, temperature, and humidity and checks for the presence of flammable
gases–liquefied petroleum gas (LPG), propane, hydrogen, butane, methane, and carbon
monoxide. The proposed solution is composed of three parts; individual monitoring
devices, a server, and a mobile application. The server hosts applications to process
measurements and register employee’s personal data, including diseases and symptoms
related to the monitored quantities.

This research work presents tests covering the performance of different ML models
considered to build a web-based recommendation system responsible for generating
accurate alerts considering both the outputs of the ML, which analyzes each worker’s
measurements, and fixed rules for different diseases and symptoms. The set of dis-
eases, symptoms, and rules was defined considering recent research along with the
collaboration of two physicians. This approach is intended to help companies in the
decision-making process, such as workers’ activity planning to avoid or minimize ex-
posure to certain agents and directing OSH actions. In the next stage of the study, the
authors plan to test the system in a real work environment, in civil construction and
building maintenance activities.
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2. Materials and Methods

The framework is composed of the following components:

1. Monitoring devices: They must be clipped to the employees’ clothes to collect mea-
surements and send them encrypted to the server that runs in the cloud.

2. Server: Collects and processes data received from the monitoring devices. It hosts
a web application to be used by companies to register employees and provide their
health information regarding common diseases and symptoms related to the mon-
itored quantities. This information is analyzed to generate alerts for the company,
aiming to protect workers’ health through a preventative approach. The entire history
of the employee in the company regarding all the positions held is also shown by the
referred web application, and a second web application shows graphs with workers’
exposure data.

3. Mobile application: It can be used by workers to check their exposure data.

These components allow the system presented in this paper to provide continuous
monitoring of worker exposure data, along with the assessment of health history, to
help companies guide internal programs and decision-making in OSH. The system was
previously described in [20,21], where initial tests regarding the monitoring device and
communication with the server were conducted and where tests focused on verifying the
functionalities of the web interface for employee registration were presented, especially
regarding the provision of health information and the generation of corresponding alerts
considering fixed rules for each health condition. The alerts generated did not use artificial
intelligence in that stage. The components of the system are described at the next sections.

2.1. Monitoring Device

The monitoring device is composed of a microcontroller ESP32, battery, light emitting
diodes (LEDs), GUVA-S12SD ultraviolet radiation sensor [22], KY-038 noise sensor [23],
Light Dependent Resistor (LDR) [24], DHT11 temperature and humidity sensor [25], MQ-2
flammable gases sensor [26], and a Shinyei PPD42NS dust sensor [27]. The dimensions of
the monitoring device are 9.5 × 7.0 × 4.0 cm3, and its weight is 250 g. Sensor specifications
are shown in Table 1.

Table 1. Sensor specifications and environmental parameters.

Sensor Specifications

DHT 11 (humidity and temperature)

Voltage: 3–5 VDC
Humidity range: 20 to 90% relative humidity

Temperature range: 0◦ to 50 ◦C
Dimensions: 23 × 12 × 5 mm3

GUVA-S12SD (UV)
Voltage: 2.5–5 V

UV wave size: 240–370 nm
Dimensions: 11 × 27 mm

KY-038 (noise)
Voltage: 4–6 VDC

Frequency: 50 Hz to 20 kHz
Dimensions: 37 × 15 × 13.7 mm3

LDR (illuminance)
Voltage: up to 150 VDC

Spectrum: 540 nm
Dimensions: diameter: 5 mm, length: 32 mm

MQ-2 (gas)
Voltage: 5 V

Concentration detected: 300–10,000 ppm
Dimensions: 32 × 20 × 15 mm3

Shinyei PPD42NS (dust)

Voltage: 4.75~5.75 VDC
Detecting the particle diameter > 1 µm

Detectable concentration: 0–28,000 particles/m3

Dimensions: 45 × 59 × 22 mm3



Computers 2024, 13, 120 4 of 21

The embedded application runs on the ESP32. Measurements are performed every ten
minutes for almost all quantities, except for the concentration of flammable gases, which is
checked every minute because when their volume is dangerous, the worker must leave the
building immediately. The routines to process each monitored quantity and their limits are
explained below.

Illuminance: The resistance of the LDR decreases as the illuminance increases. The
ESP32 analog input pin converts the voltage (between 0 and 3.3 V) into an integer value
between 0 and 4095. The embedded application classifies values as follows: less than 40
“dark” (level 1); 40 to 799 “dim” (level 2); 799 to 1999 “light” (level 3); 2000 to 3199 “bright”
(level 4); greater than 3200 “very bright” (level 5) [24,28,29]. In various workplaces, such
as construction sites, the workers are exposed to abrupt variations in illuminance, which
can lead to accidents, for example, because of “temporary blindness” [30]. The ML model
will identify abrupt changes in illumination, and based on this information, it is possible to
generate alerts and suggestions to employers.

Temperature and humidity: An alarm is triggered, and a yellow LED is turned on
when temperatures are lower than 10 ◦C or greater than 30 ◦C, as well as when the air’s
relative humidity is under 50% or above 70%. The alarm indicates that the worker must
take precautions to protect his or her health, such as drinking water and staying in the
shade on hot days. This approach was adopted because performance measurements by the
standard [31] require expensive hardware.

• Dust: The limit is 1,415,000 particles/m3 [32].
• Noise: The limit is 85 dBA [33].
• UV radiation is measured in Standard Erythema Dose (SED). SED is checked every ten

minutes, and the total amount per day must not exceed 1.3. So, the sum is registered
in a file in the ESP32 [34].

• Flammable gases: The limit is 1000 parts per million (PPM) [35].

The red LED is turned on when dust, noise, or UV radiation exceeds the referred limits.
The blue LED is turned on when the gas concentration represents a risk and indicates that
the worker must leave the building immediately.

Figure 1 shows the monitoring device assembled on a Printed Circuit Board (PCB) and
Figure 2 shows the sensors.
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Monitoring devices communicate with the server using Wi-Fi and Message Queuing
Telemetry Transport (MQTT) [36]. MQTT communication is secured by Transport Layer
Security with a Pre-Shared Key (TLS-PSK) [37]. 256-bit long keys are shared between each
device and the MQTT broker. MQTT topics are composed of the device ID together with
the name of the monitored quantity, such as “6068/dust”. To improve data privacy, at
the employee registration stage, unique numeric identifiers are associated with unique
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device identifiers. This association is useful for applications running on the server and
preserves sensitive information such as names and document numbers. Therefore, if the
system were used daily in a real work environment, workers’ data would be stored and
managed separately under company policy, which must follow local data protection law.
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The next section presents details regarding applications running on the server.

2.2. Server Overview

The server runs on a Virtual Private Server (VPS) provided by a web hosting company.
The VPS runs the Ubuntu Server 20.04 operating system [38] and has 8 GB of RAM, 2 virtual
CPUs, 100 GB of disk space, and 2 TB of bandwidth. The server runs Mosquitto MQTT
broker [39] to handle the measurements sent by the monitoring devices, Telegraf MQTT
client [40] to write the measurements in the InfluxDB time-series database [41], Grafana [42]
to read InfluxDB and show graphics with exposure data, and MongoDB [43] to store
employee information. A web application allows companies to register employees and
associate them with monitoring devices, display the list of monitoring devices and the IDs
of the employees who use them, display the current activity and the history of activities
(if any) performed by a person in the company, and update employee information. This
information is stored in MongoDB.

The web application provides a webpage on which a link to Grafana and the alerts
for each employee can be found. This information is generated considering the health
information stored during employee registration and can be updated anytime by the
company. The alerts will be created both with fixed rules regarding health information and
an ML algorithm to analyze the measurements stored in InfluxDB.

The server also hosts a mobile application backend. This application is intended for
workers to check their daily exposures using a simple interface that is composed of a
homepage that shows buttons to access the summary of the last 24 h for all the monitored
quantities. It is possible to check the data history for 7 and 30 days as well. The application
also provides information about all the monitored quantities.
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2.3. Recommendation System

The recommendation system web application uses classifiers to decide the risk/no risk
per sensor and crosses this information with fixed rules to define recommendations. The
fixed rules list the agents monitored by the system, pre-diagnosed diseases, and symptoms
that can be worsened by exposure to such agents.

Regarding disease and symptom history, two lists were prepared considering the
quantities measured by the monitoring devices (temperature, humidity, dust, noise, and
UV radiation). The volume of flammable gases was not considered because it is monitored,
aiming to avoid accidents by indicating through the alarm that the worker must leave the
place when the volume is dangerous. The variation in illuminance was also not treated in
this case because it is related to occupational accidents.

The first list presents the common pre-diagnosed diseases that can be worsened by
exposure to the monitored agents. The second one presents common symptoms that may
result from those exposures or can be worsened by them. When registering a worker, only
diseases that have been diagnosed by a physician should be marked, with or without
symptoms, and in the list of symptoms only the persistent ones. To create the lists, appro-
priate literature was consulted, together with the collaboration of two physicians. These
relationships are shown in Table 2.

The health data provided during employee registration can be updated by the em-
ployer at any time. The alerts are shown in the web application on the webpage “Exposure
data and alerts” and when the health information is updated, the alert is modified. The
general format of an alert is the following:

Table 2. Agents, pre-diagnosed diseases, and symptoms.

Agents Pre-Diagnosed Diseases Symptoms

Cold [44–47]

Asthma
Hypertension

Rheumatic diseases
Spinal disorders

Respiratory diseases
Previous allergic diseases and reactions

Chest pain
Cough

Dyspnea (shortness of breath)
Headache

Hemoptysis (blood cough)
Skin lesions

Skin rash
Weight loss

Neck, low back pain, joint pain

Dust [45,48,49]

Asthma
Lung cancer

Respiratory diseases
Previous tuberculosis infection

Smoker

Chest pain
Cough

Dyspnea (shortness of breath)
Fever

Hemoptysis (blood cough)
Weight loss

Heat [50,51]

Diabetes
Heart disease
Hypertension
Hypotension

Kidney disease

Chest pain
Dyspnea (shortness of breath)

Fainting (syncope)
Headache

Increased thirst
Increased urinary volume

Weight loss

High humidity [45,52,53]

Asthma
Diabetes

Respiratory diseases
Previous allergic diseases and reactions

Chest pain
Cough

Dyspnea (shortness of breath)
Hemoptysis (blood cough)

Increased thirst
Increased urinary volume

Weight loss
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Table 2. Cont.

Agents Pre-Diagnosed Diseases Symptoms

Low humidity [53–55]
Asthma

Respiratory diseases
Previous allergic diseases and reactions

Chest pain
Cough

Dyspnea (shortness of breath)
Hemoptysis (blood cough)

Skin lesions
Skin rash

Noise [46,56,57]

Diabetes type 2
Hearing disorders

Hypertension
Smoker

Difficulty understanding conversation in situations with
background noise

Feeling that the ears are plugged up
Speech or other sounds muffled after exposure to loud noise

Transient tinnitus

UV radiation [58–60]

Eye disease
Heart disease
Skin cancer

Skin diseases

Chest pain
Dyspnea (shortness of breath)

History of resection of skin lesions
Skin lesions

Skin rash

“In respect to diseases and symptoms, this person has: disease 1, disease 2, disease
n. Due to reported diseases and symptoms, it is advised to avoid or reduce exposure to
the following agents: agent 1, agent 2, agent n. Including other companies, the worker has
performed activities of the same type and has been exposed to the same agents for n years.
Attention to health is recommended”.

To generate alerts regarding the monitored agents and related occupational diseases
or accidents, the ML module will analyze measurements from all sensors except gas. As
previously mentioned, when the gas concentration is high, an alarm is triggered by the
monitoring device to indicate that the worker must leave the building immediately.

Regarding the other quantities, for each measurement classified as a risk, an entry is
inserted in a table that indicates the occupational diseases related to the monitored agent.
This table will be shown in the web interface, together with the alerts explained above. All
agents and related occupational diseases and accidents are shown in Table 3.

Regarding the number of lines (agents), the table may be different for each worker
or even for the same worker at different moments, as exposures to the agents increase
or decrease.

Table 3. Agents and related occupational diseases and accidents.

Agents with Risky Exposures Related Occupational Diseases and Accidents

Cold [44–47] Worsening of respiratory diseases
Increase in musculoskeletal disorders

Dust [45,48,49] Pulmonary fibrosis (asbestosis)
Lung cancer (due to inhalation of asbestos dust)

Heat [50,51]

Dehydration (favours the occurrence of kidney problems)
Heart attack

Stroke
Dryness of the nasal mucosa (favours the emergence of

respiratory infections)

High humidity [45,52,53] Worsening of respiratory diseases

Low humidity [53–55] Worsening of respiratory diseases

Noise [46,56,57] Hearing loss
Hypertension
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Table 3. Cont.

Agents with Risky Exposures Related Occupational Diseases and Accidents

UV radiation [58–60]

Dehydration
Skin lesions
Heat stroke

Burns
Skin cancer

Photosensitization
Erythema

Acute inflammatory eye reactions
Increased risk of cataracts

Suppression of the immune system (favours the occurrence of
infections and cancer)

Illuminance [28] Abrupt variations in illuminance can cause “temporary
blindness” and it can lead to accidents

This is a preventive approach in which the alerts are intended to assist OSH pro-
fessionals/physicians in decision-making and to define when it is necessary to conduct
health examinations, for example. The information provided by the system can be used to
guide supervisors to redesign workflows aiming to minimize exposure to certain agents
for a worker. The outputs of the recommendation system can also support internal health
awareness campaigns in companies.

The ML module that will compose the recommendation system is presented in the
next section.

2.4. Machine Learning Module

For the proposed system, the problem consists of applying ML to analyze the readings
from different sensors–UV radiation, illuminance level, temperature, humidity, dust, and
noise and identify whether the values read represent a risk to the worker’s health.

It was not possible to find on the Internet datasets with all the sensor data needed
for training an artificial intelligence model, so it was essential to build a data generator
for this work. For all the quantities, we considered both the ranges that can be read by
the monitoring devices, which are dependent on the capabilities of the sensors, and the
exposure limits specified in current regulations. Data was generated to represent both
normal and risky situations.

The behaviour of the ML module is intended to be preventive. It should identify in
advance conditions that may contribute to the worker getting sick and not just conditions
that do not comply with applicable regulations, as this is already done by monitoring
devices/mobile applications and can be verified by employers through the web interface
that integrates the system. For this reason, it will be highlighted below in the description
of the data generation and classification of sensor readings that the established limits are
more restrictive than the current regulations.

2.4.1. Generation of Training Data

The training data for each quantity was generated as described below:
Dust: The Shinyei PPD42NS can measure from 0 to 28,000,000 particles/m3. The total

particle limit for 8 h of work is 1415 million particles/m3 [30]. This limit is considered
for triggering alarms in the monitoring devices. However, the ML module classifies
measurements above 999,999 as a risk. This approach was used because the sensor can’t
differentiate between several small, agglomerated particles or a slightly larger particle, so
the count provided is an approximation. For this reason, values of 1,000,000 particles/m3,
when routinely obtained, indicate that special attention should be paid to the employee’s
health. In other words, the worker may be exposed to more dust than the sensor indicates.
As explained earlier, the ML module is intended to use a preventive approach.
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Illuminance: As explained earlier, the LDR sensor can determine basic illuminance
changes. Values vary from 1 to 5, from dark to very bright [24,28,29]. Illuminance values
were always generated in pairs (current and next values). If the difference between them is
greater than 2, for example, from bright (4) to dark (1), the behaviour is classified as risky.
Otherwise, the behaviour is classified as not risky.

Noise: The sound sensor can measure up to 90 dB, and the training data was generated
by observing this interval. Measurements equal to or greater than 85 dB were classified
as risky, while readings below this value were classified as not risky. The criteria for data
classification were defined based on Brazilian and European regulations, which are very
similar to noise limits in work environments [31,61,62]. Regarding the noise commonly
found in civil construction activities, according to [63], noise levels at construction sites may
range from 80 to 120 dBA, and construction machines are the primary sources of annoying
noise. So, depending on the activity, it may be very common for construction workers to
exceed the recommended limits.

Temperature and humidity: The sensor can measure temperatures from 0◦ to 50 ◦C
and relative humidity from 20 to 90%. The data were generated considering the average
of the months from January to August 2022 in Porto Alegre, Rio Grande do Sul, Brazil,
obtained from the Brazilian National Institute of Meteorology (INMET) [64]. This location
was chosen because the system will be tested in a real work environment in this region
in the next stage of the project. During the work shift (from 8:00 am to 5:00 pm), random
values are generated for each hour of the day in different ranges. The values generated
for temperature and humidity can vary up to 4 degrees Celsius and 4%, respectively. This
variation aims to reproduce what can happen when a worker frequently moves between
indoors and outdoors. Being outdoors, the worker can alternate between the shadow and
the sun. Different ranges of temperature and humidity were also defined for summer
and winter, with hot and dry summers and cold and humid winters, as often occur in
the region mentioned above. The dataset that represents a risk in the summer is mainly
composed of temperature values that exceed 30 ◦C and percentages of humidity below
50%. In winter, the dataset that represents a risk is mainly composed of temperature values
below 10 degrees Celsius and percentages of humidity that exceed 70%. Even if the ML is
utilized in locations with diverse climates, it is anticipated that there will be no difficulty in
recognizing risky conditions, as the temperature and humidity levels that indicate risk are
precisely specified.

UV radiation: The maximum Standard Erythema Dose (SED) that can be obtained
from the monitoring devices for ten minutes of sun exposure is 1.6, and the daily SED limit
is 1.3. Considering this limit, values were generated from 0 to 1.6 SED. The ML module
classifies values greater than 0.5 for ten minutes of sun exposure as risky because, with
these environmental conditions, 30 min of work is sufficient for workers to exceed their
maximum daily exposures according to WHO recommendations [32].

The artificially generated values are within the ranges measured by the sensors. When
the system runs completely, with sensor readings being carried out by monitoring de-
vices, if any sensor presents an error in its reading and provides a value outside the
expected range, this value will be discarded by the embedded application that runs on the
monitoring device.

Table 4 summarizes the criteria for defining the Risk class in the reading of each sensor.
Based on these criteria, a Python script was written to populate the dataset for each

sensor. As emphasized above, to classify data as risky or normal, current regulations
were considered. However, the approach adopted has a more preventive nature; that is, a
measurement can be classified as risky when its value is close to the limit recommended by
applicable standards.

To simplify the tests, the data generated for each type of sensor persisted in a Post-
greSQL relational database [65], with a schema being structured for each sensor type. Each
schema presents the same data structure, making information retrieval standard for the
model training stage, regardless of the type of sensor. As it was not possible to identify in
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the literature the class with the highest frequency of occurrence (risk or normal), it was
decided to generate a balanced dataset, maintaining the same number of samples for each
class. Table 5 presents the data from the datasets generated for training the models.

Table 4. Criteria for defining the risk class when reading each sensor.

Sensor Rule Class

Dust Value > 999,999 particles/m3 Risk
Humidity Value < 50% or value > 70% Risk

Temperature Value < 10 ◦C or value > 30 ◦C Risk
Illuminance Difference between two readings > 2 Risk

Noise Value > 84 dB Risk
UV radiation Value > 0.5 SED Risk

Table 5. Dataset structure considering each sensor individually.

Dataset Readings Series Risk Normal

Sensor 1
Train 12,960 2160 1080 1080

Validation 12,960 2160 1080 1080
Test 12,960 2160 1080 1080

Total All 38,880 6480 3240 3240
1 Each sensor has the same structure and total number of records per class. Thus, the dust, humidity, temperature,
illuminance, noise, and UV radiation schemes together add up to a total of 233,280 records.

It was defined that the input data follows the time series pattern, where each series is
composed of 6 sequential sensor readings, carried out at intervals of 10 min between readings.

2.4.2. Problem Categorization and Data Variability

For all sensors, the problem can be categorized as a binary classification problem,
where for a given sequence of sensor reading values (input x), the model should be able to
classify whether the scenario represented by the sequence of Input data falls into one of
two classes: y = {risk, normal}. Furthermore, this problem involves time series, where the
order of the values read matters to solve the problem. In this case, special care is necessary
when using algorithms to prepare batches of data for model training, aiming to preserve
the temporal sequence of the data.

It is also necessary to increase data variability because learning the parameters of a
prediction function and testing it on the same can lead the model to have a perfect score,
but it would fail to predict anything useful on yet-unseen data. This situation is called
overfitting. A solution to this problem is a procedure called cross-validation (CV). A test set
should still be held out for final evaluation, but the validation set is no longer needed when
doing a CV. In the basic approach, called k-fold, the training set is split into k smaller sets.
The following procedure is followed for each of the k “folds”. A model is trained using
k − 1 of the folds as training data, and the resulting model is validated on the remaining
part of the data (i.e., it is used as a test set to compute a performance measure such as
accuracy). The performance measure reported by k-fold cross-validation is then the average
of the values computed in the loop [66].

When generating the data for this work, a time series was defined as the sequence
of readings within a 1-h window, carried out every 10 min. To increase data variability
during model training, k-fold = 10 cross-validation techniques adapted for the problem
considering the time series were used, in which the data is divided into batches of series
instead of batches of values. In other words, a fold is a set of series, each containing its own
sequence of 6 readings that represent an input value x for the model.

While defining criteria for the risky and normal classes for each sensor, it was found
that for most sensors, testing whether the value falls within a range of values is sufficient to
determine which class the sequence of readings represents. Linear and logistic regression
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models perform well for identifying relationships in time series, as well as tree-based
models for problems whose rules resemble if/else chains for class definition [67]. For these
reasons, the following strategy was adopted:

Instead of generating a multiclass model, which tries to learn all the rules for all
sensors, it was decided to create expert models for each type of sensor. As shown by Souza
et al. [68], this technique has presented satisfactory results for complex problems, as it
reduces the complexity, computational cost, and training time of the generated model since
each expert model will have to learn a smaller set of patterns.

With the data generated to develop the models, the feature engineering stage was
covered via domain knowledge, making it possible to start testing with supervised ML
techniques through shallow learning models. The nature of the data presented indicates the
use of models based on decision trees. Therefore, it was decided to explore these models,
followed by linear and statistical models, to compare the techniques with the best results.
The ML techniques applied in this work are explained in the next section.

2.4.3. Machine Learning Techniques

Shallow learning refers to the use of relatively simple models with a small number
of layers or processing stages. In general, these models have a limited capacity to learn
complex patterns from data, and they are often applied when the data has relatively simple
patterns and the relationships between features and outcomes are straightforward. There is
a vast set of shallow learning techniques, with methods based on Support Vector Machine
(SVM) optimization, search (regressions and decision trees), and probabilistic (methods
based on Bayes’ theorem) widely used in tasks involving data classification. According to
Murphy [67], the main algorithms for each one of the methods are:

• SVM: support vector machines (SVMs) are a set of supervised learning methods used
for classification, regression, and outliers’ detection. The kernel method seeks to
find a hyperplane that best divides the data points according to the target classes.
The algorithm maps the training data to a new high-dimensional representation and
calculates the maximum distance between the generated hyperplanes and the closest
data points for each class. In this work, two variations of the Kernel method were used;
SVC (Support Vector Classification) and LinearSVC. The main differences between
LinearSVC and SVC lie in the loss function used by default and in the handling of
intercept regularization between these two implementations.

• Regression: this is a predictive method that analyzes the relationship between depen-
dent (target) and independent (predictor) variables. Different algorithms are used
depending on the type of target variable and/or the relationship between variables
(linear or non-linear). Among them, Linear Regression, Logistics, and Bayesian stand
out. In this work, the logistic regression algorithm and its variation with the L2 Ridge
Classifier regularization function were tested, as well as the SGD Classifier techniques,
which implement a plain stochastic gradient descent learning routine that supports dif-
ferent loss functions and penalties for classification. The model it fits can be controlled
with the loss parameter. By default, it fits a linear SVM.

• Decision Trees: this is a hierarchical model capable of guiding decision-making about
which class a given instance belongs to, resulting in a unique path from the root node
to the leaf (target class). The tree model is obtained from the training data using a
divide-and-conquer strategy, applied hierarchically. In this category of algorithms,
Random Forest and Gradient Boosting Machines currently stand out. In this work,
the decision tree-based algorithms Decision Tree Classifier and Extra Tree Classifier
were tested.

• Ensemble: these methods combine the predictions of several base estimators built
with a given learning algorithm to improve generalizability and robustness over a
single estimator. The premise is that each model contributes a different hypothesis
space, representation language, and hypothesis evaluation function. The hypothesis
space generated by the final model considers optima that are closer to the global ones
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and reduces the computational cost of training a single model for a complex task.
Two widely used ensemble methods are gradient-boosted trees and random forests.
More generally, ensemble models can be applied to any base learner beyond trees,
in averaging methods such as Bagging methods, model stacking, or Voting, or in
boosting, such as AdaBoost. In this work, the models Random Forest Classifier, Ada
Boost Classifier, Bagging Classifier, Gradient Boosting Classifier, and XGB Classifier
(Extreme Gradient Boosting) were tested.

• Statistical models: predictive algorithms based on statistical methods, divided into
(1) generative, whose statistical model used is the joint probability distribution, and
(2) discriminative, whose statistical model used is the conditional probability. In this
work, tests were carried out using two variations of the Quadratic Discriminant Anal-
ysis (QDA) and Linear Discriminant Analysis (LDA) discriminative models. These
models differ in terms of the function used to determine the decision surface that
divides the data according to classes, with the first function being quadratic and
the second being linear, respectively. If the problem data space presents covariance
variation, the QDA model tends to present better results due to the use of a quadratic
function to divide the space for each class. In this work, a widely known statistical
generative classification model called Naive Bayes (Gaussian NB–a simplified imple-
mentation that considers normal distribution) was also tested. This method is part of
a family of simple “probabilistic classifiers” based on applying Bayes’ theorem with
strong independence assumptions between the features.

• Clustering: there are many ways to define classification models, including whether
the model has a fixed number of parameters or whether the number of parameters
increases with the amount of training data. In the first case, the models are called
parametric, and in the second case, non-parametric. Parametric models have the
advantage of often being faster to use but have the disadvantage of making stronger
assumptions about the nature of data distributions. Non-parametric models are more
flexible but often computationally intractable for large datasets. In this work, a simple
and well-known parametric model, K Nearest Neighbour (KNN), was tested. This
model simply searches for K points in the training set that are closest to the input point,
counts how many members of each class are in this set, and returns this empirical
fraction as an estimate of the sample’s probability of belonging to the class.

2.4.4. Evaluation Metrics for Machine Learning Models

Methods for evaluating model performance allow comparing the impact of using
different algorithms for the same task or even evaluating different parameterizations
considering the same algorithm. As the models mentioned above are binary classification
models, F1-score, precision, recall, and AUC and ROC curves were selected for qualitative
analysis of the results of each model. These metrics are described below by [69].

• Precision: gives the proportion of correct positive predictions. It considers false
positives, which are cases that were incorrectly flagged for inclusion.

• Recall: measures the proportion of actual positives that were predicted correctly. It
considers false negatives, which are cases that should have been flagged for inclusion
but were not.

• F1-score: combines precision and recall in a single number.
• ROC curve: the Receiver Operating Characteristic curve is a two-dimensional curve

with the True Positive Rate on the vertical axis and False Positive Rate on the
horizontal axis.

• AUC: the area under the ROC curve (AUC) is a global measure of the ability of a
model to distinguish between classes, for example, to differentiate whether a given
condition is present or not. An AUC of 0.5 represents a model without this ability,
while an AUC of 1.0 represents a model with perfect discrimination ability.
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2.4.5. Training Methods

For each sensor individually, the following sequence of actions was adopted:

(1) Training pipeline generation, where all desired models are loaded.
(2) Each model is trained and validated using the respective sets.
(3) Use of the k-fold = 10 cross-validation technique adapted for the problem considering

time series, in which the data is divided into batches of series instead of batches
of values.

(4) Collecting metrics during the training phase.
(5) For each generated model, testing and collecting metrics on the test dataset.
(6) For each algorithm, 10 models were generated, one for each test round.
(7) The results were tabulated in terms of average performance, considering the perfor-

mance of each of the 10 models for each technique when classifying the same set
of tests.

(8) For the models that present the best average according to the F1-measure criterion
(a metric that represents the balance between recall and precision), the model with
the best performance was selected among the 10. The recall metric was chosen as a
tiebreaker criterion, as it is considered that the nature of this problem is that it is better
to issue a false risk alert than to fail to alert a possible risk.

The algorithm that was developed to generate the synthetic data, the machine
learning models, and the entire quantitative-qualitative analysis are available on the
project’s Github, available at: https://github.com/borbavanessa/osh_ia/tree/main/
(accessed on 6 May 2024).

3. Results

In this study, the tests aim to check the performance of the ML models for each sensor,
and the alerts generated by the recommendation system that was built with the rules shown
in Table 2 (agents, pre-diagnosed diseases, and symptoms) and Table 3 (agents that can
cause harm and related occupational diseases).

Table 6 summarizes the performance between training and testing sets. It is possible to
note that the resulting models do not present overfitting (super-adjustment to the training
data), as they presented similar performance between validation and testing.

Table 6. Performance analysis per sensor.

Sensor Dataset F1 AUC Notes

UV radiation
Train 1 1 All models presented a perfect performance in both the training and testing sets.

Test 1 1

Noise

Train 0.99 and 1 0.99 and 1
The models PassiveAggressive, RidgeClassifier, LogisticRegression, SGDClassifier,

KNeighbors, LinearSVC, SVC, and LinearDiscriminantAnalysis presented 99%, while
the others presented 100%.

Test 0.99 and 1 0.99 and 1
The models ExtraTreeClassifier, Kneighbors, LinearDiscriminantAnalysis, LinearSVC,
PassiveAggressive, RidgeClassifier, and SGDClassifier presented 99%, while the other

models presented 100%.

Illuminance
Train 0 to 1 0 to 1

Large variation in performance, from 0 to 100%. The best models were: XGBRegressor,
Kneighbors, DecisionTree, ExtraTree, SVC, BaggingClassifier, RandomForest, and

GradientBoosting.

Test 0 to 1 0 to 1

Humidity and
temperature

Train 0 to 1 0 to 1 Only RandomForest achieved 100%. XGBRegressor, DecisionTree, BaggingClassifier,
and GradientBoosting presented with 99%.

Test <1 <1 XGBRegressor, BaggingClassifier, and RandomForest had 99%.

Dust
Train 0 to 1 0 to 1

100% for XGBRegressor, RidgeClassifer, Kneighbors, DecisionTree, ExtraTree, SVC,
GaussianNB, AdaBoost, BaggingClassifier, RandomForest, GradientBoosting, and

QuadraticDiscriminant.

Test 0 to 1 0 to 1

https://github.com/borbavanessa/osh_ia/tree/main/
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The tests showed that more than one algorithm presented maximum performance
for the same sensor. But for all sensors, the RandomForest model presented maximum
performance. Furthermore, RandomForest (an ensemble of trees) is a model with good
explicability. For these reasons, it was selected to compose the classification solution for
this work.

The complete performance analysis of the models per sensor is shown in Tables A1
and A2.

Figures 3–5 display the graphs with the average performance (resulting from the
10 training rounds) in terms of Precision (P), Recall (R), F-measure (F1), and ROC-AUC
curve for each model considering Dust, illuminance, humidity, and temperature sensors.

The ROC curves are available on the project’s Github, accessible at: https://
github.com/borbavanessa/osh_ia/tree/main/ia_model/experiment_models (accessed
on 6 May 2024).

Only the comparative graphs for the dust, illuminance, and humidity/temperature
sensors are being displayed, whose performance between the models showed variation
in the results. The other sensors presented results that achieved, on average, 100% perfor-
mance for all metrics, and for this reason, they are not displayed.
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4. Discussion

The difference between the results was already expected since the illuminance, humid-
ity, and temperature sensors present more complex rules for defining the risk class than the
other sensors. As previously explained, illuminance is measured on a scale of 1 (dark) to
5 (very bright). The behaviour is classified as risky if the difference between two sensor
readings is greater than 2.

Regarding temperature and humidity, the results obtained with the various ML models
were expected to vary because they were related to one another, as humidity tends to drop
as temperature increases. In the datasets, different ranges of temperature and humidity
were defined for summer and winter, with hot and dry summers and cold and humid
winters, as often occurs in the region where the tests in a real work environment will be
conducted in the next stage of this work.

Concerning the variation in the results for the dust sensor, the rule that defines the risk
class itself is not complex, but the measurements present in the datasets have high variation
(from 0 to 28,000,000 particles/m3, with values greater than 999,999 being classified as risk).
In this case, the extreme values occur because of natural variability, and it is known that
they have a negative impact on ML models [70]. These effects would be more significant if
multiclass models were chosen instead of expert models for each sensor.

The excellent performance of the models can be justified by the strategy adopted for
data pre-processing, which includes:

(1) Use of domain knowledge to format and simplify data input to the models (feature
engineering stage).

(2) The selection of models and care taken with techniques to diversify training,
considering their performance over time.

(3) The decision to simplify the architecture by generating expert models for each
sensor instead of a multiclass model that tries to learn very different rules based on very
different and uncorrelated numeric input ranges (independent events, for example, the
value measured by the dust sensor does not interfere with noise sensor measurement).

The feature engineering stage can be supplied by deep learning models, but shallow
learning models were chosen due to the complexity of evaluating and understanding deep
learning models, accompanied by the current lack of sufficient volume of data to allow
adequate training for this type of model. In addition, deep learning models are called black
box models because the rules they create to decide on a class are difficult to interpret.

As mentioned in Section 3, Random Forest presented the best performance for all
sensors, and for this reason, this model was selected to compose the classification solution
for the proposed system.

Regarding the other components of the proposed system, considering the possibility
of scaling the system for daily use in enterprises, the following points must be highlighted:

• There are more accurate and higher-cost sensor options on the market that can be
considered for building more robust monitoring devices. This approach was not used
in the present work because the choice of more expensive components would make
the project unfeasible, considering that it was necessary to produce devices to be
tested with a group of workers. However, to scale the system for everyday use in an
enterprise, the sensors would need to be reevaluated, and the devices may need to use
more precise sensors.

• The system can be easily extended to cover other agents, diseases, and symptoms by
adding new sensors to the monitoring devices, adapting the embedded application,
inserting such new data, and training the models related to the respective sensors.

• The monitoring devices for everyday use in an enterprise shall undergo tests to
ensure compatibility with applicable standards. For commercial use, it would also
be necessary to purchase paid versions of some of the same software used to build
the prototype.
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• The dimensions of the monitoring device are 9.5 × 7.0 × 4.0 cm, and its weight is
250 g. It is expected that the use of the device will not significantly interfere with the
workers’ routine and comfort.

• Tests in a real work environment will be conducted in the next stage of this work.
During the tests, workers must use the device attached to their clothing throughout
the work shift. The usability of the mobile application, monitoring device design,
possible discomfort arising from its use, and data privacy concerns will be evaluated.
By carrying out these tests, it is expected that other adjustment points will be verified.
As mentioned in Section 2.1, communication between monitoring devices and the
server is encrypted, and the server does not store names and documents. In a company,
it is expected that workers’ data will be stored and managed separately, following
company policy and complying with local data protection laws.

As mentioned earlier, in the next stage of the study the system will be tested in a
real work environment, in civil construction and building maintenance activities. In these
professional activities, workers are frequently exposed to the agents monitored by the
system and others, such as heavy physical exertion [71].

Regarding other possible uses relevant to the proposed system, other activities that
tend to pose very significant risks to workers can be mentioned, such as agriculture and
the food industry. For these scenarios, it would be appropriate to add new sensors and
information about diseases and symptoms. Innovations in this type of industry and the
potential of using IoT have been widely discussed [71–74].

5. Conclusions

This work has presented a monitoring system composed of devices for individual
monitoring of workers’ exposure to harmful agents, a server, and a mobile application.

Our previous work [21] has presented results regarding the provision of workers’
health information with respect to common diseases and symptoms related to the monitored
quantities in the web interface of the system. That information was used to generate alerts,
considering fixed rules for each health condition.

In this work, to choose the ML model to compose the classification solution to analyze
workers’ exposures, tests were conducted with 16 shallow ML models. Binary classification
models specialized in identifying risk/non-risk for each sensor were generated. This
topology reduced the complexity and computation of training and presented satisfactory
results to contribute to the proposed recommendation system. The best results were
obtained with the Random Forest model. Based on the outputs of the ML model, alerts will
be generated considering the diseases that can be caused by the exposures.

The web-based recommendation system that uses ML to continuously analyze worker’s
exposures in conjunction with fixed rules that consider previously diagnosed diseases and
symptoms and generate alerts can help companies in the decision-making process. In the
short term, alerts can help in workers’ activity planning to avoid or minimize exposure
to certain agents. In the long term, alerts can provide support for planning actions to
prevent diseases, and exposure data obtained through continuous monitoring can be used
in additional studies.

The proposed system can be easily extended to cover other agents, diseases, and
symptoms by adding new sensors to the monitoring devices, inserting such new data, and
training the models related to the respective sensors.

In the next step of the project, the entire system will be tested in a real workplace, at
least for one company. At this stage, alerts generated through analysis of exposures using
ML (as shown in Table 3) will also be available on the system’s web interface. For this
purpose, a few devices will be assembled. A group of workers will be asked both to use the
monitoring devices during the entire work shift and to access the mobile application once
daily. The web application will be used by a manager or OSH professional. The participants
should answer questionnaires about the usability of the solution.
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Appendix A

Tables A1 and A2 present the performance analysis of the models per sensor.

Table A1. Performance analysis of the models for UV and humidity and temperature sensors.

Model
UV Humidity

Temperature
P R F1 AUC P R F1 AUC

XGBRegressor 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
LogisticRegression 1.00 1.00 1.00 1.00 0.67 0.77 0.72 0.70

RidgeClassifier 1.00 1.00 1.00 1.00 0.67 0.77 0.72 0.70
AdaBoostClassifier 1.00 1.00 1.00 1.00 0.97 0.95 0.96 0.96

GradientBoostingClassifier 1.00 1.00 1.00 1.00 1.00 0.97 0.99 0.99
SGDClassifier 1.00 1.00 1.00 1.00 0.49 0.44 0.38 0.55

BaggingClassifier 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
DecisionTreeClassifier 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.99

ExtraTreeClassifier 1.00 1.00 1.00 1.00 0.97 0.96 0.96 0.99
RandomForestClassifier 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

GaussianNB 1.00 1.00 1.00 1.00 0.87 0.72 0.79 0.81
LinearDiscriminantAnalysis 1.00 1.00 1.00 1.00 0.67 0.77 0.72 0.70

QuadraticDiscriminantAnalysis 1.00 1.00 1.00 1.00 0.88 0.96 0.92 0.92
LinearSVC 1.00 1.00 1.00 1.00 0.30 0.60 0.40 0.50

SVC 1.00 1.00 1.00 1.00 0.99 0.75 0.85 0.87
KNeighborsClassifier 1.00 1.00 1.00 1.00 1.00 0.93 0.96 0.96

Table A2. Performance analysis of the models for noise, dust, and light sensors.

Model
Noise Dust Light

P R F1 AUC P R F1 AUC P R F1 AUC

XGBRegressor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LogisticRegression 1.00 1.00 1.00 1.00 0.50 1.00 0.67 0.50 0.51 0.50 0.50 0.51

RidgeClassifier 0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.51 0.50 0.50 0.51
AdaBoostClassifier 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 1.00 0.87 0.86

GradientBoostingClassifier 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SGDClassifier 1.00 1.00 1.00 1.00 0.50 1.00 0.67 0.50 0.37 0.65 0.46 0.49

BaggingClassifier 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DecisionTreeClassifier 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

https://doi.org/10.54499/UIDB/00151/2020
https://doi.org/10.54499/UIDP/00151/2020
https://github.com/borbavanessa/osh_ia/tree/main/
https://github.com/borbavanessa/osh_ia/tree/main/
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Table A2. Cont.

Model
Noise Dust Light

P R F1 AUC P R F1 AUC P R F1 AUC

ExtraTreeClassifier 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RandomForestClassifier 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GaussianNB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.80 0.79 0.79
LinearDiscriminantAnalysis 0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.51 0.50 0.50 0.51

QuadraticDiscriminantAnalysis 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.77 0.78 0.79
LinearSVC 0.99 1.00 1.00 1.00 0.33 0.32 0.28 0.50 0.51 0.50 0.50 0.51

SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
KNeighborsClassifier 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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