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Abstract: In this paper, we examine the class of congestion games with player-specific payoff functions
introduced by Milchtaich, I. (1996). Focusing on the special case of two resources, we give a short and
simple method for identifying all Nash equilibria in pure strategies. We also provide a computation
algorithm based on our theoretical analysis.
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1. Introduction

Congestion games provide a rich theoretical framework for modeling and analyzing
problems of sharing limited resources involving self-interested agents. This class of non-
cooperative games, originally introduced by Rosenthal [1], has various applications, partic-
ularly in economics and computer science, such as network design and routing, facilities
location, and load balancing (see, for example, Roughgarden [2], Konur and Geunes [3] and
Suri et al. [4]). In Rosenthal’s model, each player’s strategy is to choose a subset of resources
from a common set of available resources. The player’s utility, when selecting a particular
combination of resources, is the sum of the payoffs derived from the use of each resource
included in their choice. The payoff resulting from the use of a given resource depends only
on the number of players sharing that resource. Rosenthal [1] demonstrated the existence,
for each of these games, of an exact potential function; hence, they always admit at least
one (pure) Nash equilibrium. Monderer and Shapley [5] later established that any potential
game (i.e., admitting an exact potential function) is isomorphic to a congestion game (A
Nash equilibrium is a strategy profile that is stable against unilateral deviations. An exact
potential function is a real-valued function defined over the set of strategy profiles, such that
the variation in the utility of any player who changes his strategy is equal to the corresponding
variation of this function. When a potential function exists, Nash equilibria correspond to the
maxima of this function).

Since Rosenthal’s seminal paper, a considerable amount of literature has developed
around the study of Nash equilibria in a multitude of classes and subclasses of congestion
games resulting from expansions, restrictions, and variations on the original model. The most
significant part of this extensive and highly active research is devoted to network congestion
games (where the resources are the edges of a given undirected graph, and each strategy is a
path in this graph) and weighted congestion games (where different players may have different
effects on the congestion). For results on the existence (and complexity) of Nash equilibria in
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these games, which we do not address here, see Fabrikant et al. [6], Fotakis et al. [7], Fotakis
et al. [8], Holzman and Monderer [9], Panagopoulou et al. [10], Mavronicolas et al. [11] and
Ackermann et al. [12]. In this paper, we focus on another class of congestion games, known as
congestion games with player-specific payoff functions. Introduced independently by [13,14],
this type of game generalizes the Rosenthal model in that it allows for the consideration of
player heterogeneity, but also imposes two limiting conditions (this paper complements and
updates our working paper (khanchouche et al. [15])). Each player can choose only one
resource at a time (no longer a subset of resources) and has their own payoff functions. These
functions, no longer common to all players, are assumed to decrease with the number of
players choosing the same resource.

Milchtaich [14] proved that each game in this class admits at least one (pure) Nash
equilibrium. In particular, he showed that, in the general case, best-replay paths can be cyclic
but any arbitrary (initial) strategy profile can be connected to a Nash equilibrium via a best-
reply path. Furthermore, when the payoff functions are the same for all players (symmetric
case) or when there are only two resources, the game possesses the finite improvement
property (FIP, all improvement paths are finite). (A best-reply (resp. an improvement) path is
a sequence of strategy profiles in which each strategy profile differs from the preceding one in
only one strategy and the unique deviator best-improves (resp. strictly-improves) her utility.)
Note that the result concerning the symmetric case can be obtained as a simple consequence
of Rosenthal’s theorem (it being a special case of the original model) and the fact that the
existence of an exact potential function implies the FIP (Monderer and Shapley [5]). In the
symmetric case sometimes referred to as singleton congestion games, it is not only possible to
compute a Nash equilibrium, or even an optimal Nash equilibrium, in polynomial time (Ieong
et al. [16], Ackermann et al. [17]), but there also exists a method that enables the generation of
all Nash equilibria in such a game (Sbabou et al. [18]). In what follows, we aim to extend the
result of Sbabou et al. [18] to the non-symmetric case. We will limit ourselves to situations
where only two resources are available, as the general case is currently beyond the scope of
this generalization. To the best of our knowledge, apart from the aforementioned paper, no
study has focused on the characterization of the set of all Nash equilibria in a given congestion
game. However, the exhaustive enumeration of equilibria (when possible) beyond its intrinsic
theoretical interest can prove very useful when it comes, for example, to comparing these
equilibria, classifying them, choosing the optimal equilibrium, or measuring the consequences
of a non-optimal choice (price of anarchy, Koutsoupias and Papadimitriou [19]).

Among all subclasses of congestion games studied in Milchtaich [14], only symmetric
games and non-symmetric games with two resources satisfy the FIP. We know that this
property implies the existence of an ordinal potential function (Monderer and Shapley [5])
and that Nash equilibria correspond to the maxima of this function. It is probably for this
reason that the generation of all Nash equilibria is possible in these two particular cases and a
priori difficult to obtain in the general case. However, unlike the generally used algorithms,
the method we propose does not use the potential function (which is not known in our case)
nor the convergence of best-replay paths (which does not generate all the equilibria). Our
approach is based on moving from the framework of cardinal utilities to that of ordinal
utilities. (Several studies consider games with ordinal utility functions (Cruz and Simaan [20],
Xu [21], Durieu et al. [22], Ouenniche et al. [23]). In these games, known as ordinal games, it
is generally assumed that players cannot evaluate the outcomes of the game in a numerical
way. Note that we do not retain this assumption here and that we use the ordinal framework
only to simplify our analysis.) This transition is purely technical and does not affect the set of
Nash equilibria.

The remainder of the paper is organized as follows. Section 2 provides basic defini-
tions and notations concerning congestion games. Section 3 establishes our main results.
Section 4 provides an algorithm based on our theoretical analysis, which generates the
complete list of Nash equilibria in the case of two resources. Section 5 concludes the paper.
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2. Basic Definitions and Notations

We begin by defining congestion games with player-specific payoff functions as
introduced by Milchtaich [14]. We then adopt an approach similar to Sbabou et al. [18] to
describe these games within the framework of ordinal preferences.

A congestion game with player-specific payoff functions is a tuple G = (N, R, (dr
i )i∈N,r∈R)

where N = {1, . . . , n} is a set of n players, R = {1, . . . , m} a set of m resources available to all
players. For all i ∈ N and r ∈ R, dr

i is a decreasing function on {1, . . . , n} giving the payoff
that player i receives for choosing resource r (this specific gain depends only on the number
of players using this resource). A strategy profile is a n-tuple σ = (σ1, . . . , σn) such that
σi ∈ R,∀i ∈ N. Thus, the strategy set for each player is R (a player’s strategy consists of any
single resource in R), and the set of strategy profiles is Rn = R× . . .× R. For a strategy profile
σ and a resource r, the congestion on resource r is defined by nr(σ) = |{i ∈ N : σi = r}|
(i.e., the number of players using r). The vector (n1(σ), . . . , nm(σ)) is the congestion vector
corresponding to the strategy profile σ. The utility of player i for a strategy profile σ is given
by ui(σ) = dσi

i (nσi(σ)).
A Nash equilibrium of the game G is a strategy profile σ = (σ1, . . . , σn) such that

no player can benefit from joining a (possibly empty) sub-set of players sharing a dif-
ferent resource. Thus, if we denote by σ−i the (n − 1)-tuple of strategies obtained from
σ by excluding the strategy of player i (so that σ = (σi, σ−i)), we must have ui(σ) ≥
ui(r, σ−i), ∀i ∈ N, ∀r ∈ R \ {σi}. When a player i deviates (unilaterally) to choose a re-
source r (r ̸= σi), she increases the congestion on r by 1. Hence, we have ui(r, σ−i) =
dr

i (nr(r, σ−i)) = dr
i (nr(σ) + 1). We can therefore write that σ is a Nash equilibrium if and

only if dσi
i (nσi (σ)) ≥ dr

i (nr(σ) + 1), for all i in N and r in R \ {σi}.
In this particular game, a player’s utility depends on only two variables: the resource

r that she selects and the number, k, of players who use this resource. In fact, the utility
of a player i is totally determined by her (cardinal) preferences over the pairs (r, k) of
R×{1, . . . , n}. These preferences can be represented by a mapping vi : R×{1, . . . , n} → R
defined by vi(r, k) = dr

i (k) (note that vi is decreasing with k). Thus, in this type of game, the
study of Nash equilibria can be reduced to the study of player preferences on pairs (r, k).
This simplification is the basis of the method that we present here, which makes it possible
to identify all the Nash equilibria in the case of two resources. To apply this method, we do
not need the precise numerical values that the functions vi can take. Instead, we will solely
utilize the rankings generated by these functions on the pairs (r, k). Consequently, we will
move to the framework of ordinal preferences and introduce the definition of congestion
games within this ordinal context.

The (ordinal) utility of player i will be represented by a weak ordering (i.e., a reflexive,
transitive, and complete binary relation) ≾i on R × {1, . . . , n}, such that for all pairs (r, k)
and (r′, k′), the notation (r, k) ≾i (r′, k′) means that, for player i, sharing resource r′ with
k′ − 1 other players is at least as good as sharing resource r with k − 1 other players. The
associated relations of strict preference and indifference, denoted by ≺i and ∼i, respectively,
are interpreted in a similar way. Note that for each player i ∈ N, the ordinal preference ≾i
is such that (r, k) ≾i (r, k′), for all (r, k) and (r, k′) in R × {1, . . . , n} where k′ < k (player
i always prefers (or is indifferent to) sharing resource r with a smaller number of other
players). We can now present the definition of (singleton) congestion games with player-
specific ordinal utilities (which we also call (ordinal) non-symmetric singleton congestion
game), along with the definition of a Nash equilibrium in this framework.

Definition 1. A (singleton) congestion game with player-specific ordinal utilities is a tuple
G = (N, R, (≾i)i∈N) where N = {1, . . . , n} is a set of n players, R = {1, . . . , m} a set of
m resources, and for all i ∈ N, ≾i is a weak ordering representing the ordinal utility of player i
over the pairs (r, k) of R × {1, . . . , n}. For all i in N, ≾i is assumed to be decreasing with k. A
strategy profile is a n-tuple σ = (σ1, . . . , σn) in Rn. A strategy profile σ = (σ1, . . . , σn) is a Nash
equilibrium of G if (σi, nσi (σ)) ≿i (r, nr(σ) + 1), for all i in N and all r in R \ {σi} (no player
prefers joining a group of players sharing a different resource).
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It should be noted that the games described by this definition are more general than
those introduced by [14]. The method we will present in the following section applies to
games with ordinal utilities as well as to those with cardinal utilities. In the second case,
it is sufficient, before applying this method, to replace the numerical values taken by the
cardinal utility functions with the orders that they induce on the pairs (r, k). We conclude
this section with an example illustrating and clarifying this transition. In this example,
and in, the remainder of the paper, for simplicity, we will often use the notation k.r (or kr)
to denote the pair (r, k).

Example 1. Let G be a congestion game with specific-player payoff functions, where N = {1, 2, 3}
and R = {a, b, c}. Suppose the specific payoff functions are given by:

da
1(1) = 9, da

1(2) = 7, da
1(3) = 2, db

1(1) = 20, db
1(2) = 6, db

1(3) = 6, dc
1(1) = 15, dc

1(2) = 12, dc
1(3) = 9;

da
2(1) = 8, da

2(2) = 4, da
2(3) = 4, db

2(1) = 13, db
2(2) = 7, db

2(3) = 5, dc
2(1) = 13, dc

2(2) = 11, dc
2(3) = 1;

da
3(1) = 9, da

3(2) = 7, da
3(3) = 2, db

3(1) = 25, db
3(2) = 17, db

3(3) = 14, dc
3(1) = 8, dc

3(2) = 6, dc
3(3) = 5.

The cardinal preferences of the three players on the pairs (r, k), described by the functions vi
(i = 1, 2, 3) are then such that:

v1(a, 3) < v1(b, 3) = v1(b, 2) < v1(a, 2) < v1(c, 3) = v1(a, 1) < v1(c, 2) < v1(c, 1) < v1(b, 1);

v2(c, 3) < v2(a, 3) = v2(a, 2) < v2(b, 3) < v2(b, 2) < v2(a, 1) < v2(c, 2) < v2(b, 1) = v2(c, 1);

v3(a, 3) < v3(c, 3) < v3(c, 2) < v3(a, 2) < v3(c, 1) < v3(a, 1) < v3(b, 3) < v3(b, 2) < v3(b, 1).

Using the simplified notation for pairs (e.g., 2a for (a, 2) and c for (c, 1)), the ordinal preferences
are given by:

3a ≺1 3b ∼1 2b ≺1 2a ≺1 3c ∼1 a ≺1 2c ≺1 c ≺1 b;

3c ≺2 3a ∼2 2a ≺2 3b ≺2 2b ≺2 a ≺2 2c ≺2 b ∼2 c;

3a ≺3 3c ≺3 2c ≺1 2a ≺1 c ≺3 a ≺3 3b ≺3 2b ≺3 b.

We can easily verify that, in this game, the strategy profile (c, c, b) is a Nash equilibrium.
Indeed, we have 2c ≿1 a and 2c ≿1 2b; 2c ≿2 a and 2c ≿2 2b; b ≿3 a and b ≿3 3c.

3. Results for the Two-Resource Case

For the remainder of the paper, we set the number of resources at two and denote the
set of these two resources by R = {a, b}. We will present two results (Propositions 1 and 2),
which allow a complete description of the structure of the set of all Nash equilibria. Propo-
sition 1 applies when all ordinal player preferences are strict. It indicates, in particular,
that all Nash equilibria correspond to the same congestion vector (the vector giving the
number of players having chosen each resource) and determines this vector. Proposition 2
applies when players’ preferences may include ties. It specifies the complete list of con-
gestion vectors corresponding to Nash equilibria. The information provided by these two
Propositions allows us, in the case of two resources, to easily draw up the exhaustive list of
Nash equilibria for any congestion game with player-specific payoff functions.

3.1. Case 1: Strict Preference Orders

To develop our approach, we need to extend player preferences to the pairs (a, 0),
(a, n + 1), (b, 0), and (b, n + 1). We will use the following notation. For all players i ∈ N,
we denote (a, 0) ≻i (b, n + 1) (or 0 · a ≻i (n + 1) · b by adopting the simplified notation)
when (a, 1) ≺i (b, n). Similarly, we denote (b, 0) ≻i (a, n + 1) (or 0 · b ≻i (n + 1) · a) when
(b, 1) ≺i (a, n). Note that this extension is purely technical. It allows us to introduce the
following integers:

pi = max {p ∈ {0, 1, . . . , n} : (a, p) ≻i (b, n + 1 − p)}
qi = max {q ∈ {0, 1, . . . , n} : (b, q) ≻i (a, n + 1 − q)}
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The integer pi denotes the maximum size of a group choosing resource a in a given
strategy profile, to which player i can belong. Beyond this size, player i will choose resource
b. Indeed, by definition of pi, we have pi · a ≻i (n + 1− pi) · b and (pi + 1) · a ≺i (n − pi) · b.
The integer qi is interpreted in the same way; replacing a with b. It is easy to see: pi + qi = n,
∀i ∈ N. Indeed, by the definition of pi, we have, on the one hand, pi · a ≻i (n + 1 − pi) · b
(which implies that qi < n + 1 − pi), and on the other hand, (pi + 1) · a ≺i (n − pi) · b
(which implies that qi ≥ n − pi). Using the list of integers pi and qi, ∀i ∈ N, we define two
other integers which will be used to identify the congestion vector that can correspond to a
Nash equilibrium of the game:

n(a) = max {p ∈ {0, 1, . . . , n} : |{i ∈ N : pi ≥ p}| ≥ p}
n(b) = max {q ∈ {0, 1, . . . , n} : |{i ∈ N : qi ≥ q}| ≥ q}

The integer n(a) (resp. n(b)) represents the maximum size of a group of players that
can choose resource a (resp. b) without any member of this group having an interest
in deviating from his strategy. By construction of n(a) and n(b), we necessarily have
n(a) + n(b) = n. Finally, to state our first proposition, we introduce the following three
sets In order to describe all Nash equilibria, we introduce the three following sets:

A(G) = {i ∈ N : pi > n(a)}
B(G) = {i ∈ N : pi < n(a)}
C(G) = {i ∈ N : pi = n(a)}

Note that N is the disjoint union of these three sets. Each of them may be empty and
|C(G)| ≥ n(a)− |A(G)|.

Proposition 1. Let R = {a, b} and G(N, R, (≺)i∈N) be a singleton congestion game where all
preference orderings are strict.

1. G admits at least one Nash equilibrium. All equilibria correspond to the same congestion
vector: v = (n(a), n(b)).

2. Each Nash equilibrium of G, σ∗ = (σ∗
1 , . . . , σ∗

n ), is characterized by a unique (possibly
empty) subset D of C(G), of cardinal n(a)− |A(G)|, such that: For all i ∈ N, σ∗

i = a if
i ∈ A(G) ∪ D and σ∗

i = b if i ∈ B(G) ∪ (C \ D).

3. The game admits exactly
(

|C(G)|
n(a)−|A(G)|

)
Nash equilibria. In particular, if n(a) = |A(G)| the game

admits a single Nash equilibrium (here, the notation (n
p) designates the binomial coefficient).

Proof. (1) By definition of n(a), there are at least n(a) players i ∈ N such that pi ≥ n(a).
Therefore, we choose n(a) players satisfying this condition, including all players for whom
pi > n(a). Denote by A the set of these players. For all players who are in B = N\A,
we must have pi ≤ n(a) and therefore qi ≥ n(b). It is easy, returning to the definition
of pi and qi, to verify that the profile σ∗ = (σ∗

1 , . . . , σ∗
n ) defined by σ∗

i = a if i ∈ A and
σ∗

i = b if i ∈ B is a Nash equilibrium. Conversely, let σ∗ be a Nash equilibrium of G and let
(α, β) be the congestion vector associated with σ∗. Suppose that α > n(a). As σ∗ is a Nash
equilibrium, there exist α players such that pi ≥ α, which contradicts the maximality of
n(a). We must, therefore, have α ≤ n(a). Similarly, we show that β ≤ n(b). As α + β = n
and n(a) + n(b) = n, we necessarily have α = n(a) and β = n(b).

(2) Let D be a (possibly empty) subset of C(G), of cardinal n(a)− |A(G)|. Let σ∗ =
(σ∗

1 , . . . , σ∗
n ) be the strategy profile defined by: For all i ∈ N, σ∗

i = a if i ∈ A(G) ∪ D
and σ∗

i = b if i ∈ B(G) ∪ (C(G) \ D). The profile σ∗ is a Nash equilibrium. Indeed, let
i ∈ A(G) ∪ D. By definition of A(G) and D, we have pi ≥ n(a). By definition of pi and the
assumption of monotonicity, we obtain: n(a) · a ≿i (n(b) + 1) · b. Similarly, we show that
for all i in B(G) ∪ (C(G) \ D, n(b) · b ≿i (n(a) + 1) · a. Reciprocally, let σ∗ = (σ∗

1 , . . . , σ∗
n )

be a Nash equilibrium of G. We know from (1) that the congestion vector associated with
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σ∗ is (n(a), n(b)). We must have σ∗
i = a if i ∈ A(G) and σ∗

i = b if i ∈ B(G). We just have to
consider D = {i ∈ N : σ∗

i = a and i /∈ A(G)}.
(3) The result is obtained by a simple calculation from (2).

Example 2. Let N = {1, 2, 3, 4, 5, 6} and R = {a, b}. Suppose that the players’ preferences are
given by the following strict orderings:

Player 1 : 6b ≺ 5b ≺ 4b ≺ 6a ≺ 5a ≺ 3b ≺ 4a ≺ 3a ≺ 2b ≺ 2a ≺ b ≺ a

Player 2 : 6a ≺ 6b ≺ 5b ≺ 4b ≺ 5a ≺ 4a ≺ 3a ≺ 3b ≺ 2a ≺ 2b ≺ a ≺ b

Player 3 : 6b ≺ 6a ≺ 5a ≺ 4a ≺ 3a ≺ 2a ≺ 5b ≺ 4b ≺ 3b ≺ 2b ≺ a ≺ b

Player 4 : 6a ≺ 6b ≺ 5b ≺ 4b ≺ 5a ≺ 4a ≺ 3a ≺ 3b ≺ 2b ≺ 2a ≺ b ≺ a

Player 5 : 6a ≺ 6b ≺ 5b ≺ 4b ≺ 5a ≺ 4a ≺ 3a ≺ 2a ≺ a ≺ 3b ≺ 2b ≺ b

Player 6 : 6b ≺ 5b ≺ 4b ≺ 6a ≺ 5a ≺ 4a ≺ 3a ≺ 2a ≺ 3b ≺ 2b ≺ a ≺ b

To simplify the notation, we have omitted indices in the players’ preference orders. For
each player i, we look for the integer pi (the greatest p such that p · a ≻i (n + 1 − p) · b and
(n − p) · b ≻i (p + 1) · a). We have :

p1 = 4 : 4a ≻1 3b and 2b ≻1 5a
p2 = 3 : 3a ≻2 4b and 3b ≻2 4a
p3 = 1 : 1a ≻3 6b and 5b ≻3 2a
p4 = 3 : 3a ≻4 4b and 3b ≻4 4a
p5 = 3 : 3a ≻5 4b and 3b ≻5 4a
p6 = 3 : 3a ≻5 4b and 3b ≻5 4a

So, we can verify that n(a) = 3 and n(b) = 3. The only congestion vector corresponding
to a Nash equilibrium is the vector (3, 3). Furthermore, we have A(G) = {1}, B(G) = {3} and
C(G) = {2, 4, 5, 6}. By theorem 1, we know that there are exactly C2

4= 6 different Nash equilibria.
All these equilibria are determined as follow: σ∗ = a if i ∈ A(G) and σ∗ = b if i ∈ B(G). Each of
them is characterized by a subset D of C(G) with |D| = 2 and σ∗

i = a if i ∈ D. Hence, the list of
the Nash equilibria of this game is:

(a, a, b, a, b, b), (a, a, b, b, a, b), (a, a, b, b, b, a),

(a, b, b, a, b, a), (a, b, b, a, a, b), (a, b, b, b, a, a).

3.2. Case 2: Preference Orders with Ties

As in the previous case, we introduce the integers pi and qi, which are defined this
time by:

pi = max {p ∈ {0, 1, . . . , n} : (a, p) ≿i (b, n + 1 − p)}

qi = max {q ∈ {0, 1, . . . , n} : (b, q) ≿i (a, n + 1 − q)}

For all i ∈ N, pi and qi have the same meaning as in the previous case. However,
we do not necessarily have pi + qi = n because of the possible presence of ties. Hence,
pi + qi ≥ n, for all i ∈ N. It is therefore possible to have pi + qi > n for some players, i.
This point is important because, in this case, there is a possibility of having more than one
congestion vector corresponding to a Nash equilibrium. Using the list of integers pi and
qi, we define n(a) and n(b) as in Case 1. These two integers will be used to identify the
congestion vectors that can correspond to the Nash equilibrium of the game. It is easy to
see that n(a) + n(b) ≥ n, and we will show (Proposition 2); that if v = (α, β) is a congestion
vector corresponding to a Nash equilibrium, then we must have α ≤ n(a), β ≤ n(b) and
α + β = n. For each vector v = (α, β) satisfying these three conditions, we introduce the
three following sets:

A(G, v) = {i ∈ N : pi ≥ α and qi < β}, B(G, v) = {i ∈ N : pi < α and qi ≥ β},
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and C(G, v) = {i ∈ N : pi ≥ α and qi ≥ β}

We can now state our second proposition.

Proposition 2. Let R = {a, b} and G(N, R, (≾)i∈N) be a singleton congestion game where the
preference orders may include ties.

1. Each congestion vector v = (α, β) such that α ≤ n(a), β ≤ n(b) and α+ β = n, corresponds
to (at least) one Nash equilibrium of G.

2. Each Nash equilibrium of G, σ∗ = (σ∗
1 , . . . , σ∗

n ), with congestion vector v = (α, β) is
characterized by a unique (possibly empty) subset D of C(G, v), of cardinal α − |A(G, v)|,
such that: ∀i ∈ N, σ∗

i = a if i ∈ A(G, v) ∪ D and σ∗
i = b if i ∈ B(G, v) ∪ (C(G, v) \ D).

Proof. (1) Let v = (α, β) be a congestion vector such that α ≤ n(a), β ≤ n(b) and
α + β = n. Let D be a (possibly empty) subset of C(G, v), of cardinal α − |A(G, v)|. Let
σ∗ = (σ∗

1 , . . . , σ∗
n ) be a strategy profile such that: For all i ∈ N, σ∗

i = a if i ∈ A(G, v)∪ D and
σ∗

i = b if i ∈ B(G, v) ∪ (C(G, v) \ D). σ∗ is a Nash equilibrium. Indeed, let i ∈ A(G, v) ∪ D.
By definition of A(G, v) and of D, we have pi ≥ α. By definition of pi and by the assump-
tion of monotonicity, we obtain: α · a ≿i (β + 1) · b. Similarly, we show that for all i in
B(G, v) ∪ (C(G, v) \ D), β · b ≿i (α + 1) · a.

(2) Let σ∗ = (σ∗
1 , . . . , σ∗

n ) be a Nash equilibrium of G and let v = (α, β) be the conges-
tion vector associated with this equilibrium. We have α ≤ n(a), otherwise there exist α
players i with pi ≥ α > n(a). This is impossible by definition of n(a). Similarly, we show
that β ≤ n(b). By definition of a congestion vector, we also have α + β = n. As σ∗ is a Nash
equilibrium, for any i ∈ N, we must have: σ∗

i = a if i ∈ A(G, v) and σ∗
i = b if i ∈ B(G, v).

We just need to consider D = {i ∈ N : σ∗
i = a and i /∈ A(G, v)} and to note that the case

pi < α and qi < β is not possible.

Example 3. Let N = {1, 2, 3, 4, 5} and R = {a, b}. Suppose that the player’s preferences are
given by the following weak orderings:

Player 1 : 5a ≺ 5b ≺ 4b ≺ 4a ≺ 3b ∼ 3a ∼ 2a ≺ 2b ∼ a ≺ b

Player 2 : 5b ∼ 4b ∼ 5a ∼ 4a ∼ 3b ∼ 3a ∼ 2a ∼ 2b ∼ a ∼ b

Player 3 : 5a ≺ 5b ≺ 4b ≺ 4a ∼ 3b ∼ 3a ∼ 2b ≺ 2a ≺ a ≺ b

Player 4 : 5b ≺ 4b ≺ 5a ≺ 4a ∼ 3b ∼ 3a ∼ 2b ≺ 2a ≺ b ≺ a

Player 5 : 5b ∼ 4b ∼ 5a ∼ 4a ∼ 3b ∼ 3a ∼ 2a ∼ 2b ∼ a ∼ b

It is easy to see that: p1 = 3, q1 = 3, p2 = 5, q2 = 5, p3 = 4, q3 = 3,
p4 = 4, q4 = 3, p5 = 5, q5 = 5. Hence, n(a) = 4 and n(b) = 3. By proposition 2, the pos-
sible congestion vectors are: v1 = (4, 1), v2 = (3, 2), v3 = (2, 3). Since v1 = (4, 1), we have
A(G, v1) = ∅, B(G, v1) = {1} and C(G, v1) = {2, 3, 4, 5}. Thus, there exists a unique equi-
librium corresponding to v1, which is given by the profile (b, a, a, a, a). Similarly, as v2 = (3, 2),
we obtain A(G, v2) = ∅, B(G, v2) = ∅ and C(G, v3) = {1, 2, 3, 4, 5}. The Nash equilibria
corresponding to v2 are:

(b, b, a, a, a), (b, a, b, a, a), (b, a, a, b, a), (b, a, a, a, b), (a, b, a, a, b),

(a, a, b, a, b), (a, a, a, b, b), (a, b, a, b, a), (a, b, b, a, a), (a, a, b, b, a).
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Finally, for v3 = (2, 3), we have A(G, v3) = ∅, B(G, v3) = ∅ and C(G, v3) = {1, 2, 3, 4, 5}.
The Nash equilibria corresponding to v3 are:

(b, b, b, a, a), (b, b, a, b, a), (b, b, a, a, b), (b, a, a, b, b), (a, b, b, b, a),

(a, a, b, b, b), (b, a, b, b, a), (b, a, b, a, b), (a, b, b, a, b), (a, b, a, b, b).

4. Algorithms and Computation Examples

The aim of this section is to illustrate and justify the theoretical results provided in
this article. We will apply these results to propose two algorithms (Algorithm 1 and Algo-
rithm 2) that allow us to calculate all Nash equilibria and to identify the best-cost equilibrium
and the worst-cost equilibrium. In the previous sections, we considered congestion games
with utility functions. However, the literature that is interested in optimal Nash equilibria
generally considers congestion games with cost functions. The transition from utilities to
costs is easily done by multiplying the numerical values of the utilities by −1. The best-
cost (resp. worst-cost) equilibria is the one that minimizes (resp. maximizes) the total cost.
The price of anarchy (PoA) Koutsoupias and Papadimitriou [19] is defined as the ratio between
the worst-cost equilibrium and the optimal ’centralized’ solution. The price of stability (PoS)
Anshelevich et al. [24] is defined as the ratio between the best-cost equilibrium and the op-
timal ’centralized’ solution. In the applications we present here, we do not calculate PoA or
PoS. Instead, we consider the quotient between them, which corresponds to the quotient
between the social cost evaluated in the worst Nash equilibrium and the social cost eval-
uated in the best Nash equilibrium. The results of our experiments show that when the
number of players increases, the PoA/PoS quotient also increases. For a number of play-
ers n = 1000, we find that this quotient is given by PoA/PoS ≈ 3.5, which means that the
social cost of choosing the worst Nash equilibrium is 3.5 greater than the social cost when
players choose the best Nash equilibrium. The coordination between actors may, therefore,
be needed to reduce this cost significantly. These results were observed when preferences
were strict or included ties (see Figures 1 and 2 below). We cannot confirm whether our
two algorithms have polynomial time complexity. However, in practical applications, they
have shown good performance in the instances we have processed. For n = 1000, the execu-
tion time remains reasonable, with t = 8 s for strict preferences and t = 60 s when preferences
include ties. The increased execution time in the latter case is attributed to the higher number of
congestion vectors.

Algorithm 1: Find all Nash equilibria

Input: Congestion game G = (N, R,≺i), cardinal utilities of each players
1: Let i := 1
2: repeat
3: Increase i by one
4: Find the integers (pi, qi)
5: Find the integers n(a), n(b)
6: Find A(G), B(G), C(G), D
7: until i = n
Output: σ∗

i (all Nash equilibria).

Algorithm 2: Find the best and the worst Nash equilibrium

Input: σ∗
i (all Nash equilibria), S the sum of the utility of each Nash equilibrium

1: Let i := 1
2: repeat
3: Increase i by one
4: Find the best Nash equilibrium
5: Find the Worst Nash equilibrium
6: until i = n
Output: σ∗

i (the best and worst Nash equilibria).
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Figure 1. The quotient of the price of anarchy and the price of stability in the strict preferences case.

Figure 2. The quotient of the price of anarchy and the price of stability in the preferences with
ties case.

5. Conclusions

In this paper, we considered two-resource congestion games with player-specific pay-
off functions Milchtaich [14]. We demonstrated that we can determine all Nash equilibria.
Our approach is new; we used the ordinal representation of preferences without using
either the potential function or the finite improvement property. To illustrate our main
results, we carried out numerical tests, we calculated the two extreme Nash equilibria,
the best and the worst Nash equilibrium according to the social cost. We observed that
the social cost between the two equilibria can be very high. Our study is constrained by
the condition of two resources, we hope to generalize this result to the general case in
the future.
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