
Citation: Rigoletto, M.; Laurenti, E.;

Tummino, M.L. An Overview of

Environmental Catalysis Mediated by

Hydrogen Peroxide. Catalysts 2024, 14,

267. https://doi.org/10.3390/

catal14040267

Academic Editors: Ying Zhang and

Fangke Yu

Received: 19 March 2024

Revised: 11 April 2024

Accepted: 15 April 2024

Published: 17 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Review

An Overview of Environmental Catalysis Mediated
by Hydrogen Peroxide
Monica Rigoletto 1, Enzo Laurenti 1,* and Maria Laura Tummino 2,*

1 Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; monica.rigoletto@unito.it
2 Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research

Council of Italy (CNR-STIIMA), Corso G. Pella 16, 13900 Biella, Italy
* Correspondence: enzo.laurenti@unito.it (E.L.); marialaura.tummino@cnr.it (M.L.T.)

Abstract: The use of hydrogen peroxide (produced in situ or ex situ) as the main agent in oxidative
processes of environmental pollutant removal is widely studied. The degradation of water pollutants,
such as dyes, pharmaceuticals, cosmetics, petroleum derivatives, and even pathogens, has been
successfully obtained by different techniques. This review gives an overview of the more recent
methods developed to apply oxidative processes mediated by H2O2 and other reactive oxygen
species (ROS) in environmental catalysis, with particular attention to the strategies (Fenton-like and
Bio-Fenton, photo- and electro-catalysis) and the materials employed. A wide discussion about the
characteristics of the materials specifically studied for hydrogen peroxide activation, as well as about
their chemical composition and morphology, was carried out. Moreover, recent interesting methods
for the generation and use of hydrogen peroxide by enzymes were also presented and their efficiency
and applicability compared with the Fenton and electro-Fenton methods discussed above. The use
of Bio-Fenton and bi-enzymatic methods for the in situ generation of ROS seems to be attractive
and scalable, although not yet applied in full-scale plants. A critical discussion about the feasibility,
criticalities, and perspectives of all the methods considered completes this review.

Keywords: Bio-Fenton; electro-catalysis; Fenton; H2O2 detection; hydrogen peroxide; photo-catalysis;
water remediation

1. Introduction

The depletion of water resources is a theme of global concern and it is more and more
exacerbated by increasing water consumption (especially connected to certain agricultural
and industrial activities [1,2]), contamination sources and climate changes that bring about
aridity/desertification issues [3,4]. As a consequence, access to clean water is progressively
more limited and the need for the reuse of wastewater is mandatory worldwide [3,4].
Wastewater has to be treated to fulfill the quality requirements before the reintroduction in
specific systems (e.g., agricultural, industrial, potable, etc.) [5].

Wastewater depuration is typically a multi-step procedure in which most of the chem-
ical and pathogenic contaminants are successfully removed [4]. Nevertheless, recalcitrant
and new kinds of not commonly monitored pollutants (Contaminants of Emerging Concern,
such as pharmaceuticals and personal care products), detected at trace/sub-trace levels
in water bodies and often not removed by traditional depuration processes, represent a
further hurdle to the achievement of high-quality water standards [4,6,7]. For this reason,
advanced methods should support these processes, among which the most studied ones
since the 1980s are the so-called Advanced Oxidation Processes (AOPs) [8]. The methods
involving the presence of Reactive Oxygen Species (ROS) with strong oxidizing properties
underlie AOPs’ definition and are aimed at bringing about the partial/total mineraliza-
tion of chemical pollutants to carbon dioxide, water and inorganic ions up to disinfection
from pathogens [7,9,10]. The main ROS are non-radical species such as H2O2 and singlet
oxygen (1O2), and highly reactive free radicals, such as hydroxyl (•OH), hydroperoxide

Catalysts 2024, 14, 267. https://doi.org/10.3390/catal14040267 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal14040267
https://doi.org/10.3390/catal14040267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0001-7363-4002
https://orcid.org/0000-0002-1869-2602
https://doi.org/10.3390/catal14040267
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal14040267?type=check_update&version=1


Catalysts 2024, 14, 267 2 of 42

(HOO•), superoxide (O2
•−), carbonate anion (CO3

•−), and sulfate (SO4
•−) radical, de-

riving from the activation of precursors (hydrogen peroxide, persulfate/peroxydisulfate,
peroxymonosulfate and sodium percarbonate) via oxidation/reduction reactions [7,11–14].

The oxidation processes exploiting H2O2 and the derived ROS are the focus of the
present review. Many different treatments have been proposed [11,15–18], also in a variety
of combinations and with different triggering sources (ultrasounds, UV/vis light, heat and
electrochemical energy) [7,15,19–24], as summarized in Figure 1.
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Figure 1. Scenario of AOPs exploiting hydrogen peroxide and derived ROS.

In Figure 1, the methods that are mainly recognized to be capable of inducing an in
situ generation of ROS [17,25–27] have been underlined since the use of such methods
can overcome the problems related to high costs and excessive consumption of hydrogen
peroxide, as well as avoid the hazards associated with its transport, handling, and storage
in significant quantities [25,27,28]. A further distinction can be made considering homo-
geneous and heterogeneous processes. In this latter category, solid catalytic materials are
applied for the generation of active species in the aqueous medium through catalytic ozona-
tion, photocatalytic and electrochemical systems, heterogeneous Fenton-like processes,
etc. [29–31]. Heterogeneous catalyst-based methods are considered greener to permit both
easier recycling of active materials and a decrease in costs and pollution [4]. For this reason,
these will be more explore more in depth in this excursus.

From what has been seen so far, the two most common methods to produce hydrogen
peroxide in heterogeneous systems are photocatalysis and electrocatalysis (Figure 2). In
order to briefly introduce the basilar mechanism of a photocatalytic process (Figure 2A), it
is possible to use the well-known semiconductor TiO2 as an example. The mechanism of
the UV/TiO2 implies that when titania is irradiated with light energy equal to or higher
than its band gap, an electron (e−) can be excited from the valence band to the conduction
band, leaving a hole (h+) in the valence band. If charge separation is maintained, the
paired e−-h+ may migrate to the surface of the photocatalyst. In the aqueous phase, the
photoinduced h+ can oxidize surface hydroxyl groups or surface-bond water molecules to
produce hydroxyl radicals and other ROS [32,33]. Regarding electrocatalysts, they have to
initiate an Oxygen Reduction Reaction (ORR) to generate hydrogen peroxide via two e− or
four e− processes (Figure 2B). Therefore, the involved materials have to possess suitable
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electronic configuration and redox properties, conductivity, low overpotential, fast kinetics
and good Faraday efficiency to allow for oxygen reduction [34–37].
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Figure 2. (A) Photocatalytic H2O2 production with a semiconducting-based process (ORR = Oxygen
Reduction Reaction; WOR = Water Oxidation Reaction). (B) Electrochemical H2O2 generation
and related two- and four-electron oxygen reduction reaction pathways. Images reproduced with
permission of the authors of [38,39].

The methods based on the use/production of hydrogen peroxide and related ROS
are mainly founded on the following reactions (1–19) [8,17,21,22,40]. Equation (1) is re-
lated to ozone-related systems, Equations (2)–(6) to the peroxone (O3/H2O2) system,
Equations (5)–(11) to photolysis and photocatalytic (hν)/thermocatalytic (∆T) reactions
in the presence of a heterogeneous catalyst (“Cat.” refers to a generic semiconductor),
and Equations (6) and (12)–(18) to Fenton and Fenton-like processes. Equation (18), in
particular, is an example of radical recombination that can restore H2O2 [15]. Equation (19)
is related to ultrasound (US)-assisted reactions, in which sound waves can lead to cavitation
phenomena, involving vapor- and gas-filled microbubbles, and to the generation of high
temperature and high pressure. Finally, the formation of organic radicals (R•) during these
processes introduces new variables into this chain of reactions [41].

3O3 + H2O → 2 •OH + 4O2 (1)

H2O2 → HO2
− + H+ (2)

HO2
− + O3 → •OH + O2

− + O2 (3)

O3 + H2O + hν → H2O2 + O2 (4)

H2O2 + hν → 2 •OH (5)

H2O2 + •OH → H2O + HOO• (6)
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Cat. + hν/∆T → e− (conduction band) + hole+
(valence band) (7)

hole+
(valence band) + OH−

(surface) → •OH (8)

hole+
(valence band) + H2O (adsorbed) → •OH + H+ (9)

e− (conduction band) + O2 (adsorbed) → O2
•− (10)

H+ + O2
•− → HOO• (11)

H2O + hν → •OH + H• when λ(hν) < 242 nm (12)

Fe2+ + H2O2 → Fe3+ + •OH + OH− (13)

Fe3+ + H2O2 → Fe2+ + HOO• + H+ (14)
•OH + Fe2+ →Fe3+ + OH− (15)

Fe3+ + HOO• → Fe2+ + O2H+ (16)

Fe2+ + HOO• + H+ → Fe3+ + H2O2 (17)

2HOO• → H2O2 + O2 (18)

H2O + US → •OH + H• (19)

It is worth briefly discussing the Fenton processes and the distinction between Fen-
ton and Fenton-like ones. In the classical homogeneous Fenton process, low pH values
(around 3.0) are necessary to avoid the precipitation of iron oxyhydroxides from Fe(II),
resulting in higher costs [42–44]. Furthermore, when complex real matrices have to be
depolluted, there is the risk of precipitation of the iron catalyst, leading to the formation
of sludge and undesired by-products [7]. To overcome these limitations, Fenton-like pro-
cesses are designed to use oxidants other than hydrogen peroxide and/or transition metals
other than Fe2+ (e.g., Fe3+, Cu2+/Cu+, iron-based minerals, nano zero-valent iron, etc.),
and/or employ heterogeneous catalysts and/or external energy sources to create similar
reactions [29,44–47]. All the aspects concerning the chemical development of AOP methods
involving H2O2 will be addressed in Section 2.1.

As anticipated, another important point that must be considered concerns the pro-
duction of H2O2 to be used in these reactions. In recent years, biological systems for the
in situ generation of H2O2 have been carefully taken into account since they allow for
the production of hydrogen peroxide under mild conditions, avoiding the use of critical
solvents and reducing or avoiding the formation of toxic by-products.

One of the most exploited enzymes for this purpose is Glucose Oxidase (GOx), which
catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone (further hydrolyzed into glu-
conic acid) and hydrogen peroxide in the presence of molecular dioxygen, as summarized
in Equation (20).

β-d-glucose + O2 + H2O → gluconic acid + H2O2 (20)

This catalytic mechanism is also widely exploited in Bio-Fenton processes that actually
use H2O2 enzymatically produced as a reagent for the Fenton reaction [48]. Unlike the
classic Fenton reaction, the Bio-Fenton process also occurs at pH values near neutrality
owing to the synergy with all the GOx reaction products [49]. A wide discussion about the
environmental application of the Bio-Fenton technique will be made in Section 2.2 of this
review, together with a description of innovative bi-enzymatic systems coupling GOx and
other enzymes.

Finally, a section about H2O2 detection techniques and another on the critical assess-
ment of the whole H2O2-mediated systems will be presented to enrich the overview of the
practical implications of these depuration treatments. The global structure of this review
will cover the topics indicated in Figure 3.
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2. Recent Developments in AOP Systems Involving H2O2

This section will examine different material- and enzyme-based systems involving
hydrogen peroxide and its derived ROS for decontaminating wastewater from several
types of contaminating agents, ranging from synthetic dyes (often found downstream
textile industries) to pharmaceuticals and other harmful chemicals derived from different
production activities to biological pathogens.

2.1. Advanced Materials

By searching on the Scopus database for studies with the query “H2O2 AND gen-
eration AND wastewater” and further limiting the search to the keywords “Hydrogen
peroxide”, 407 documents were found. Of these research studies, 96 possess “Iron”, 77 “Iron
compounds”, 32 “Ferric Ion”, 17 “Ferric compounds”, 38 “Ferrous Ion”, 109 “Fenton”,
23 “Photo-Fenton”, and 42 “Electro-Fenton” as further keywords. This circumstance makes
clear the strong contribution of iron-based chemistry and Fenton-type reactions when
environmental decontamination mediated by hydrogen peroxide is attempted. Table 1
shows a selection of recent works reporting iron as the main component or coadjuvant in
remediation routes. Indeed, the opportunities of obtaining Fe-containing materials from
natural sources (entries 10, 23 and 24 in Table 1) or preparing different kinds of iron-based
compounds are uncountable [41,47,50–53]. Moreover, even in Fenton and photo-Fenton
processes defined as “heterogeneous”, iron can be added as a homogeneous reactant
(entries 13, 15 and 21 in Table 1).
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Table 1. Iron-based systems for pollutant removal mediated by H2O2 (except for two cases, all the
works reported were published within the last 5 years) *.

System Pollutants Conditions Performance Mechanism and Notes Ref.

1. Fe(III)-
functionalized
polyacryloni-
trile/polypropylene
fiber mesh

Bisphenol A (BPA) Best setup: 75 ppm
of BPA, 300 ppm of
H2O2, pH = 3, 60 ◦C.

100% BPA abatement
in <30 min; effects of
temperature and pH.
Fast degradation in
Rotating Catalytic
Reactor.

Fenton process;
reusable catalyst but
poisoning by the
intermediates.

[54]

2. Zn-Carbon
Nanotubes (CNTs) in
the presence of Fe2+

4-chlorophenol
(4-CP)

Conc. 4-CP = 50 mg
L−1; Conc. Fe2+

20 mg L−1, pH = 2.0.
O2 was fed in the
reaction mixture
(400 mL min−1).

Abatement of 4-CP
and TOC: 98.8% and
87.4%, respectively
(20 min). When 4-CP
was spiked in real
wastewater, the
abatements of 4-CP
and TOC were 47.0%
and 45.6%. Effects of
pH, Zn-CNTs dosage
and Fe2+ amount.

Fenton: in situ
generation of a high
concentration of H2O2,
rapid regeneration of
Fe2+ from the
reduction of Fe3+ by
Zn and high
adsorption ability of
Zn-CNT towards
pollutants.

[55]

3. Graphitic-C3N4
QDs with FeOOH

Tetracycline (TC),
p-nitrophenol (PNP),
2,4-dinitrophenol
(2,4-DNP)

500 W Xe lamp with
a 420 nm cut-off;
addition of H2O2;
optimal pH = 7.

Abatement: TC ca.
90% (2 min), PNP 90%
(10 min), 2,4-DNP ca.
90% (5 min).
Dependence on
catalyst/pollutant
ratio, pH, conc. H2O2.

Photo-Fenton: main
action of •OH with the
aid of O2

•−and h+;
photogenerated e− in
CB favored Fe3+/Fe2+

cycling.

[56]

4. Ultrathin porous
Graphitic-C3N4
nanosheets with
amorphous FeOOH
QDs

Oxytetracycline
(OTC)

300 W Xe lamp with
a 420 nm cut-off;
pH = 7.

Highest efficiency for
20%FeOOH-
composite degrading
86.23% of OTC
(120 min) and TOC
removal of 48.6%.

Photo-Fenton;
Graphitic-C3N4 in situ
produced H2O2,
improving transport of
photogenerated e−-h+

pairs; FeOOH
generated •OH.

[57]

5. α-Fe2O3/Graphitic-
C3N4

Rhodamine B (RhB),
tetracycline
hydrochloride
(TC-H)

Simulated solar light
with 300 W Xe lamp;
neutral pH.

Degradation of RhB
96% (90 min) and
TC-H 95% (150 min).

Photo-Fenton:
effective separation
and transfer of
photogenerated charge
carriers; H2O2
photoproduction on
g-C3N4; •OH
generation from H2O2
decomposition on
α-Fe2O3; O2

•− and h+
played supporting
role.

[58]

6. Mag-
netite/maghemite
NPs coated with
waste-sourced
bio-based substances
(BBS)

Phenol (PH) For Fenton: addition
of H2O2 5 × 10−4 M;
photoactivation by a
lamp with max
emission at 365 nm;
pH = 3.5.

100% PH degradation
(5 min). Reusability
allowed by the
constant Fe release
from NPs.

Fenton and
photo-Fenton
processes, but higher
efficiency in Fenton
mode. In
photo-Fenton •OH are
generated. BBS acted
preventing catalyst
oxidation and Fe
precipitation.

[59]
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Table 1. Cont.

System Pollutants Conditions Performance Mechanism and Notes Ref.

7. Glucose-mediated
Fe3O4 magnetic NPs

Methylene blue
(MB), Cr(VI)

For Fenton and
photo-Fenton:
addition of H2O2;
photocatalytic
reduction of Cr(VI);
photoactivation with
vis. light (250 W).

MB degradation at pH
9: 93% in 75 min by
photo-Fenton and 92%
in 120 min by Fenton
process. 100%
photoreduction of
Cr(VI) in 25 min.
Influence of H2O2
concentration, pH,
catalyst/pollutant
dosage.

Higher efficiency of
both Fenton and
photo-Fenton ascribed
to the novel synthesis
method. •OH was
detected as primary
ROS. The catalyst was
stable and reusable.

[60]

8. CuO-Fe2O3
heterojunction

Quinoline Yellow
(QY)

Best setup: H2O2
and QY
concentrations 27.6
mM and 100 mg L−1,
respectively; pH = 3,
40 ◦C.

100% QY removal in
ca. 60 min.
Dependence on pH,
conc. H2O2 and dye,
catalyst dose,
temperature.

Photo-Fenton and
Fenton (no strong
effect of irradiation);
recyclability.

[61]

9. Fe3O4/Cu
magnetic NPs
prepared using
Rosmarinus officinalis
leaves aqueous
extract

Methyl Orange
(MO), imipenem
(IMI), imatinib
mesylate (IMA)

300 W Xe lamp with
a 420 nm cut-off.

MO, IMI, IMA
degradation of 96.6%,
81.8% and 84%,
respectively, after
5400 s; TOC
decrement.

Photocatalytic process
with production of
H2O2 and O2

•− as
main ROS; reusability
of the catalyst;
beneficial effect of R.
officinalis leaves
extract.

[62]

10. Mexican Natural
Zeolite-based
Membrane

Reactive Black 5
(RB5)

Best setup: pH= 3,
conc. H2O2 = 3 g
L−1, conc. RB5 = 100
mg L−1, added
FeCl3 = 0.013 g L−1,
LED lamp emission
at 405 nm (2.2 W),
permeation flux ∼=
467 cm3 m−2 h−1.

92.3% discoloration in
30 min; progressive
TOC decrement.

Photo-Fenton;
reusable membranes,
but possible Fe
leaching.

[63]

11. Triphase MIL-
101(Fe)/Graphitic-
C3N4/hydrophobic
carbon cloth

Methyl Orange
(MO), methylene
blue (MB),
rhodamine B (RhB),
rhodamine 6G
(Rh6G)

300 W Xe lamp; dye
solution = 10 ppm,
pH = 3. Catalyst
(size: 2.5 cm2)
hydrophilic surface
immersed in
solution, while the
hydrophobic part
was exposed to air
for O2 supply.

Abatement: MO 99%,
MB 99%, RhB 98%,
Rh6G 97% (130 min);
high reaction rate
constant.

Photo-Fenton with
photoactivated in situ
production of H2O2,
promoted by triphase
design of the Z-scheme
heterojunction with a
favored pathway for
O2 transfer.
Photoinduced e− and
h+ separation
efficiency; •OH and
O2

•− were the main
ROS.

[64]
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Table 1. Cont.

System Pollutants Conditions Performance Mechanism and Notes Ref.

12. MoS2-Fex
composite

Sulfadiazine (SD) Best catalyst:
MoS2-Fe75; Optimal
conditions: H2O2
addition,
SD = 10 mg L−1,
pH = 6.5.

SD degradation 91.1%
(90 min); effect of
catalyst dosage, pH,
H2O2 feeding way.

Fenton: MoS2-Fex
selectivity for 1O2.
“Small amount for
multiple times”
feeding way of H2O2
increased MoS2-Fex
stability and SD
degradation rate,
reducing H2O2
decomposition.
Formation of Fe sludge
was much reduced
than nano-iron
powder. Long-term
effectiveness of the
MoS2-Fex/H2O2
system.

[65]

13. MoS2 in the
presence of Fe3+

Bisphenol A (BPA),
benzoic acid (BA),
sulfadiazine (SDZ),
rhodamine B (RhB),
carbamazepine
(CBZ),
4-acetamidophenol
(APAP),
ciprofloxacin (CIP),
tetracycline
hydrochloride
(TC-H)

Optimal system:
1.0 mM H2O2, 0.3 g
L−1 MoS2 and
0.15 mM Fe3+,
pH = 3.0.

Abatement (60 min):
CBZ 65.9%, APAP
79.1%, SDZ 84.1%, BA
86.0%, RhB 90.8%, CIP
92.5%, BPA 93.0%, TC
100%. Effects of pH
and concentrations of
pollutant, H2O2, Fe3+,
MoS2.

Fenton: strong
oxidative intermediate
Mo6+

peroxo-complexes
besides •OH radicals.
Stable and reusable
catalyst.

[66]

14. TiO2-supported
Fe (FeTi-ox)

Acetaminophen
(AAP), benzoic acid
(BA), carbamazepine
(CBZ), phenol (PH)

Conc. H2O2 =
10 mM and conc.
pollutant =
5−10 µM, pH = 7.

Degradations (2 h):
AAP 100%, PH 55%,
while BA and CBZ
were not removed.
Pollutants selectively
reacted with •OH (BA
and CBZ) or with both
•OH and Fe(IV) (AAP
and PH).

Fenton: relevant
interaction H2O2-TiO2
forms a
peroxo−titania
complex
Fe(III)-Ti-OOH, which
reacted further with
H2O to give surface
oxidant Fe[IV]-O2+

even in the presence of
Cl−, HCO3

− ions and
organic matter.
Reusability of FeTi-ox.

[67]

15. P25 (TiO2) in the
presence of US and
Fe2+/Fe3+

Bisphenol A (BPA),
sulfadiazine (SDZ)

US at 400 kHz alone
or in the presence of
P25 under vis. light
(LED lamp emitting
at 400–630 nm).

With US and Fe2+:
>90% degradation of
BPA and >80% for
SDZ in 30 min. In the
presence of Fe2+/Fe3+,
US, P25 and vis. light,
100% SDZ abatement
in 60 min.

Homogeneous
sono-Fenton: in situ
generation of H2O2
and •OH.
Sono-photo-Fenton:
P25 promoted
Fe2+/Fe3+ cycling by
the photoproduced e−.
P25 favored reaction at
circumneutral pH and
pollutant
mineralization.

[68]
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Table 1. Cont.

System Pollutants Conditions Performance Mechanism and Notes Ref.

16. Iron-cobalt oxide
nanosheets
(CoFe-ONSs)

Tetracycline (TC) Conc. TC 50 mg L−1,
conc. H2O2 20mM,
neutral pH.

TC removal 83.5% (50
min). Effects of
catalyst dosage, conc.
H2O2, pH,
temperature, conc. TC,
anions and water
sources.

Fenton: •OH were the
main ROS. Redox
cycles of FeII/FeIII
and CoII/CoIII
enhanced •OH
generation. Negligible
Fe ions leaching from
catalyst (reusability).

[69]

17. Magnetic
ZnO@Fe3O4
composite

p-nitrophenol
(p-NP)

Conc. p-NP 35 mg
L−1, pH = 3
(optimal); 100 W
incandescent lamp
(400–1700 nm).

100% p-NP removal in
60 min. Effect of
temperature.

Photo-Fenton:
self-generation of
H2O2, with primary
role of •OH; catalyst
reusability.

[70]

18. ZnFe2O4/BiVO4
heterojunction

Methylene blue
(MB).

Best composition:
0.15ZnFe2O4/BiVO4.MB
conc. 40 mg L−1,
eventual addition of
H2O2;
photoactivation with
300 W Xe lamp.

MB degradation with
photocatalytic method
(2 h): 83.7%; with
Photo-Fenton (1 h):
98.8%.

Photocatalysis: h+ had
a main role in
degrading MB;
photo-Fenton:
activation of H2O2
(•OH production) by
photogenerated e−;
photogenerated
carriers separation
efficiency.

[71]

19. LaFeO3 prepared
from citric acid and
LaFeO3 synthesized
from waste-sourced
bio-based substances

4-methylphenol
(4-MP) and crystal
violet (CV)

Conc. pollutant 10
mg L−1; pH = 8–10;
1500 W Xe lamp with
a 340 nm cut-off.

LaFeO3 prepared from
waste-sourced
bio-based substances
removed 100% CV and
ca. 40% 4-MP. The
citric acid-derived
LaFeO3
photodegraded 90% of
4-MP and 30% of CV.

Photocatalysis:
different LaFeO3
efficiencies were
ascribed to different
ζ-potentials. A
homogeneous
photo-Fenton process
can occur when
LaFeO3 synthesized
from waste-derived
substances releases Fe
and carboxylate ions.

[72,
73]

20. Cerium, Cobalt,
Copper-doped
Strontium Ferrate
(SCFCC)

Escherichia Coli Best material with
20% Cu doping.
Bacteria conc. 1.0–3.0
× 105 CFU/mL.
SCFCC/inoculum
ratio = 1 g/50 mL.
Tests in the dark,
and after thermo- or
UV-activation (max
70 ◦C heating and
UV-A 300 W lamp,
respectively).

Max. bacterial removal
55% in the dark, 98%
after UV, 40% after
thermal activation.

Photo/Thermo-
catalysis: formation of
H2O2 and •OH.
Activity was also
influenced by SCFCC
metal ions’ redox
couples and oxygen
vacancies.

[74]
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Table 1. Cont.

System Pollutants Conditions Performance Mechanism and Notes Ref.

21. Peanut
shell-derived biochar
(PBC) in the
presence of Fe2+

Bisphenol A (BPA),
dimethyl phthalate
(DMP),
sulfamethoxazole
(SMX)

Degradation tests
conducted in a
three-electrode cell
aerated with O2
(0.4 L min−1);
voltage applied
0.5–1.1 V; pH = 3.0,
conc. Fe2+ 0.2 mM
and conc. pollutants
20 mg L−1.

Removal efficiencies of
98–100% within
15 min; mineralization
efficiencies of
83–100%.

Electro-Fenton: PBC
hierarchical porous
structure and defects
caused a high surface
area, electrical and
ionic conductivity. The
presence of
OOH/C–O–C and N
on the surface ensured
a high two-electron
ORR selectivity for
H2O2 production,
accelerated Fe2+

regeneration, also
enabling •OH
accumulation.

[75]

22. Ferromagnetic
activated carbon
from rubber seed
hull

Bezaktiv Brilliant
Blue (BBB)

Best setup: pH = 3,
conc. H2O2=
17 mol L−1, conc.
BBB = 100 mg L−1.

BBB removal > 75% in
all conditions (4 h).
Effects of pH, conc.
H2O2 and pollutant,
catalyst dosage.

Fenton; reusable
catalyst.

[76]

23. Natural pyrite
(FeS2)

Carbamazepine
(CBZ)

Addition of tartaric
acid (TA), citric acid
(CA), ascorbic acid
(AA); simulated
sunlight (300 W Xe
lamp).

No CBZ degradation
with pyrite; CBZ
abatement: 70%, 60%,
53% in pyrite/TA,
pyrite/CA, pyrite/AA
systems, respectively
under irradiation (30
min). Effect of catalyst
dosage, pH, conc.
CBZ.

Photo-Fenton; in situ
generated H2O2
without extra pH
adjustment; organic
acids can form
complex with Fe in
pyrite, promoting
Fe(II) dissolution.
Upon irradiation,
pyrite is excited to
generate photo-e−,
able to reduce oxygen
to produce H2O2 and
•OH.

[77]

24. Goethite
(α-FeOOH)

Bisphenol A (BPA) H2O2 addition
(1.0 mM), conc. BPA
0.1 mM; reaction
allowed under
acidic, neutral and
weakly alkaline
conditions.

BPA degradation
75.9% after 240 min;
pH dependency.

Fenton; •OH
production. Good
structural stability of
catalyst; higher
efficiency with H2O2
in comparison to
persulfate oxidation
system due to the
limited radical
scavenging.

[78]
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Table 1. Cont.

System Pollutants Conditions Performance Mechanism and Notes Ref.

25. Heterogeneous
Nanoscale Zero
Valent Ion (n-ZVI)

Glyphosate (GLY) Eventual addition of
H2O2. Optimal
pH 3–4.

Up to 87% of GLY
removal (30 min) in
Fenton mode. Effects
of pH, conc. H2O2,
n-ZVI dosage.
Efficiency also in tap
water (100%
degradation in 40 min),
despite potentially
interfering ions.

Adsorption and
Fenton (after H2O2
addition).

[79]

* Legend: QDs = Quantum Dots; CB = conduction band; e− = electrons; h+ = holes; λ cut-off < 420 nm indicates
visible light; TOC = Total Organic Carbon; NPs = nanoparticles; ORR = Oxygen Reduction Reaction. For the sake of
clarity, when mechanisms are indicated as “Fenton” for brevity, they have to be considered Fenton-like processes.

In the next subsections, the discussion, starting from the data of Table 1, will bring up
several subjects, citing material types from 0D to 3D, from inorganic catalysts to organic
substances, and from mono-element to binary and mixed systems, referring to the possibil-
ity of tuning the compositions with dopants or with the formation of composites/hybrids.
The surface physical properties (area, porosity, surface charge), the chemical defects, such
as oxygen vacancies, and a hint regarding the role of synthesis have also been taken into
account. In Figure 4, the main points of this study are depicted.
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2.1.1. Considerations on Structures and Morphologies

In heterogeneous systems, the role of materials is determined not only by their chem-
ical activity in a strict sense, but also by other physical–chemical characteristics, such as
the materials’ structures and morphologies. As the catalyst surface in the H2O2-mediated
processes is involved in the adsorption and dissociation of oxygen/water molecules and
oxygenated intermediates, a favorable surface charge, and the increase in the specific sur-
face area and, thus, the number of active sites has been pursued as strategies to accelerate
the reactions [80,81]. In this regard, Farhadian et al. [82] highlighted the importance of the
support within composites/functionalized materials in a review focused on mesoporous
silica with high surface area and high pore volume, capable of loading and dispersing
catalytically active iron species for heterogeneous Fenton oxidation reactions. Indeed, the
large cavities of the silica support can facilitate the mass transfer processes, and the high
surface area of these materials increases the number of active sites, allowing for a more
intimate contact with contaminants. Strategies for enhancing the catalytic performance
of iron/silica composites were indicate, such as the simultaneous loading of different
metals and the design of multimodal pore supports, surface functionalization to favor the
distribution of active sites, and the use of radiation, ultrasound, and electrolysis.

In the same direction, entries 1–5 and 11 in Table 1 report the presence of 0D (quantum
dots), 1D (carbon nanotubes) and 2D materials (polyacrylonitrile fiber mesh, graphitic
carbon nitride, carbon cloth), also in combination. Salunkhe et al. [83] dedicated a review
to 0D–2D synergistic nanocomposites for photocatalytic applications: the size-dependent
bandgap tunability and effective charge carrier production of quantum dots can be ex-
ploited together with graphitic-C3N4 features, such as low toxicity, chemical and thermal
stability, visible light absorption, n-type semiconducting property, and a configurable
bandgap. Graphitic-C3N4 has been widely used for the photocatalytic degradation of
pollutants alone or in co-presence with other compounds, such as MgO, Bi2O3, MoO3/Ag,
Au/Ni2P, etc. [84–91]. Among the attempts to exploit graphitic-C3N4, Torres-Pinto et al.
prepared these materials as metal-free photocatalysts able to generate hydrogen peroxide
and, in turn, •OH in the presence of dissolved oxygen when irradiated by visible light [92].
Adding low dosages of dissolved iron promoted a Fenton process and the C3N4 photocat-
alytic system improved the mineralization of resorcinol, phenol, gallic acid, and benzoic
acid at a natural pH by approximately 1.2 times.

Graphene and reduced graphene oxide (rGO), 2D versatile carbon materials, have
demonstrated excellent mechanical properties, high charge-carrier mobility, high specific
surface area, a large number of functional groups and good electrocatalytic activity, at-
tracting increasing attention for environmental applications as adsorbents, photocatalysts
and electrocatalysts [93]. Many composites have been designed, as well, with doping
elements, nano zero-valent iron, oxides, mixed oxides, and sulfides in binary and ternary
systems [94–100]. An interesting application of these materials is also the possibility of
transforming them from 2D to 3D systems, such as aerogels, sponges and foams, which
possess enhanced porosity and lightness as inner characteristics [101,102]. For instance,
a novel cathode of macroporous graphene aerogel (GA) with a high specific surface area
was proposed for the electro-Fenton reaction, efficiently and continuously producing in
situ H2O2 to degrade antibiotic ciprofloxacin [97]. The good mineralization efficiency was
attributed to the relevant number of macropores of GA that acted as reaction traps to
accelerate the electro-generation of H2O2, subsequently decomposed by Fe2+ to form •OH.
Simultaneously, the strong charge transfer ability of GA was beneficial to the conversion of
Fe3+/Fe2+, making this material a promising candidate material for electro-Fenton cathode
due to its low cost, high efficiency and corrosion resistance.

For similar reasons connected to morphology, biochars and active carbons have been
widely employed in H2O2-mediated processes (entries 21 and 22 in Table 1). Indeed, active
carbons are produced from carbon-based compounds—often non-renewable (i.e., coal,
petroleum residues, peat, lignite and polymers)—by the combination of a pyrolytic process
and chemical or physical treatments through activators such as chemicals (acids, alkalis,
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salts) or gases (i.e., steam, CO2, N2) [103,104]. Biochars, instead, were initially defined
as carbonized biomass (formed under a low O2 environment from agricultural residue,
animal waste, or refuse of woody plants) and they can also be subjected to further physical–
chemical transformations to improve surface features [103,104]. For both active carbons
and biochars, the raw material, together with the production technique and operating
temperature, have an important influence on product yield and composition [101]. In
their review, for instance, Ribeiro et al. [105] discussed the various activities of carbon
materials as catalysts on their own and hybrid magnetic carbon nanocomposites in catalytic
wet peroxide oxidation reactions for the degradation of organic pollutants. Apart from
purely iron-based compounds that are currently being developed [106,107], several other
doping/functionalizing moieties have been used on biochar and active carbons, such
as Ag3PO4 [108], MnO2, nitrogen [109], boron [110], B/N/graphene [111], N/S/Fe [112],
FeAl-layered double hydroxide [113], copper oxides [114–116], CuNi [117], and Sr/Ce [118].

Other efforts to improve the morphological and textural features have been made
by acting directly on inorganic active phases, as in the examples of entries 10 and 11 in
Table 1, where crystalline porous solids [119] (zeolites and a metal–organic framework,
MOF) have been used, taking advantage of to their large surface area, tunable porosity
and chemistry [120–122]. In particular, in entry 11, MIL (Materials of Institute Lavoisier)
indicates one of the most popular MOFs and MIL-101 (Fe) is the one assembled by 1,4-
benzene dicarboxylate ligand and iron(III) cation [123].

2.1.2. Considerations on Chemical Compositions and Stability

Among the inorganic species used as active phases in hydrogen-peroxide-mediated
processes, the simplest compositions are zero-valent metal nanoparticles (e.g., Fe0, Al0,
Zn0, Cu0) [124–130], which bear strong chemical reducibility, high efficiency, and large
specific surface although the main drawbacks are the tendency towards agglomeration
and oxidization [131]. Nanoscale zero-valent iron (n-ZVI) is certainly the most utilized
in environmental applications, see entry 25 in Table 1. The typical reaction initiating the
whole process is the slow-releasing source of dissolved Fe2+ in acidic solutions, starting a
Fenton-like pathway [41,79,127]. Al0 was reported to be able to produce hydrogen peroxide
in situ in water at neutral conditions and further decompose H2O2 into •OH in an acidic
solution [125]. Other reaction types that zero-valent metal nanoparticles can support are,
for example, simple photocatalysis or ozone-based processes [124,128].

Other important categories of materials exploited in H2O2-mediated processes are
metal sulfides, metal oxides and mixed oxides. Metal sulfides have been presented in Table 1
(entries 12 and 13) in combination with iron since they can accelerate the Fe3+/Fe2+ cycle
through the exposed reducing metal active sites or directly participate as a co-catalyst in the
reaction, activating the oxidant to generate active radicals [41]. However, these compounds
can be employed as principal active phases. According to the previous findings, there
are two general mechanisms commonly proposed for metal sulfide-based AOPs. One is
the improvement of the electron transfer efficiency resulting from the reductive S2− on
the catalyst surface; the other one is the protons’ capture by unsaturated S atoms on the
surface of the metal sulfide, resulting in the formation of H2S and exposition of metal active
sites with reducing properties [132]. In general, the behavior of these compounds can be
designed by choosing the most adequate metal (Fe, W, Co, Zn, Mo, Pb, Cr, Cu) in the sulfide
since this factor has been reported to influence the performances [41,132]. An example
of a further fine-tuning effort was conducted by Bai et al. [133], who synthesized MoS2
photocatalysts with sulfur vacancies that in situ produced H2O2 and hydroxyl radicals.
The reaction was favored by the transformation of variable metal molybdenum atom,
Mo(IV)/Mo(VI), that effectively enhanced the degradation efficiency towards tetracycline
and diclofenac.

Among binary oxides, one of the first and most studied is TiO2, which is very well
known as a semiconductor photocatalyst, as explained in the Introduction. The limitations
of this system are mainly attributable to the high band gap of TiO2, which requires UV light
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to trigger the titania activity, and the rapid recombination of e−-h+ pairs, with consequent
photocatalytic efficiency reduction and radiation energy loss [134]. For this reason, many
efforts have been made to overcome these issues through metal and non-metal doping,
surface modification, and fabrication of composites with other materials. Iron and/or H2O2
assistance is a popular strategy in the literature [135–137]; here, two significant examples
of the combination of titania with iron, H2O2 and ultrasound to start different Fenton-like
processes are reported in Table 1, entries 14 and 15. More detailed information on the
modulation titania band gap, surface reactivity, charge transfer, and stability, among other
properties, has been extensively reported in ad hoc reviews [138–142].

To break free from titanium oxide in photocatalysis and iron oxides in Fenton-like
systems (entries 5–9, 16 and 17 in Table 1), a plethora of other binary oxides and their
various combinations have been developed, such as cobalt, copper, zinc, cerium, tin, and
tungsten oxides [143–152]. Different but interesting studies also concern metal peroxides
able to release H2O2, as recently reported for MgO2 in dye degradation and bacterial
decontamination [153], and for CaO2 in trichloroethylene abatement [154].

Mixed oxides in different crystalline structures, such as perovskite (ABO3), scheelite
(ABO4) and spinel types (AB2O4) [155–157], have been widely employed in environmental
depollution (entries 18–20 in Table 1). They are exploited for their ability to degrade pollu-
tants both in the presence and in the absence of hydrogen peroxide through their inherent
semiconducting and redox properties, or by forming heterojunction structures. Often, they
are employed as photocatalysts and electrocatalysts [158–165]. These materials with at least
two metal elements in the basic structure have the advantage of being regulable in many
characteristics, starting from the composition, which can bear multiple doping elements,
creating several combinations. Moreover, in many studies, the possibility of inducing
non-stoichiometry and charge compensation mechanisms is considered another important
tool to create defects such as oxygen vacancies inducing high oxygen mobility, unusual
element valence states, such as Fe(IV), and active redox couples [18]. For perovskite-type
oxides, for instance, activity descriptors based on the occupancy by electrons in the orbitals
of the active metal were proposed to explain material catalytic properties [166].

In general, when oxide materials are involved, catalytic activities have also been
related to the degree and symmetry of the crystalline structure [80,167].

Regarding the use of magnetic iron-based oxides, they have been presented as a
convenient tool not only to perform heterogeneous Fenton-like reactions, but also to allow
for a better and easier separation from the water medium [50]. Many works have described
these systems; for instance, in Table 1, they are exemplified in entries 6, 7, 9, and 17. Actually,
the possibility of recovery, regeneration and reuse of the active phase in decontamination
procedures is a fundamental parameter to define their sustainability. This aspect has been
stressed in many studies and is highlighted in Table 1 (entries 1, 6–10, 13, 14, 16, 17, 22).

As partially anticipated in Section 2.1.1 discussing 2D carbon materials, such as
graphitic carbon nitride, a novel frontier of H2O2 generation through photocatalysis is
the replacement of traditional inorganic photocatalysts with organic ones, addressing
remarkable advantages, such as narrow bandgap, adjustable band edge potentials, ability
to control surface configurations, and tunability of structural units to promote efficient
charge separation and transfer [168]. Various strategies to improve the activity and stability
of organic photocatalysts have been explored, such as the construction of donor–acceptor
structures, the design of conjugated structures, the incorporation of heteroatoms, the
enhancement of the internal electric field, and the substitution of functional groups. Some
examples of these compounds considered by Zhang et al. [168] are resorcinol-formaldehyde
resins, poly(3-(4-ethylnylphenyl)ethynyl)pyridine, and Covalent Heptazine Frameworks,
among others. Hydrogen peroxide generation was reported to occur by the anthraquinone-
mediated oxygen reduction reaction (ORR), the radical-related ORR, the water oxidation
reaction (WOR), and the dual ORR and WOR pathways.

Moreover, the role of natural-inspired organic substances as coadjutants in catalytic
and Fenton-like reactions for water depollution has been explored both in homogeneous
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and heterogeneous systems. In particular, humic-like substances (HLSs), given the intrinsic
influence of humic acids in natural ecosystems, have been investigated [4]. In a recent re-
view, García-Ballesteros et al. [169] pointed out that HLSs, which can even be isolated from
different wastes, are photosensitive and are able to generate ROS such as hydroxyl radicals
and singlet oxygen or triplet excited states upon irradiation (Equations (21)–(24)) [4,170].
This circumstance is particularly convenient when HLSs are complexed with iron to pro-
mote homogeneous (photo)-Fenton-like processes at mild pH, preventing Fe deactiva-
tion [171].

HLS + hν → 3HLS* (21)

HLS + hν → HLS+• + e−aq (22)

3HLS* + H-Substrate → HLS• + Substrate• (23)

HLSH• + O2 → HLS + HOO• (24)

Novel hybrid materials for heterogeneous catalysis have also been synthesized using
HLSs to induce photocatalytic properties [172,173]. In some cases, these materials were pro-
duced by combining HLSs with iron-based oxides to drive heterogeneous (photo)-Fenton
(or mixed heterogeneous/homogeneous) processes (as in entries 6 and 19 in Table 1) [170].

The effects of ligands in heterogeneous Fenton-like systems have also been explored
with different chemical substances, like organic acids (entry 23 in Table 1). For instance,
EDTA (ethylenediaminetetraacetic acid) was found to be able to enhance the activation rate
of H2O2 via the decrease in the redox potential of the Fe(III)/Fe(II) pair. Additionally, it
improved the utilization efficiency of hydrogen peroxide by preserving the electron-rich
Fe(II) under the attack of O2

•− and HOO• [174]. Also, in the case of semiconductor oxides,
the influence of ligands and complexes has been studied to enhance the photocatalytic
performances [175–177], and this further underlines the importance of even more careful
engineering of materials to make decontamination processes more efficient.

Lastly, the modulation of the physical–chemical properties of catalysts has also been
carried out by fine-regulating, during the synthesis, both the operating parameters and
the precursors’ types, which act to stabilize the final materials as well as impart specific
properties, for instance, specific surface charge and exposed functional groups [178–180]
(see entries 7, 9 and 19 in Table 1). A simplified roadmap for the development of functional
materials for H2O2-mediated processes is summarized in Figure 5.
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2.2. Enzyme-Driven Processes
2.2.1. Glucose-Oxidase-Based Bio-Fenton

The applications of the Bio-Fenton approach in water remediation are increasing since
the range of treatable pollutants is quite broad. In Bio-Fenton remediation processes, the
hydrogen peroxide necessary to activate the Fenton reaction is mainly provided by an
enzymatic reaction catalyzed by Glucose Oxidase (GOx) that occurs in mild pH conditions.
GOx is a stable oxidoreductase able that use oxygen as an electron acceptor to catalyze β-d-
glucose to d-glucono-δ-lactone by using the coenzyme FAD (Flavin Adenine Dinucleotide)
as an electron carrier [181]. The oxidation of β-d-glucose leads to the reduction of one
FAD molecule to the hydrogenated form FADH2; successively, d-glucono-δ-lactone is non-
enzymatically hydrolyzed to gluconic acid and the reduced coenzyme is re-oxidized to
FAD by a molecule of dioxygen, producing a molecule of H2O2 for each reaction cycle, as
in Figure 6.
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Protein Data Bank, entry: 1GPE) [182].

GOx in vivo is usually coupled with Catalase, which rapidly causes the dismutation
of H2O2; on the contrary, in environmental applications, GOx is mainly exploited when
coupled to a system able to activate Fenton or Fenton-like reactions. Table 2 provides
a summary of recent studies concerning several classes of environmental contaminants
removed by the Bio-Fenton reaction. To optimize the hydrogen peroxide production,
different aspects have to be taken into consideration. The amount of H2O2 produced
depends on both the concentration of the biocatalyst and glucose. Indeed, according to the
Michaelis–Menten model, at low concentrations of glucose, the rate of H2O2 production is
linearly proportional to its initial amount, but the reaction rate decreases when the glucose
concentration increases until reaching a maximum value, which, in turn, depends on the
concentration of GOx [48,183].

Huang and co-workers [184] highlighted the complex role of glucose in the Bio-Fenton
reaction, reporting that, at a too-high concentration, it could also act as a hydroxyl radical
scavenger, inhibiting the oxidation reaction. The optimization of hydrogen peroxide
generation could be obtained, therefore, by using specific techniques, which allow for the
evaluation of the influence of different variables on the reaction outcomes [185].

Gluconic acid formed from the oxidation of glucose makes the process a chelate-Bio-
Fenton, since it is a well-known chelating agent for ferrous and ferrate ions and is also
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used in non-enzymatic AOP processes to avoid precipitation of iron hydroxides at neutral
pH [186]. Ahuja et al. [49] observed a 100% Fe(III) chelation with a ligand–ion ratio of 1:1 at
pH 4 and an increasing concentration of chelate complexes with pH, demonstrating the ad-
vantage of using Bio-Fenton at circumneutral pH. The same authors [49] also demonstrated
that the gluconate-complex could directly react with H2O2 or be the source of iron ions.

In order to ensure high efficiency in milder conditions, the Bio-Fenton reaction can
be performed with iron citrate instead of iron sulfate [187–190]. However, in general,
the introduction of iron as a homogeneous reactant can lead to the formation of iron-
containing sludge [191,192]. Therefore, heterogeneous Fe sources such as iron oxides
and oxyhydroxides, like Fe3O4 (magnetite), γ-Fe2O3 (maghemite), α-Fe2O3 (hematite),
α-FeOOH (goethite) [193], or green rust [194] have also been employed. These solids
prevent sludge formation, improve Fenton efficiency in a wider range of pH, and allow for
their reuse.

A change in concentration and availability of iron ions with pH is a fundamental
factor that influences the efficiency of the Fenton reaction [195]; furthermore, it is well
known that pH affects the enzymatic activity. Wang et al. [196] found that the removal of
trichloroethene by a Bio-Fenton reaction carried out with GOx immobilized on magnetic
particles at the equilibrium state did not depend on the pH, but this parameter affected the
reaction rate that decreased by approximately 60% when the pH increased from 3.6 to 9.
Liu and co-workers [197] demonstrated that strongly acidic and alkaline environments
significantly inhibited the 4-chlorophenol degradation, decreasing from 87.6% at pH 7 to
only 55.2% at pH 3 and 35.8% at pH 11. This degradation trend follows the hydrogen
peroxide production, which is minimal at pH 3 and 11, while it has a maximum at pH 7.
The authors underlined that during the Bio-Fenton reaction, whatever the initial pH value,
there was an increase in the acidity of the solution due to the production of gluconic acid.
Therefore, the efficiency of the reaction was only maintained if the variation in pH was
limited within the activity range (4.5–7).

Another crucial factor is the temperature. An optimal range between 25 and 60 ◦C for
GOx catalytic capability was reported. As for the pH, the temperature mainly influences
the kinetics of the reaction more than its final outcome. Huang et al. [184] found a 2.8-fold
increase in kobs for trichloroethene degradation when the temperature increased from 15
to 40 ◦C. A similar trend was also reported by Karimi et al. [198] for the decolorization of
malachite green; in this case, a slight reduction in the decolorization kinetic was already
observed at 35 ◦C, probably due to a partial denaturation of the enzyme. On the contrary,
Wang et al. [196] showed that enzyme immobilization could improve enzyme thermal
stability, reporting for GOx immobilized on magnetic particles an enhancement in activity
with increasing the temperature from 15 to 40 ◦C, with consequent reduction in the time
needed to reach the equilibrium from 96 h to 24 h.

The coupled effect of thermal stability and improvement in the enzymatic activity was
also reported by Zhao et al., who found that 3,4-dimethylaniline was removed with a higher
rate by GOx immobilized on Kaoline (Kaoline@GOx) than a free GOx system [183]. The
authors suggested that this effect was due to an enhancement in GOx spatial conformation
when the enzyme was fixed on the support.

Recently, some studies have reported an improvement in Bio-Fenton efficiency when
appropriate UV-light irradiation was applied. Liu and co-workers [197] observed the
evolution of hydrogen peroxide produced by GOx immobilized on Kaoline in the presence
of organic green rust as a source of iron. Changing the UV-light intensity, the equilibrium
concentration of H2O2 first increased with the irradiation (from 0 to 150 µW cm−2) and
then decreased with further raising the irradiance up to 400 µW cm−2. Consequently, the
degradation percentage of 4-chlorophenol followed the same trend. The authors proposed
that the mechanism at the basis of the variation in the enzymatic activity could be related
to the photo-excitation of the cofactor FAD into FAD*, which induced a glucose oxidase
stronger reactivity. Indeed, the FAD cofactor shows high absorption capacity at 250–300 nm
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and strong UV light tolerance [199]. Obviously, excessive light intensity causes enzyme
inhibition and denaturation.

Very few works investigate the Bio-photo-Fenton strategy for environmental remedi-
ation. Ghatge and co-workers [200] studied the degradation of sulfonated polyethylene
employing glucose oxidase immobilized on TiO2. They demonstrate the synergy between
Bio-Fenton and light irradiation in the production of reactive species following the con-
centration of the degradation products. Indeed, compared to the Bio-Fenton degradation
using free GOx, 21-fold and 17-fold higher amounts of acetic acid and butanoic acid were,
respectively, released by the Bio-photo-Fenton reaction after incubation for 6 h.

Table 2. GOx Bio-Fenton systems for pollutant removal mediated by H2O2 (acronym not explicated
elsewhere: COD = Chemical Oxygen Demand, U = unit).

Pollutant Performances Conditions Notes Ref

1.Trichloroethene (TCE) Removal after 192 h
- TCE 5 mg L−1: 76.2%
- TCE 50 mg L−1: 94.1%.

200 mg magnetic
nanoparticles (MIG);
2.5 mM Glucose.

- Gox immobilized on MIG
- Recycled for 4 cycles
- Effectiveness in the ranges
of T 15–45 ◦C and of
pH 3.6–9.0
- Influence of inorganic
ions: Ca2+ >Mg2 + >Cu2+

and H2PO4
−> Cl−>

SO4
2−.

[196]

2. 4-chlorophenol (4-CP) Removal after 250 min
- GOx@Kaolin/OGR: 77.5%
- GOx@Kaolin/OGR/UV:
96.1%.

4-CP: 5 mg L−1

UV: 150 µW cm−2

T: 25 ± 1 ◦C
OGR: 250 mg L−1

GOx@Kaolin: 2.5 U mL−1

Glucose: 5 mmol L−1.

- GOx immobilized on
Kaolin (GOx@Kaolin)
coupled with organic green
rust (OGR, source of iron)
and enhanced by UV light
- Reusability 6 cycles.

[197]

3.Trichloroethylene (TCE) - After 24 h at pH 7
Ground water: 30% or 48%
if doped with additional
H2O2 (after 3 h).

TCE: 60 mg L−1

Glucose: 60 mM
GOx: 1 mg mL−1

Fe: 25 mg L−1.

- GOx in solution
- Organic matter of ground
water acts as a radical
scavenger.

[201]

4. Polycyclic aromatic
hydrocarbons (PAHs):
Naphthalene (NAP),
Anthracene (ANT), Pyrene
(PYR)

- After 48 h, neutral pH,
removal%: 95.1%, 75.4%,
and 85.2% for NAP, ANT,
and PYR
- COD reduction%: 28.6%,
13.8%, and 30.8% for NAP,
ANT, and PYR.

PAH: 50 mg L−1 each
GOx: 10 U
Fe(III)citrate: 0.1 mM
Glucose: 2 mM.

- GOx in solution
- Evaluation of PAHs
concentration and COD to
evaluate the mineralization
- Bio-Fenton as
pre-treatment to enhance
PAHs removal by activated
sludge: COD removal from
33% to 72%.

[189]

5. Bisphenol A (BPA) After 10 days of incubation
Removal of 80%.

BPA: 0.1 mM
GOx: 10 U
Glucose: 32 mM
Fe(III)citrate: 0.5 mM
pH 5.3.

- GOx in solution. [188]

6. Chloro-acetanilide
herbicides:
acetochlor,
alachlor, metolachlor,
propachlor, butachlor

After 5 days, degradation
%:
acetochlor: 72.8%
alachlor: 73.4%
metolachlor: 74.0%
propachlor: 47.4%
butachlor: 43.8%.

GOx: 10 U
pH 5.5
Fe(III)citrate: 0.5 mM
Glucose: 32 mM
Each herbicide 0.1 mM.

- GOx in solution
- Influence of chemical
structure of herbicides and
particularly of R-O-R’
groups.

[187]
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Table 2. Cont.

Pollutant Performances Conditions Notes Ref

7. Trace organic
contaminant (TrOCs)
(mefenamic acid,
ketoprofen, caffeine,
carbamazepine,
trimethoprim, fenofibrate,
diuron, carbendazim,
thiabendazole)

After 360 min pH 7
mefenamic acid: 68.54%
ketoprofene: 44.7%
caffeine: 36.1%
carbamazepine: 44.1%
trimethoprim: 46.4%
fenofibrate: 20.3%
diuron: 89.4%
carbendazim: 73.1%
thiabendazole: 88.9%.

Glucose: 1 M
GOx: 100 U mL−1

pH 7
50 µg L−1 mix of TrOCs
T: 30 ◦C
H2O2:FeSO4 = 50:1.

- GOx produced from
Aspergillus niger using
Casuarina equisetifolia
biomass in a pilot-scale
- Municipal wastewater as
a matrix
- Influence of the rate H2O2:
FeSO4.

[185]

8. Trichloroethylene (TCE) After 8 h
Removal of 78%.

Glucose: 2.5 mM
Fe(II): 0.5 mM
GOx: 10 U mL−1.

- GOx in solution
- Efficiency maintained in
the pH range 3–6 and in a
T range 15–30 ◦C.

[184]

9. Sulfonated polyethylene
(SPE)

After 6 h with free GOx,
concentration degradation
products:
Acetic acid: 0.22 mM
Butanoic acid: 0.01 mM;
After 6 h with TiO2-GOx:
degradation product conc.:
Acetic acid 4.78 mM
Butanoic acid 0.17 mM.

GOx free:
Glucose: 32 mM
GOx: 1 U mL−1

pH 5.5, T: 30 ◦C
SPE: 1 mg mL−1;
TiO2-GOx:
As above, except for
10 U of TiO2-GOx
Xe lamp 150 W, 400 nm cut
off.

- GOx both free and
immobilized on TiO2
particles
- Degradation follows
studying the product
formation (acetic acid,
butanoic acid, isovaleric
acid, 1,2-ethanediol
monoacetate).

[200]

10. Atrazine (ATZ) After 360 min
72.8% removal.

Phosphate buffer: 5 mM
GOx: 10 µmol min−1

Glucose: 3 mM
Ferric citrate: 0.5 mM
ATZ: 0.1 mM
pH 5.8.

- GOx in solution
- Toxicological assay and
by-products study.

[190]

11. 3, 4-Dimethylaniline (3,
4 DMA)

After 180 min, removal of
86.55%.

3, 4-DMA: 30 mg L−1

Green Rush: 1 mM in Fe(II)
and 1 mM in Fe(III)
Glucose: 5 mM
pH 7
Kaolin@GOx: 2.5 U mL−1.

- GOx immobilized on
Kaolin (Kaolin@GOx)
- Organic green rust as a
source of iron.

[183]

2.2.2. Bi-Enzymatic Processes for Water Treatment
Enzymatic Cycles Activated by H2O2

Many enzymes require H2O2 to carry out their catalytic activity. Among them, peroxi-
dases are the most studied for environmental applications.

Peroxidases are able to bind H2O2 to their Fe-heme prosthetic group. In the resting
state, the Fe(III) is coordinated by four nitrogen atoms belonging to heme pyrrolic groups
and one N atom of the side chain of an amino acid. As shown in Figure 7, the fifth ligand
can be the nitrogen of the distal histidine or the sulfur of a cysteine residue. The sixth
coordination position is usually free or occupied by a water molecule [202], which is easily
substituted by an H2O2 molecule. In a typical peroxidase active site, the distal side of the
heme is characterized by the presence of one histidine and one arginine residues, which
stabilize the coordination with the H2O2 molecule and favor the subsequent steps of the
catalytic cycle [203,204].
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Figure 7. 3D structure of Fe-heme site in (A) soybean peroxidase; (B) chloroperoxidase. Images
built by data from Protein Data Bank. Color legend: orange = iron; blue = nitrogen; red = oxygen;
green = carbon, yellow = sulfur; violet = manganese.

In the presence of organic or inorganic substrates, H2O2 oxidizes the Fe(III) to a ferryl
(Fe(IV)=O) radical, which can be reduced by inducing two steps of one-electron oxidation of
a wide variety of compounds with the production of two molecules of organic or inorganic
radicals and water (Figure 8A) [205].
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S• = radical product); (B) Chloroperoxidase (CYS = cysteine, GLU = glutamic acid, HIS = histidine,
ASP = aspartic acid, S = substrate, S-Cl = chlorinated product).

A quite different mechanism was reported for the heme-thiolate peroxidases, such as
chloroperoxidase (CPOs) and aromatic-peroxygenase (APOs).

CPO from Caldariomyces fumago fungi was the first discovered halogenating enzyme [206,207].
In addition to substrate halogenation, it also exhibits peroxidase, catalase, and cytochrome P450-
like activities [208]. The catalytic cycle leads to halide (chloride, bromide, and iodide, but not
fluoride) oxidation, but this is not fully understood.

Wagenknecht and Woggon [209] proposed the mechanism reported in Figure 8B, in
which the ferryl cation radical reacts with halides, reducing to Fe(III) and forming a complex
capable of catalyzing the chlorination of the substrate. The Fe(V)=O reduction is favored
by the three amino acid residues (GLU183, HIS105 and ASP106) that directly take part in
its protonation. In the absence of halides, this enzyme could act as a normal peroxidase
and follow the scheme in Figure 8A.

APOs are peroxygenases, enzymes able to transfer oxygen from peroxides to organic
substrates (aliphatic, aromatic and heterocyclic) [210]. For these reasons, they are very
useful for organic functionalization and synthesis reactions.
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Dye-decolorizing peroxidases (DyPs) are probably the most recent heme-containing
enzyme family discovered. Indeed, they were isolated in 1999 from the basidiomycetous
fungus Bjerkandera adusta Dec 1 strain [211]. DyPs are so called due to their capability
to oxidize synthetic high-redox potential anthraquinone-type dyes [212], but they can
also react with other substrates like β-carotene and aromatic sulfides [213]. This different
catalytic activity is probably related to some differences in the active site, which contains
an aspartate residue in place of the histidine on the distal side [213], and a different
arrangement of the secondary structure with the presence of β-sheets. Recent studies on
the catalytic cycle suggest an electron transfer from the active site to the enzyme’s surface
occurs, allowing for the oxidation of large molecules that cannot physically enter the active
site and favoring the relatively low specificity of these enzymes. This long electron transfer
pathway seems to involve tryptophan and tyrosine residues that can form stable radicals
and directly participate in the transfer [214].

Glucose Oxidase Coupling with Peroxidases

There is extensive research about the employment of free enzymes, such as peroxidases,
for environmental applications [215], but in the last few decades, articles relating to immobi-
lized enzymes have become increasingly widespread. As reported by Rigoletto et al. [216],
different inorganic supports have been developed not only to improve enzymes’ stability
but also to produce in situ H2O2 to initiate the catalytic cycle [217–219].

It is well known that peroxidases could be inactivated by high concentrations of
hydrogen peroxide [220–222]; therefore, a controlled in situ H2O2 production could be
useful to avoid these drawbacks and maintain a stable enzymatic activity.

The possibility of exploiting the enzymatic generation of hydrogen peroxide coupling
a peroxidase with GOx in a self-sustaining bi-enzymatic system has become widely studied,
mainly for bio-sensing [223,224], but also more recently for environmental application.
Although, in some studies, GOx is added to the solution as a homogeneous reagent together
with glucose [225], the most widespread trend is to immobilize GOx on a solid support or
to co-immobilize it with peroxidase in order to guarantee its reuse.

Co-immobilization of enzymes could enhance the system performances due to a
reduction in mass transfer between peroxidase and H2O2. Furthermore, the formation
of gluconic acid induced by GOx in the peroxidase microenvironment helps to reach a
favorable pH value for peroxidase, thereby accelerating the reaction and enhancing the
catalytic cycle. The resulting consumption of H2O2 prevents its accumulation on GOx,
avoiding its inactivation [226,227]. This synergy ensures improved system performances,
as reported by Gao and co-workers, who observed a higher Orange G decolorization with
GOx and CPO co-immobilized on magnetic graphene oxide (MGO) with respect to those
obtained employing GOx and CPO immobilized individually [228]. The co-immobilization
on magnetic material also permitted an easy recovery of the support and the reusability of
the system. Indeed, the authors reported that GOx-CPO-MGO could be employed for six
cycles of water treatment with more than 38% residual activity retained after the last cycle.

Enhanced performances of co-immobilized enzymes have also been reported by Gu
and co-workers [229]. The authors employed dopamine and modified cellulose–chitosan
composite beads for a covalent loading of Horseradish peroxidase (HRP) and GOx and
tested them to degrade acridine in wastewater, obtaining an almost complete removal.
However, the removal efficiency was reduced from 99.0% to 61.2% after six reaction cycles;
the decrease was tentatively ascribed to the mediator attack on the amino acid groups
on the surface of the bi-enzyme system or to the loss of enzymes during application and
washing.

Studies on reusability and stability for long storage periods are fundamental to estimat-
ing the real applicability of the bi-enzymatic systems in industrial applications. Actually,
the literature confirms the possibility of adopting this strategy for the treatment of a large
number of contaminants, from dyes [230,231] to other organic contaminants such as ferulic
and caffeic acids [232], Bisphenol A [226], and endocrine disruptors [233].
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3. Detection Methods for H2O2

In this work, different strategies for in situ hydrogen peroxide production have been
identified. Important tools for the optimization of these reactions are represented by H2O2
detection and quantification methods.

According to most of the studies cited in this review, the commonest strategies em-
ployed in the environmental field are colorimetric assays. They are widely used because
of their simple setup and easy spectrophotometric detection. They are usually based on
chemical reactions involving hydrogen peroxide as a reagent with the formation of colored
products. A summary of the literature concerning these methods is shown in Table 3.

Some colorimetric assays date back to the 1980s, but they are still employed, such as the
I3− assay, in which the H2O2 concentration is determined following the changes in absorp-
tion at 352 nm wavelength [57,133,184,234,235], or the reaction between 4-aminoantipyrine
and phenol in the presence of peroxidase where the maximum absorption at 505 nm of the
red product is monitored [234,236,237]. Another method is the vanadate one, based on the
measure of 450 nm [238–240]. Moreover, some colorimetric assays are commercialized as a
kit, like the AmplexTM red hydrogen peroxide/peroxidase assay kit [241] (Thermofisher,
Waltham, MA, USA) and the PAKTEST [242] (Kiouritsu Chemical Check Lab., Yokohama,
Japan). However, not all colorimetric methods are exploitable for monitoring hydrogen
peroxide production during AOP treatments. For example, permanganate titration cannot
be used since Fe2+ ions react with permanganate, affecting H2O2 detection [240].

Recently, enzyme-mimetic materials have been developed for luminescent sensing
of H2O2 in bioassays. They show a very low limit of detection (LOD) and are based on
fluorescence [243,244].

Another important class of hydrogen peroxide detection methods is represented by
electrochemical sensors in which H2O2 can be oxidized or reduced on the electrodes’
surface. They show higher sensitivity and selectivity, cost-effectiveness, relatively shorter
response time, and miniaturization capabilities. The research in this field is focused on
overcoming drawbacks such as overpotentials and low kinetics by modifying the electrode
surfaces with different materials, including dyes, redox proteins, metal oxides, and redox
polymers, among others [245]. Recently, the interest in nanomaterials has grown and there
is no shortage of combinations with the materials listed above that can improve H2O2
electrocatalytic sensing.

As seen in the previous paragraphs, a wide range of heme-containing proteins exists in
nature that can use H2O2 in their catalytic cycles (peroxidases, cytochrome-c, hemoglobin,
myoglobin, hemin, etc.), and, for this reason, they are also exploitable in H2O2 detection.
Different studies suggest that HRP-based electrodes show good affinity with H2O2 and
noticeable performances [246,247]. In order to ensure an optimized electron transfer, these
proteins are often immobilized on highly conductive materials, both organic and inorganic,
with a large surface area [248]. Interesting examples of these materials that also find
application in the bio-medical sector are gold nanoparticles [249–251], nanometric metal
oxides [252,253], metal nanoparticle–MOF [254–257], carbon nanotube–MOF [258] and
metal nanoparticle–polymers [259,260].

Despite their efficiency, redox proteins could degrade over time and in harsh en-
vironmental conditions. To overcome these drawbacks, the development of inorganic
materials with enzyme-mimetic activity is becoming more and more attractive. Most of
these inorganic materials are mono- and bi-metals nanoparticles (AuNPs, Ag-NPs, Pt-NPs,
Ag-AuNPs, Ni-CoNPs, etc.) or transition metals oxides and, often, to avoid aggregation
on the electrode surface, they have been dispersed in polymeric matrices or introduced in
MOFs. A broad description of these electrodes can be found in the comprehensive review
carried out by Duanghathaipornsuk and co-workers [248].

Among electrochemical sensors with peroxidase-like activity, those based on Prussian
Blue (PB) and its Analogues (PBAs) are largely used. They are metals hexacyanoferrate
and can catalyze the reduction of H2O2 at low potentials. There is a wide variety of PBAs
containing one or two transition metals that occupy the outer coordination sphere and that
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define the selectivity for the detection of different analytes, both organic and inorganic [261].
PBAs employed for H2O2 detection usually contain iron coupled with another transition
metal like Ni [262,263], Co [264,265] or Mn [264,266].

With the enhancement of nanotechnologies, researchers developed PB nanoparti-
cles [267] to improve pH stability and sensitivity. Zang and co-workers studied the in-
fluence of nanoparticle size on electrocatalytic performance, finding that the sensitivity
drops exponentially with increasing particle dimensions [268]. These nanozyme-based elec-
trodes could also be affected by PB degradation during the electrochemical H2O2 reduction
due to the solubilization of ferric hexacyanoferrate induced by the formation of reactive
species [269]. Since this could limit the real use of the sensor, stabilization strategies, such
as nanoparticles’ coverage or dispersion in different polymers, have been designed. For
example, Unzuncar et al. [270] developed a two-layer interface based on carboxymethyl
cellulose and poly(3,4-ethylene dioxythiophene) with high stability and sensing behavior,
not affected by interfering molecules present in tap water. More detailed syntheses of PB
and PBA for electrochemical sensing can be found in some recent reviews [261,271].

Finally, many other enzyme-free electrochemical-based sensors for H2O2 are based on a
wide range of materials, i.e., metal–organic frameworks [272], carbon nanocomposites [273],
graphene oxide [274], and MXenes [275].

It must also be mentioned that some methods employing liquid-chromatographic
analysis for the detection and quantification of hydrogen peroxide concentration in solution
were developed. Some of them are based on the deprotonation of H2O2 to HO2

−, which
occurs when the pH of the eluent is higher than the acid-dissociation coefficient of H2O2
(pKa = 11.6). The revelation via a UV-detector can be carried out after separation in an
ionic chromatography column with a LOD of 0.027 mg L−1 [276]. Other studies proposed
the use of acidified potassium iodide solution as a mobile phase and the replacement of
the reverse phase column with a series of capillary columns. Tantawi et al. [277] found
a LOD of 8.29 × 10−4 mM employing this detection strategy. The authors reported that
the method also shows high robustness by maintaining a high regression coefficient and
excellent sensitivity in real matrices.

Since H2O2-mediated processes lead to the formation of ROS, their quantification is
also extremely important for monitoring the depuration stages. Although it is not within the
scope of this review, we can cite Electron Paramagnetic Resonance (EPR) and scavenging
techniques as the main strategies for ROS identification. Specific papers have been devoted
to summarizing the state-of-the-art on these topics [278,279].

Table 3. Spectrophotometric methods for H2O2 detection and quantification (acronyms not explicated
elsewhere: NADPH = reduced Nicotinamide Adenine Dinucleotide Phosphate; TMB = 3,3′,5,5′-
tetramethylbenzidine; ABTS = 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid).

System Wavelength Conditions Ref

1. Phenolphthalein method 552 nm - 0.24 mL of phenolphthalein stock
solution: 0.02 g mL−1 Phenolphthalein
solution containing 10 g of NaOH, 5 g
of zinc
- CuSO4 solution: 0.48 mL, 0.01 M
- 100 mL of water.

[234]

2. Iodide method 352 nm - 2 mL of solution A (66 g L−1 KI; 0.2 g
L−1 of (NH4)6Mo7O24; 2 g L−1 of
NaOH)
- 2 mL of solution B (20 g L−1 of
potassium hydrogen phthalate)
- 6 mL of Peroxide samples.

[57,133,234,235]
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Table 3. Cont.

System Wavelength Conditions Ref

3. Oxidation of NADPH 340 nm - Phosphate buffer: 0.04 M, pH 7.75
- EDTA: 4 × 10−4 M
- Sodium azide: 4.2 × 10−3 M
- Glutathione peroxidase: 8 × 10−8 M
- Reduced glutathione: 3 × 10−3 M
- NADPH: 5.6 × 10−5 M
- Glutathione reductase: 1 U
-Peroxide sample.

[234]

4. DMAB/MBTH/HRP 590 nm - 3-(dimethylamino)benzoic acid
(DMAB): 5 × 10−4 M
- 3-methyl-2-
benzothiazolinonehydrazone (MBTH):
2 × 10−5 M
- Acetate buffer: 0.1 M, pH 5.5
-HRP.

[280]

5. 4-
aminoantypirine/phenol/HRP

505 nm - 4 mL of 4-aminoantipyrine/phenol
reagent
(2.34 g L−1 of phenol, 1g L−1 of
4-aminoantipyrine, 0.001 M phosphate
buffer pH 6.9, 2.5 µM HRP)
- 6 mL of peroxide sample.

[234,236,237]

6. Nanoparticles decorated
Ce2(WO4)3 nanosheets
(CWNSs)

652 nm - TMB: 100 µL 8 mM
- CWNSs: 70 µL, 1000 µg mL−1

- Phosphate buffer: 400 µL, 50 mM pH 4
- MilliQ water: 330 µL
- H2O2: 100 µL
- LOD: 0.15 µM.

[281]

7. Ammonium metavanadate 450 nm - Metavanadate 6.2 mM
- Sulfuric acid 0.058 M
- LOD: 143 µM.

[238–240]

8. Fe3O4 magnetic
nanoparticles (MNPs) with
peroxidase mimetics

545 nm - ABTS: 24 µL, 60 mM
- Fe3O4 MNPs: 10 µL, 3.74 mg mL−1

- Acetate buffer: pH 4185 µL
- H2O2: 24 µL
- Incubation 45 ◦C for 10 min and then
diluted with 900 µL of water (after
MNPs removal) and analyzed.

[282]

9. Peroxidase-mimicking
metal−organic framework
containing catalytic Cu2+ and
luminescent Tb3+: PA-Tb-Cu
MOF
(PA = m-phthalic acid)

545 nm
Fluorescence
(310 nm exciting
wavelength)

- Acetate buffer: 960 µL, 10 mM,
pH 5.05
- 20 µL of PA-Tb-Cu
- MOF suspension: 11.73 mg mL−1

- Ascorbic acid: 10 µL, 200 mM
- H2O2 sample + water up to a final
volume of 1 mL
- Measure after 20 min incubation
- LOD: 0.2 µM.

[244]

10. CeO2 nanoparticles doped
with Eu3+

590 nm
Fluorescence
(330 nm exciting
wavelength)

- Samples prepared in potassium
phosphate buffer (KPi) or Phosphate
Buffered Saline (PBS) or 10% Farmigene
Stain Buffer (FBS)
- 125 g L−1 of nanoparticles
- Measure after 30 min of incubation
- LOD: 150 nM.

[243]
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Table 3. Cont.

System Wavelength Conditions Ref

11. Cobalt/bicarbonate
system

260 nm - Sodium oxalate: 25 µL,16.34 mM
- Cobalt chloride: 25 µL, 67.8 mM
- 2 mL of sample
Finally, the reaction volume is made up
to 2.5 mL with 270 µL of saturated
sodium bicarbonate solution.

[185,201,283,284]

12. Titanium oxalate 385 nm - 10 mL of peroxide sample
- 1 mL of 1 M sulfuric acid
- 1 mL of 50 g L−1 potassium titanium
oxalate solution
- 13 mL of water
- Measure after 5 min of incubation
- LOD: 29 µM.

[77,125,285]

13. N,N-diethyl-p-
phenylenediamine (DPD)

551 nm - DPD reagent (27 mL water, 3 mL
phosphate buffer, 6 µL methanol, 50 µL
of 10 g L−1 of DPD solution prepared in
sulfuric acid 0.5 M, 50 µL HRP 1g L−1)
- LOD: 0.77 µM.

[64,285,286]

14. p-hydroxyphenyl acetic
acid (POHPAA)

406–410 nm
Fluorescence
(315 nm exciting
wavelength)

- POHPAA reagent (POHPAA
270 mg L−1, HRP 30 mg L−1, NaOH 1
M, potassium hydrogen phthalate
8.2 g L−1 pH 5.8)
- LOD: 0.16 µM.

[285,287,288]

4. Criticalities and Perspectives

The processes based on H2O2 reactivity for environmental remediation have been
investigated in depth in terms of general lab-scale degrading performances, as revealed
from the significant number of research documents reported in this review. However, for
applicability in real-scale conditions, other aspects have to be taken into account, whose
schematic representation is depicted in Figure 9.
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4.1. Product Characterization, Toxicity and Influence of Environmental Factors

The first point concerns the properties’ study of the products formed during the
depuration procedure and their impact on the environment. The optimum should be to



Catalysts 2024, 14, 267 26 of 42

reach the complete mineralization of the pollutants into water and carbon dioxide, but this
is not straightforward, not only because the degradation efficiency can be lower than 100%,
but also because some treatments, such as those based on enzymes, occur through radical
reactions, which do not lead to the mineralization of the contaminants.

Therefore, toxic intermediates and by-products can be produced [289,290]. In this
sense, Hofman-Caris et al. [291] found that UV/hydrogen peroxide processes in drinking
water treatment may generate mutagenic by-products in particular conditions, mainly
influenced by parameters such as nitrate concentration (that can be subjected to photol-
ysis), the presence of natural organic matter, the UV spectrum of the lamps, and the UV
dose applied. The role of UV light has also been described in [292]. The comparison
among the toxicity levels of H2O2/UV, photo-Fenton and heterogeneous photocatalysis
(TiO2/H2O2/UV) processes for the treatment of strongly polluted colored wastewater was
analyzed as well [293,294]. The use of the system with titania resulted in the most effective
method to remove toxins, organic material, and color.

It is, therefore, necessary not only to identify the formed by-products [187,188], but
also to evaluate the toxicity of the resulting solution [190] and estimate COD values as
an indirect measurement of pollutant mineralization [189,295]. In this regard, Liu et al.
compared the COD values after the classic Fenton treatment and Bio-Fenton pre-treatment,
followed by active sludge treatment of real wastewater spiked with chlorophenol [197]. The
authors found that the resulting COD after the combined treatment was two times lower
than that obtained with classic Fenton only, suggesting that the combination of different
approaches improves the biodegradability of the selected contaminant.

Regarding biological contaminants, urban wastewater treatment plants are among
the main hotspots of antibiotic resistance spread into the environment. It was found that
UV/H2O2 processes may not be effective in minimizing the antibiotic resistance spread
potential into the environment since the death of bacterial cells, which results in DNA
release into treated water, may pose a risk for antibiotic resistance transfer to other bacteria
present in the receiving water body [296].

Moreover, the control of the hydrogen peroxide quantity used as the oxidant is im-
portant since it was found that toxicity increases by increasing H2O2 addition, causing not
only its undesirable excess in the effluent, but, in the absence of effective separation from
the heterogeneous active phase, also catalyst poisoning [38,293].

In general, applying remediation strategies to real conditions means considering the
influence of all the environmental factors that are intrinsic to the complexity of real systems,
such as the co-presence of ions and organic matter in water matrices that can compete with
the target chemical pollutants [201,297,298].

Indeed, wastewater or natural water contains inorganic ions (Ca2+, Mg2+, Cl−, H2PO4
−,

etc.) and dissolved organic matter that can influence the efficiency of the treatments. For
instance, the reduction of trichloroethene removal by Bio-Fenton treatment in the presence
of Cu2+ was demonstrated [196], as well as the inhibition of the GOx activity due to the reac-
tion with H2O2, which resulted in a reduced production of hydroxyl radical [299]. A similar
effect was also observed for Mg2+, which is known to hinder the Fenton reaction [300].
Anions, such as H2PO4

−, Cl− and SO4
2−, can form complexes with iron ions, reducing

their availability for the Fenton reaction [196]. Dissolved organic matter (DOM) in natural
water, similarly, can act as a radical scavenger, limiting the number of reactive species
available for substrate oxidation and leading to a decrement in pollutant degradation [301].
This kind of competition was also observed by Ravi et al., who reported a reduction in
trichloroethylene degradation by the Bio-Fenton reaction carried out with free GOx in
groundwater [201].

Also, in the case of pathogen contamination, this control is fundamental. Malvestiti et al. [302]
verified the efficiency of O3, O3/H2O2 and UV/H2O2 treatments to disinfect municipal effluents
and the influence of carbonate, nitrate and industrial contaminants. The results showed that all
AOP treatments were affected by the presence of nitrate and, particularly, carbonate. These ions
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reduced the inactivation of total coliforms and Escherichia coli. Ozone disinfection was the most
affected method by scavenging compounds.

Additionally, the selectivity of the decontamination process towards specific pollutants
is, in general, another rising theme in environmental research to ensure a higher low-
cost/effectiveness ratio and lower secondary pollution [303].

4.2. Processes’ Scalability, Cost Analysis and Environmental Impact

Real applications presuppose the scalability of the processes moving from laboratory
scale to pilot plants and full-scale plants. At the basis of the scalability process, there are
several critical points that have to be considered, such as oxidant conversion efficiency,
location of radical production and delivery (i.e., in situ generation or need for a transport
step) [304], and the study of kinetic parameters and degradation pathways [305]. All of
these have to be initially optimized through the development of proper catalysts with high
stability and activity; for instance, in the case of electrodes, they have to be characterized
by high activity and corrosion resistance, long working life span and limited synthesis
costs [305].

At the same time, the geometry and configuration of the reactors (e.g., batch mode vs.
continuous-flow systems), integration with different depuration systems (like biological
treatments), and operational costs have to be considered [304,306–308].

Obviously, each strategy shows intrinsic strengths and critical aspects that can limit its
development on a large scale. For instance, the high operational costs of lamps, together
with the difficult design of photoreactors and lower performances at neutral pH, are chal-
lenges for photo-Fenton full-scale applications [45], whereas the difficulty in distributing the
formation of cavities in the reactor could be the limiting factor of sono-Fenton scale-up [309].
More complete considerations on AOP scalability have been discussed in [289,304], which
also reported lists of pilot plants and full-scale plants of these wastewater remediation
approaches.

It is clear that the overall evaluation of the feasibility of depuration procedures must
involve the techno-economic aspects together with the environmental impact [101,310].

One widespread factor in evaluating the AOP processes is the consideration of the de-
mand for energy. An example of compared systems was reported by Maniakova et al. [298];
the authors claimed that a solar-driven process catalyzed by N-doped TiO2 was not yet
competitive with the system of Fe2+/H2O2/ethylenediamine-N,N’-disuccinic acid (EDDS,
chelating agent) under sunlight in the removal of CECs from secondary treated urban
wastewater because higher irradiation times were necessary, which would result in a larger
surface area for solar reactors.

From an economic point of view, the criterion of Electric Energy per Order (EEO),
which takes into account the electric power, the removal efficiency and the flow rate [311],
could be used to compare the cost of different AOP strategies [311,312], but it does not
consider other operating costs.

To have a more comprehensive overview of total process expense, several authors
proposed to evaluate the sum of the single source of cost: (i) power, (ii) chemicals, and
(iii) sludge/waste management (including transportation and disposal) [313,314].

A new criterion to compare AOPs has been proposed, namely the Accumulated
Oxygen-equivalent Chemical-oxidation Dose (AOCD), which comprises the accumulation
of the oxidant dose normalized to the treatment time. AOCD also takes into account
other important parameters such as current density, irradiance, wavelength, active surface
area and lamp, distance of the lamp, faradaic and quantum yields, number of electrons
exchanged, residence time, etc., depending on the AOP technique considered. The devel-
opment of tools for AOP comparison is fundamental to help legislators determine and
choose the best available techniques for water reuse as defined by the Industrial Emissions
European Union Directive 2010/75/EU [315].

Regarding the evaluation of the processes’ environmental impacts, the life cycle
assessment (LCA) methodology is a valuable and widespread support tool [316]. What
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emerges from most of the LCA outputs is that the main environmental hotspots of AOP
strategies are, in order of relevance, the energy supply, the H2O2 employment, and, finally,
the auxiliary chemicals.

Since energy is recognized as the main impacting factor, an appropriate choice of
energy source is fundamental. For instance, García-Montaño et al. [317] compared dif-
ferent photo-Fenton strategies and noticed that the use of solar irradiation decreased the
environmental impacts between 8.3 and 57.3%. Similar results have been reported by
Ttofa et al. [318], who found that using solar energy to also power auxiliary equipment,
such as pumps, lessened the calculated environmental impacts by up to 83%.

It can, therefore, be stated that investment in renewable energy could be effective in
decreasing the environmental repercussions of AOPs.

In studies that report a lower energy imprint, the contribution of chemicals to the
environmental impact grows, with a particular influence brought about by the use of
hydrogen peroxide and auxiliary chemicals (i.e., NaOH necessary to reach a proper water
pH after the treatment), or because of the substances released during the process [316].

From the materials’ and chemicals’ point of view, Costamagna et al. [319] investi-
gated the photo-Fenton processes through LCA methodology. The photo-Fenton reaction
carried out at circumneutral conditions, using the already mentioned soluble bio-organic
substances (BBS) as auxiliary agents, was compared with the traditional photo-Fenton run
at pH 2.8. The evaluation was carried out both at the laboratory level and at the pilot
plant scale. Working in mild conditions reduced the environmental burden associated with
the use of chemicals, but the decrement in effectiveness significantly increased the overall
impact of the system.

In the case of heterogeneous catalysis, the focus is primarily on the sustainability of
the materials, from their synthesis, possibly using greener strategies, to performances and
recyclability [101,320,321]. Some studies highlight that the choice of heterogeneous Fenton
can significantly reduce the environmental impact of the water treatments owing to the
reuse of the catalyst. On the other hand, a higher amount of H2O2 seems to be required
to degrade the same amount of pollutant, making the research of the least impactful
compromise necessary [322].

4.3. Final Considerations

As emerges from the discussion of the recent literature, the panorama of AOP tech-
niques is very diversified and effective for the remediation of different contaminated
aqueous matrices. An example of the evolution of depuration systems over time is repre-
sented by Fenton-like processes, which can overcome the main issues of classical Fenton
reactions, such as the addition of hydrogen peroxide, careful pH regulation in a narrow acid
pH range and formation of sludge, although other drawbacks are still required to be solved.
The regulation of the amount and type of energy involved, the low on-site production effi-
ciency of hydrogen peroxide, the design of reactors (not only in terms of operation modes,
but also chemical stability) and operational costs have to be optimized [16,27,45,323–326].
Issues related to the best compromise among efficiency, energy and chemical demand,
operating and monitoring aspects together with the economic convenience must similarly
be adjusted in processes based on photo-, electro-catalysis, etc.

It is, therefore, difficult to establish an absolute ranking of all the different techniques
since there are a multitude of facets that should be taken into consideration. However, it
is possible to summarize the main aspects emerging from the comparative reading of the
literature as follows:

• The use of AOPs in mild pH conditions can reduce additional process costs related to
the salinity increase, as it is induced in classic Fenton treatment by acidification and
further neutralization [315];

• In situ hydrogen peroxide production avoids high costs and hazards associated with
its transport, handling, and storage;
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• Homogeneous processes such as ozonization have been investigated and already
applied in the full-scale treatment of urban wastewater effluents [327];

• Heterogeneous catalysis shows several advantages with respect to homogeneous
processes, such as the recyclability of the catalyst, which can contribute both to cost
reduction and limitation of the environmental impact. However, this strategy does
not seem completely ready for full-scale application due to catalyst preparation costs,
effectiveness, stability, and reactor configurations [328];

• The main hotspot of the environmental impact is energy and, consequently, an appro-
priate choice of energy source can significantly reduce the total impact of the process;
thus, investment in renewable energies should be preferred;

• Since wastewaters are characterized by a complex composition, their contamination
cannot be solved by employing a single remediation technique. Effective hybrid
systems combining AOP techniques and/or biological treatments are reported in the
literature [315];

• AOP strategies have been reported among the best available technologies in a recent
review about wastewater reuse in European countries [315];

• Limited scale-up and techno-economic analysis are available for Bio-Fenton treat-
ments. Enzyme cost and stability could represent critical points for its real applica-
tions; however, some studies suggest that GOx production could be cost-effective and
scalable [185]. Moreover, as widely described above, the immobilization of glucose ox-
idase improves its stability towards oxidation and deactivation due to environmental
factors and ensures its reusability, making Bio-Fenton suitable for actual wastewater
treatment;

• Although, to the best of the authors’ knowledge, there are no reported pilot or full-
scale plants that integrate Bio-Fenton in wastewater treatments, its effectiveness as a
pretreatment to be coupled with conventional active sludge was highlighted by Wang
et al. [189].
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