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Abstract: This study explores the use of the iron-containing metal–organic framework (MOF),
Basolite®F300, as a heterogeneous catalyst for electrochemically-driven Fenton processes. Electro-
chemical advanced oxidation processes (EAOPs) have shown promise on the abatement of recalcitrant
organic pollutants such as pharmaceuticals. Tetracyclines (TC) are a frequently used class of antibi-
otics that are now polluting surface water and groundwater sources worldwide. Acknowledging the
fast capability of EAOPs to treat persistent pharmaceutical pollutants, we propose an electrochemical
Fenton treatment process that is catalyzed by the use of a commercially available MOF material to
degrade TC. The efficiency of H2O2 generation in the IrO2/carbon felt setup is highlighted. However,
electrochemical oxidation with H2O2 production (ECO-H2O2) alone is not enough to achieve com-
plete TC removal, attributed to the formation of weak oxidant species. Incorporating Basolite®F300
in the heterogeneous electro-Fenton (HEF) process results in complete TC removal within 40 min,
showcasing its efficacy. Additionally, this study explores the effect of varying MOF concentrations,
indicating optimal removal rates at 100 mg L−1 due to a balance of kinetics and limitation of active
sites of the catalysts. Furthermore, the impact of the applied current on TC removal is investigated,
revealing a proportional relationship between current and removal rates. The analysis of energy
efficiency emphasizes 50 mA as the optimal current, however, balancing removal efficiency with
electrical energy consumption. This work highlights the potential of Basolite®F300 as an effective
catalyst in the HEF process for pollutant abatement, providing valuable insights into optimizing
electrified water treatment applications with MOF nanomaterials to treat organic pollutants.

Keywords: MOF; electrochemical advanced oxidation processes; heterogeneous Fenton; antibiotics

1. Introduction

Antibiotics are one of the most commonly used pharmaceuticals worldwide to prevent
bacterial infections in both humans and animals. One particular group of antibiotics,
tetracyclines (TC), represent the highest percentage of antibiotics used due to their relatively
low cost and varied application for infections such as gastrointestinal infections, pneumonia,
and sexually transmitted infections [1,2]. Despite their popularity in treating a wide range
of conditions, these organic compounds do not degrade easily after use due to their
composition of various methyl, keto, and diethylamino functional groups [3]. Inefficient
removal of TCs during the wastewater treatment process combined with excessive use is
resulting in frequent pollution of surface water and groundwater systems [4]. As such,
it is essential to research treatment processes aimed at degrading TC in aqueous systems
to mitigate the harmful impacts of pharmaceutical pollution posed at both humanity and
aquatic ecosystems.

Electrochemical advanced oxidation processes (EAOPs) are emerging as one of the
newer environmental technologies to quickly degrade such organic pollutants in water.
These processes work by implementing electrochemically-driven reactions to generate
strong oxidants in situ such as hydroxyl radicals (•OH). The •OH is the second strongest
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known oxidant after fluorine with a standard reduction potential of 2.8 V vs. SHE [5].
Electrogenerated •OH reacts non-selectively with organics attaining their complete mineral-
ization [6–8]. The EAOPs are performed at standard pressure and room temperature while
utilizing electrons as a “cleaner and sustainable agent” instead of a chemical addition [9].
Among EAOPs, the electro-Fenton (EF) process emerges as a highly competitive approach
given the high efficiency of indirect •OH generation. In EF, the H2O2 is electrogenerated
at a carbonaceous cathode in the presence of Air/O2 according to reaction (1). Then •OH
is produced from the catalytic decomposition of H2O2 by a redox mediator (e.g., Fe2+)
following Fenton’s reaction (2) [10]. The major limitation of the EF process is the narrow
pH window of applicability defined between 3.0 and 4.0, given the precipitation of the
catalyst Fe2+/Fe3+. Heterogeneous Fe catalysts hold the promise of enabling a wider range
of applicability beyond acidic conditions. Furthermore, heterogeneous catalysts possess a
higher rate of reusability [11].

O2 + 2H+ + 2e− → H2O2 (1)

H2O2 + Fe2+ → •OH + Fe2+ + −OH (2)

Metal–organic frameworks (MOFs) are an emerging class of nanomaterials composed
of metal ions coordinated to organic linkers. These materials self-assemble into crystalline
frameworks with extremely high porosity and surface area that is advantageous for nano-
material engineering in varied industries such as drug delivery, gas storage and separation,
and environmental remediation applications [12–14]. Within environmental research, MOFs
have been specifically studied for photo-Fenton (PF) degradation of organic water pollu-
tants [15,16] or MOF-derived electro-Fenton degradation of antibiotics [17–20]. However,
there is limited research regarding MOF’s direct catalytic potential in heterogeneous electro-
Fenton (HEF) applications despite the existence of Fe MOFs such as MIL-53 that have been
utilized to degrade antibiotic pollutants [21,22]. Coupled with this knowledge gap is the
impediment of MOF’s often complicated synthesis methods that has slowed the upscaling
of certain MOF materials from academia onto the industrial market in comparison with
other nanomaterials [23]. Identifying the potential to understand how Fe MOFs function
within organic pollutant degradation while also acknowledging commercial limitations,
this research examines the heterogeneous catalytic potential of Fe-BTC MOF, commercially
available as Basolite®F300 to remove TC from water via an electrochemical Fenton process.

2. Results and Discussion
2.1. Material Characterization

Figure 1a shows the characteristic XRD patterns of a semi-crystalline Basolite®F300
material. Broad peaks occur most notably at 2θ = 11, 14, 19, and 24◦, and are consistent with
the peaks identified in literature of synthesized Fe-BTC MOF [24,25]. Figure 1b illustrates
the nitrogen adsorption desorption isotherms of Basolite®F300 with a shape characteristic
of a mesoporous material with a type IV isotherm [26]. The pore size distribution using the
Barrett–Joyner–Halenda (BJH) model was found to be between 2–100 nm with an average
pore width of 2.68 nm, and a cumulative pore volume of 0.39 cm3 g−1. The average pore
width demonstrates a dominance of smaller mesopores and falls within the 2–50 nm range,
confirming the mesoporous nature of the Basolite®F300 material [26]. Additionally, the
material demonstrated a high BET surface area of 1465 m2/g falling near reported ranges of
800–1400 m2/g for either Basolite®F300 or various synthesized Fe-BTC material [24,27–29].
It has also been reported by manufacturers that the Basolite®F300 surface area is expected
to fall within a higher surface area range of 1300–1600 m2/g [30].
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Figure 1. (a) XRD Spectra (b) N2 adsorption desorption isotherm data of the Basolite®F300 material. 
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of electrolysis. The formation of H2O2 through the electrocatalytic 2e− oxygen reduction 
reaction (ORR) by reaction (1) is well discussed in the literature [31–34]. The amount of 
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given the traditional use of low H2O2 concentrations in classical Fenton systems. Addi-
tionally, the electrochemical system continuously produces H2O2 in situ, ensuring that this 
reagent does not become the limiting factor for Fenton’s reaction. Then, for comparative 
analysis, a synthetic effluent containing 10 mg L−1 of TC was submitted to treatment under 
blank conditions of ECO-H2O2 and adsorption without a supply of electrical current. Fig-
ure 2b illustrates the percentage of TC removal over time, showing a limited removal of 
the pollutant under both employed conditions. After 60 min, only 10% of TC was removed 
by ECO-H2O2 via the system set up with no MOF catalyst present. This result indicated 
that the IrO2 anode had minimal electrocatalytic activity for TC degradation. Although 
IrO2 can generate hydroxyl radicals from water oxidation following reaction (3), those are 
stabilized on the electrode surface as chemisorbed superoxides following reaction (4) [35]. 
The IrO3 superoxide is a weak oxidant that is unable to efficiently oxidize TC leading to 
only partial oxidation as described by reaction (5) [36]. This characteristic makes IrO2 an 
active anode material, however, it is still commonly utilized in electrified technologies due 
to its low cost compared to other electrocatalytic materials such as boron-doped diamond 
(BDD) [37–39]. In consideration of the cost of the MOF catalyst, it is important that the 
electrochemical system also be cost-effective, and thus DSA IrO2 was utilized instead of 
BDD. 

IrO2 + H2O → IrO2(•OH) + H+ + e− (3)

IrO2→ IrO3 + H+ + e−  (4)

IrO3 + TC→ partial degradation  (5)

Electroanalytical experiments conducted in the presence and absence of TC (Figure 
2c) demonstrate the absence of direct electron transfer mechanisms for TC oxidation dur-
ing cyclic voltammetry (CV) analyses. This is seen in the absence of oxidation peaks before 
the onset of oxygen evolution reaction (OER). It is worth noting, however, that the 
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Figure 1. (a) XRD Spectra (b) N2 adsorption desorption isotherm data of the Basolite®F300 material.

2.2. Degradation of TC by Electrochemical Methods

Initially, the capacity of the lab-scale cell to generate and accumulate H2O2 was inves-
tigated using an IrO2/carbon felt setup under electrochemical oxidation in the presence of
H2O2 (ECO-H2O2) conditions. This experiment employed 50 mM Na2SO4 as the support-
ing electrolyte at a pH of 7.0 and applied a current of 50 mA. As illustrated in Figure 2a, the
progressive accumulation of H2O2 reached a final concentration of 14.1 mg L−1 after 60 min
of electrolysis. The formation of H2O2 through the electrocatalytic 2e− oxygen reduction
reaction (ORR) by reaction (1) is well discussed in the literature [31–34]. The amount of
electrogenerated H2O2 accumulated is sufficient for facilitating the Fenton’s reaction, given
the traditional use of low H2O2 concentrations in classical Fenton systems. Additionally,
the electrochemical system continuously produces H2O2 in situ, ensuring that this reagent
does not become the limiting factor for Fenton’s reaction. Then, for comparative analysis,
a synthetic effluent containing 10 mg L−1 of TC was submitted to treatment under blank
conditions of ECO-H2O2 and adsorption without a supply of electrical current. Figure 2b
illustrates the percentage of TC removal over time, showing a limited removal of the pol-
lutant under both employed conditions. After 60 min, only 10% of TC was removed by
ECO-H2O2 via the system set up with no MOF catalyst present. This result indicated that
the IrO2 anode had minimal electrocatalytic activity for TC degradation. Although IrO2 can
generate hydroxyl radicals from water oxidation following reaction (3), those are stabilized
on the electrode surface as chemisorbed superoxides following reaction (4) [35]. The IrO3
superoxide is a weak oxidant that is unable to efficiently oxidize TC leading to only partial
oxidation as described by reaction (5) [36]. This characteristic makes IrO2 an active anode
material, however, it is still commonly utilized in electrified technologies due to its low cost
compared to other electrocatalytic materials such as boron-doped diamond (BDD) [37–39].
In consideration of the cost of the MOF catalyst, it is important that the electrochemical
system also be cost-effective, and thus DSA IrO2 was utilized instead of BDD.

IrO2 + H2O → IrO2(•OH) + H+ + e− (3)

IrO2→ IrO3 + H+ + e− (4)

IrO3 + TC→ partial degradation (5)

Electroanalytical experiments conducted in the presence and absence of TC (Figure 2c)
demonstrate the absence of direct electron transfer mechanisms for TC oxidation during
cyclic voltammetry (CV) analyses. This is seen in the absence of oxidation peaks before the
onset of oxygen evolution reaction (OER). It is worth noting, however, that the electrogen-
erated H2O2 does not contribute to degradation due to its high stability in solution and its
lower oxidation potential (E◦ = 1.78 V vs. SHE) [5]. Therefore, we conclude that the 10%
removal observed in the ECO-H2O2 process is primarily due to the incomplete removal of
TC by superoxides. Regarding adsorption, 20.2% TC removal is achieved, slightly higher
than ECO-H2O2 removal due to the highly porous structure of Basolite®F300 with a large
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surface area that is advantageous for adsorption. Increasing the rate of adsorption capacity
of Basolite®F300 for TC pollutants would likely require a larger amount of MOF material
and that is not advantageous for the application of this material due to cost.
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Figure 2. (a) H2O2 production rate; (b) TC removal achieved by ECO-H2O2 and adsorption processes;
(c) CV analysis of the electrochemical system.

The use of iron-based MOFs can be potentially exploited as heterogenous catalysts for
the Fenton reaction. Figure 3a demonstrates that the addition of the MOF to the solution
to conduct a heterogeneous electro-Fenton process (HEF) resulted in complete pollutant
removal within just 40 min of electrolysis. Furthermore, a comparative homogeneous EF
process was tested using 0.03 mM Fe2+, a concentration similar to that leached from the
MOF (Appendix A). The homogeneous EF driven by reaction (2) contributed to a lower
percentage of TC degradation, achieving only 48% removal. This limitation is attributed to
the lower availability of Fe2+ ions, where the leached concentration from the MOF is more
than 10 times lower than the typical Fe2+ concentration in homogeneous EF processes. This
result suggests that the HEF is mostly driven by heterogeneous activation of H2O2 and not
by iron leached to the solution. In Figure 3b, the pseudo-first-order rate constant (k1) values
are presented, showing an increasing order of ECO-H2O2 (1.8 × 10−3 min−1 R2 = 0.996),
EF (1.2 × 10−2 min−1 R2 = 0.991), and HEF (8.4 × 10−2 min−1 R2 = 0.993). This represents a
46-fold increase from the process with the lowest TC degradation to the highest. The
behavior observed is dependent on the oxidative power of each process, where HEF
predominates the degradation kinetics at 86%, complemented by a discrete 14% from
homogeneous reactions that also contributed to hydroxyl radical formation. These data
demonstrate that the main degradation route of TC is through the generation of free radicals
formed from heterogeneous Fenton-like reactions between the Fe3+ of Basolite®F300 and
H2O2 at the catalyst surface described by reaction (6). The reduction in ≡Fe3 induced by
a Fenton-like reaction (7) results in the regeneration of ≡Fe2+ that reacts with hydrogen
peroxide to form hydroxyl radicals in an ongoing heterogeneous redox cycle that contributes
to an overall degradation of TC [40,41].

≡Fe3+-OH + H2O2 → ≡Fe2+-OH + •HO2 + H+ (6)

≡Fe2+-OH + H2O2 + H+ → ≡Fe3+-OH + •OH + H2O (7)
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2.3. Effect of MOF Dose on Heterogeneous Electro-Fenton Performance

One crucial aspect of HEF treatment revolves around determining the optimal catalyst
dosage to achieve swift removal while minimizing the amount of catalyst required, thereby
reducing operational costs. In this context, the catalyst dosage was examined across a range
of MOF concentrations from 25 to 200 mg L−1 for the treatment of solutions containing
10 mg L−1 of TC at pH 6.5. This evaluation was performed while maintaining a consistent
solution volume of 100 mL and an applied current of 50 mA. As the MOF dose was increased
in the HEF system, the rate of TC removal increased significantly (see Figure 4a). The first-
order kinetic rate of removal increased as the dose was increased, with the kinetic change
most drastic from 50 mg L−1 to 100 mg L−1 as the rate more than doubled from 0.035 min−1

to 0.082 min−1 (Figure 4b). The faster removal of TC as the MOF concentration increased
can be attributed to the promotion of heterogeneous Fenton reactions as the amount of
Fe catalytic sites to promote reaction (6) increased [42]. More notable, however, is the
negligible increase in kinetic rate when the MOF dose doubled from 100 to 200 mg L−1

in Figure 4b from 0.082 min−1 to 0.111 min−1. When dosing Basolite®F300 at 100 and
200 mg L−1, 95–100% TC removal was also achieved for both concentrations around 40 min.
Increasing the dose of Basolite®F300 may also have impacts on the adsorptive removal of
TC. Figure 4c depicts the percentage of TC removal that occurred via adsorption for each
concentration. An increased percentage of physical removal by adsorption reaching 36.5%
is observed when increasing the MOF dose to 200 mg L−1. However, the faster removal
rate observed for HEF demonstrates the driving mechanism of TC abatement. Furthermore,
the adsorption of TC close to the catalytic sites that drive the Fenton-like reaction (6) can
contribute to overcoming mass transfer limitations on the treatment of trace pollutants
following a targeted pollutant trap and zap mechanism [43]. When considering synergies
among all of these factors, it becomes apparent that the most advantageous choice for
HEF removal is the concentration of 100 mg L−1 of Basolite®F300, exhibiting fast kinetics
dominated by Fenton reactions, but also achieving nearly the same 100% removal time
as larger catalyst doses. To the best of our knowledge, the results achieved by utilizing a
100 mg L−1 dose of Basolite®F300 in this study are highly competitive when compared
to other heterogeneous catalysts that have been previously researched. This work was
compared to previous studies that tested the insertion of heterogeneous catalysts directly
in solution to catalyze the degradation of TC at various doses in Table 1 [44–49]. When
considering the catalyst dose, degradation time, and the facile synthesis of the already
commercially available material, it becomes evident that this study shows that the use
of Basolite®F300 is most advantageous. Despite considering the relatively low cost of
the MOF Basolite®F300 of $30.40 per gram (Sigma Aldrich, St. Louis, MO, USA) when
compared with other custom MOF materials and the reusability of the heterogeneous
catalyst, maximizing treatment performance while minimizing catalyst dosage would be
key to ensure a translative application of HEF processes.
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Figure 4. (a) Impact of different MOF dosing on TC removal through HEF and (b) corresponding
kinetic removal rates. (c) Blank experiments to assess percent of TC removal achieved by only
adsorption processes. MOF dose: (•) 25 mg L−1, (■) 50 mg L−1, (▼) 100 mg L−1, (▲) 200 mg L−1.
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Table 1. Comparison of different heterogeneous catalytic materials to degrade TC via electrochemical
Fenton reaction.

Catalyst Material Catalyst Conc. TC Conc. Percent
Degradation

Time to Achieve
Removal Reference

Fe-BTC Basolite®F300 100 mg L−1 10 mg L−1 100% 40 min This publication

Fe3O4 nanoparticles 200 mg L−1 25 mg L−1 86.53% 60 min [44]

Synthetic ilmenite
(FeTiO3) nanoparticles 15 mg L−1 10 mg L−1 61.4% 120 min [45]

Core–shell
Fe@Fe2O3-CeO2

80 mg L−1 50 mg L−1 90.7% 60 min [46]

Microbial cellulose/Fe3O4
nanocomposite 500 mg L−1 50 mg L−1 100% 20 min [47]

Chalcopyrite 1000 mg L−1 89 mg L−1 86% 120 min [48]

Graphitic carbon nitride
nanosheets decorated with

Fe3O4

20 mg L−1 10 mg L−1 90% 60 min [49]

2.4. Effect of Applied Current as Key Parameter of Electrochemically-Driven Technologies

The applied current is a key operational variable in the electrocatalytic process since
it defines the amount of electrons delivered to the system per unit of time, therefore
controlling the kinetics of reactions [50,51]. In the case of HEF, the applied current defines
the kinetics of the electrogeneration of H2O2 and the overall Faradaic efficiency of the
process. To determine the optimal applied current to run the HEF reaction, applied currents
from 25 mA up to 200 mA were evaluated as depicted in Figure 5a. With an increase in the
applied current, the time to achieve 100% TC removal was decreased from 100 min at the
lowest current to just 20 min at the highest current. The improvement in TC degradation
kinetics can be explained by the greater amount of •OH generated by Equations (5) and (6),
given the larger availability of electrogenerated H2O2.
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The k1 data supports this observation, as the k1 values align well with pseudo-first-
order kinetics in ascending order: 0.041 min−1, 0.084 min−1, 0.155 min−1, and 0.272 min−1

for currents of 25, 50, 100, and 200 mA, respectively (Figure 5a). However, it is important to
recognize that selecting the optimal current based solely on electrolysis time may not suffice,
as it overlooks energy efficiency considerations. For a more comprehensive assessment of
process efficiency, the relationship between the applied electrical charge (Q) and applied
current is presented in Figure 5b. Notably, transitioning from 25 mA to 50 mA resulted
in a decrease in Q. This reduction can be attributed to the difficulty of 25 mA to generate
sufficient H2O2, thereby compromising the performance of the Fenton reaction. Conversely,
surpassing 50 mA led to an increase in Q. From these observations, two key conclusions
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were drawn: (i) 50 mA emerges as the optimal current for the system, as it yielded the
lowest Q value for a given removal percentage of TC; (ii) currents above 50 mA exhibit an
increase in Q due to heightened cell potential. Note that although the production of H2O2
increases as the current increases, this reagent instability in solution can be disadvantageous
towards the oxidation of the anode surface [52]. Additionally, elevated current levels
promote the 4-electron pathway, wherein oxygen (O2) undergoes reduction to form water
as competitive reaction (8) that decreases overall efficiency [53]. Furthermore, an excess
of H2O2 can consume produced •OH according to parasitic reaction (9), yielding weaker
oxidant hydroperoxyl radical (HO2

•).

O2 + 4H+ + 4e− → H2O2 (8)

H2O2 + •OH → HO2
• + H2O (9)

Lastly, we delve into the assessment of energy consumption per order (EE/O), calcu-
lated using Equation (10). Here, Ecell represents the average cell potential, I denotes current
intensity, t signifies time (h), vs. reflects solution volume (in L), and C0 and Ct denote initial
and final concentrations, respectively. The EE/O signifies the electrical energy needed to
reduce the concentration of a target contaminant by 90%, i.e., by one order of magnitude.
This metric is particularly relevant for treatment scenarios following pseudo-first-order
kinetics, typical in many electrified applications for water treatment. The EE/O values for
25 mA and 50 mA remain relatively constant at 0.58 and 0.67 kWh m−3 order−1, respec-
tively, followed by an increase to 0.98 and 1.14 kWh m−3 order−1 for 100 mA and 200 mA.
Considering all these results, the choice of 50 mA emerges as the most plausible, as it yields
not only a lower Q value, but also a correspondingly low EE/O value.

EE/O(kWh m−3 order−1) =
Ecell It

Vslog(C0/Ct)
(10)

3. Experimental Section
3.1. Chemicals

All chemicals utilized for preparation and analysis were of analytical grade supplied
by Sigma Aldrich (St. Louis, MO, USA) and employed without further modification.
This includes MOF Fe-BTC, denoted as Basolite®F300, and TC (CAS 60-54-8, 99%). The
physicochemical characteristics of TC are detailed below in Table 2 [54,55]. Sodium sulfate
served as the supporting electrolyte, while iron (II) sulfate heptahydrate was utilized for
homogeneous Fenton reactions. Titanium (IV) oxysulfate played a role in quantifying the
produced hydrogen peroxide, and sulfuric acid was used for activating the carbon felt. All
solutions were freshly prepared using ultrapure water from the Elga Lab system.

Table 2. Characteristics of tetracycline.

Compound Molecular Weight (g/mol) Molecular Formula Solubility (mol/L) pkow pka1 pka2

Tetracycline 444.44 C22H24N2O8 0.041 −1.25 3.2 7.78

3.2. Characterization Techniques

Basolite®F300 was characterized via powder X-ray diffraction using a Panalytical
Aeris powder X-ray diffractometer (Malvern Panalytical, Malvern, UK). The spectra were
collected from 10 to 50◦ with a resolution of 0.01. Nitrogen adsorption–desorption analysis
using the Brunauer–Emmett–Teller (BET) theory was performed on the Tristar II 3020
(Micromeritics Instrument Corporation, Norcross, GA, USA) to obtain the BET surface area.
Prior to analysis, the samples were degassed overnight for 12 h at 150 ◦C [27].
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3.3. Electrochemical Setup

The experiments were conducted on a lab-scale electrochemical cell equipped with
a DSA® (IrO2) anode obtained from De Nora (Milan, Italy) and a carbon felt (CF) cath-
ode purchased from Fuel Cell Store (College Station, TX, USA). Before use, the cathode
underwent activation using a 40% sulfuric acid solution for 8 h, followed by thorough
cleaning and sonication with ultrapure water for an additional 2 h. To ensure optimal
conditions, the solution was saturated with pure O2 at a rate of 0.3 L min−1 to facilitate
H2O2 electrogenerated. The experiments were performed at least in duplicate under a
galvanostatic mode utilizing the TENMA 72-2720 DC power supply. Three different EAOPs
were assessed in this study: electrochemical oxidation with hydrogen peroxide electrogen-
eration (ECO-H2O2), homogeneous electro-Fenton (EF), and heterogeneous electro-Fenton
(HEF). For HEF, the impacts of catalyst concentration (25–200 mg L−1) and applied current
(25–200 mA) were investigated. The suspension was continuously stirred for 20 min to
achieve adsorption–desorption equilibrium before operating the system galvanostatically.
ECO-H2O2 and HEF experiments were conducted at a pH of 6.5, which is representative of
the natural TC pH, stirred at 200 rpm, and maintained at room temperature (Figure 6). In
contrast, the EF experiment was carried out at a pH of 3.0 to prevent the precipitation of
iron oxyhydroxides.
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3.4. Analytical Techniques

The total amount of Fe leached in the system was quantified via inductively coupled
plasma mass spectroscopy (ICP-MS). ICP-MS measurements were performed on a NexIon
1000 mass spectrometer (PerkinElmer, Waltham, MA, USA) run in helium KeV mode for Fe
interferences. Standards were prepared and used at 10, 25, 50, 100, 250, and 500 parts per
million (ppm) concentrations with an R2 = 0.999. Samples were specifically tested for Fe 56
isotope, the most abundant type of Fe isotope. Next, the dissolved Fe2+ concentration in
the solution was measured via ultraviolet-visible (UV-vis) absorption on a DR6000 UV-vis
spectrophotometer (Hach, Ames, IA, USA). Samples were measured for adsorption of
dissolved Fe2+ after 10 min of complexation with a 1,10-phenanthroline compound and
at maximum absorbance λ = 510 nanometers (nm). The amount of Fe2+ concentration
was subtracted from the total Fe concentration measured to determine the amount of Fe3+

remaining in the solution after 60 min of EF reaction. Hydrogen peroxide was quantified
utilizing the Ti(IV)-complex method, and absorbance measurements were recorded at a
maximum wavelength of 408 nm. High-performance liquid chromatography (HPLC) was
used to determine the amount of TC remaining in the solution over time. We utilized the
Waters HPLC model e2695 in conjunction with a C-18 column (75 mm × 4.6 mm, 3.5 µm)
coupled with a PDA detector set to monitor at 358 nm. For chromatographic separation,
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we employed a mobile phase, composed of a 40:60 blend of acetonitrile and phosphoric
acid, operating at a flow rate of 0.2 mL min−1. Cyclic voltammetry (CV) was used to
evaluate the electrochemical response of the catalytic system. Potentiostatic measurements
were performed using a three-electrode system, consisting of IrO2 as a working electrode,
stainless steel as a counter-electrode, and Ag/AgCl (~3 mol L−1 KCl) as the reference
electrode. The CV analyses were conducted in 50 mM sulfuric acid solution using the
Autolab PG302N machine (Metrohm, Herisau, Switzerland) in a potential range of 0 to
1.8 V vs. Ag/AgCl at a scan rate of 50 mV s−1.

4. Conclusions

This present work demonstrates that the commercially available Fe-BTC MOF, known
as Basolite®F300, can be applied as a heterogeneous catalyst to degrade tetracycline (TC)
antibiotics in water. Emerging Fe-MOFs have been recently studied for photocatalytic
treatment and adsorption but have barely been explored in electrochemical water treatment
processes. The MOF materials possess highly catalytic and adsorptive capabilities that may
be advantageous for research within water treatment processes. With these considerations,
a low-cost Fe-MOF was used as a heterogeneous catalyst for the electro-Fenton treatment of
TC. Results showcase the heterogeneous nature of the process that attained complete TC re-
moval after 40 min of treatment. Heterogeneous TC removal was achieved at a significantly
more rapid rate than removal via traditional homogeneous Fenton reactions, adsorption,
or electrochemical oxidation with no MOF catalyst. Examination of key experimental
variables further revealed that an optimal catalyst concentration of up to 100 mg maximizes
TC removal efficiency. Beyond this value, no substantial improvement was observed,
likely due to an excess of active sites in the catalyst remaining unutilized. Additionally,
higher applied currents exhibited fast pollutant removal, evidenced by increased k1 values.
However, increasing currents above the optimal chosen current of 50 mA resulted in higher
EEO values, indicating a reduced efficiency relative to the associated electrical charge (Q).
The use of F-MOF in this study provides insight into how MOF materials can be used to
improve EAOPs that are now identified as a fast and more sustainable way to treat emerg-
ing pharmaceutical pollutants. This work reveals the capability of direct application of
MOF material, not just MOF-derived nanomaterials, to directly and effectively catalyze the
degradation of antibiotic contaminants in electrochemically-driven treatments. This MOF
material, along with similar Fe-based MOFs, could be implemented in other electrocatalytic
treatment processes or to degrade other pollutants of interest, as well as to activate stronger
oxidants. Further studies should be performed, however, to assess its cost-effectiveness in
comparison with other catalysts used in EAOPs, water stability, and life cycle reuse. One of
the major challenges of nanoparticulated catalyst use that may arise as an implementation
barrier is the separation from solution after use and/or the possible recovery for reuse.
The design of modified electrodes with integrated catalytic MOF materials to overcome
possible reuse and recovery concerns is needed.
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Appendix A

A combination of UV-vis and ICP-MS analysis was performed to determine the amount
of Fe species released by the Basolite®F300 MOF during HEF experimentation and thus
confirmed the dominant Fenton reaction occurring. After 60 min, the total Fe concentration
leached from the Basolite®F300 MOF measured via ICP-MS was 2.39 ppm (mg L−1) from
an initial MOF concentration of 100 mg L−1. When measuring for Fe2+ concentration via
UV-vis analysis, the Fe2+ concentration was calculated to be 1.87 ppm and as a result, the
Fe3+ concentration was found to be 0.52 ppm. This translates to 78.2% of Fe3+ in the original
MOF structure being converted to Fe2+ species after 1 h of electrocatalysis, which is con-
current with heterogeneous Fenton-like reactions. This demonstrates the extent to which
Basolite®F300 is functioning as a heterogeneous catalyst, where the electrocatalytic mecha-
nism is driven by the redox cycling of coupled Fe3+/Fe2+ in the solution [18]. The MOF
catalyst transforms to produce predominantly Fe2+ species that catalyze the decomposition
of H2O2 to produce stronger hydroxyl radicals than those released in Equation (2) [39].
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