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Abstract: The strain profile in the subsurface of He-ion-irradiated W was figured out by unfolding
the synchrotron-grazing incidence X-ray diffraction (S-GIXRD) patterns at different incidence angles.
The results show that for 2 × 1021 ions/m2 He2+-irradiated W, in addition to a compressive strain
exists in the depths of 0–100 nm due to mechanical polishing, an expansion strain appears in the
depth beyond 100 nm owing to irradiation-induced lattice swelling. This work provides a reference
for the study of irradiation damage in the subsurface by S-GIXRD.

Keywords: nuclear materials; X-ray techniques; helium ion irradiation; strain profile

1. Introduction

Tungsten is one of the primary candidates for plasma-facing materials (PFMs) in future
nuclear fusion reactors [1], where the bombardment of high-flux He ions is inevitable. The
effects of He irradiation can cause the swelling, embrittlement, and hardening of W and
thus greatly reduce the efficiency and integrity of the component [2–5]. So, it is important
to investigate the microstructure evolution in the subsurface of W after He-ion irradiation.

Grazing incidence X-ray diffraction (GIXRD) is sensitive to the strain profile in the
subsurface of a metal and has advantages such as a wider detection area and more sta-
tistical and reliable results over other microscopic methods such as transmission electron
microscopy (TEM) [6–10]. However, in a previous GIXRD study [6], it was found that
He+-irradiated W samples have a wide strain-distribution gradient from the surface to
the interior, which is difficult to unfold using existing XRD analysis software such as MDI
Jade, GSAS, and Full-prof, etc. [11–13]. Therefore, the unfolding of GIXRD spectra is a key
issue to figure out the microstructure in subsurface of the ion-irradiated W. In this paper, a
new method for unfolding GIXRD data is suggested, and the micro-strain distribution in
subsurface of He2+ irradiated tungsten is evaluated.

2. Experimental Details

The pure tungsten was prepared as in [14] and annealed at 1200 ◦C in a vacuum
(10−4 Pa) for 1 h. The microstructure consists of large grains (30 µm) with numerous fine
sub-grains (3 µm) inside. The tungsten specimens with a size of 5 × 5 × 1 mm3 were
mechanically polished to a mirror-like surface, then electrolytic polished in 5% sodium
hydroxide aqueous solution, and finally irradiated at room temperature (RT) using a beam
of He2+ at 400 keV with a total fluence of 2 × 1021 ions/m2 in the Institute of Modern
Physics, Chinese Academy of Sciences.
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The synchrotron grazing incidence X-ray diffraction (S-GIXRD) was carried out with
a wavelength of 0.6877 Å at the BL14B1 diffraction beamline stations at the Shanghai
Synchrotron Radiation Facility (SSRF) in Shanghai, China. The penetration depth (Dw) of
the X-rays depends on the incident angle (ω) and can be described as [15]:

Dw =
sinω

µρ
, (1)

where µ = 1561 cm−1 represents the X-ray linear absorption coefficient in tungsten at a
photon energy of 18 keV [16]. ρ = 97.16% is the relative density of the present samples. The
incident angles were set to 0.1◦, 0.2◦, 0.3◦, 0.5◦, 1◦, 1.5◦, 2◦, 2.5◦, 3◦, 4◦, 5◦, 7◦, and 10◦ in
this experiment, corresponding to penetration depths of 11, 23, 35, 58, 115, 173, 230, 287,
345, 460, 574, 803, and 1145 nm, respectively.

A pure tungsten specimen irradiated at RT with a fluence of 2 × 1021 ions/m2 was
prepared for transmission electron microscopy analysis (TEM, JEM-2010F, JPN). To observe
the microstructure of the irradiation defects at different depths, the samples for TEM were
prepared using the Focused Ion Beam (FIB) lift-off technique.

3. Results and Discussion

Figure 1 presents the S-GIXRD patterns near the (110) diffraction peak of the unirradi-
ated sample at incident angles of 0.5◦, 1◦, and 3◦. It can be clearly seen that, at low incident
angles of 0.5◦ and 1◦, there is a compression strain induced by the polishing treatment, as
reported in [6]. At the incident angle of 3◦, the position of the main diffraction peak moves
to a lower angle, which corresponds to the (110) interplaner spacing for the unstrained W
as shown by the black line. The other diffraction peaks have similar characteristics and are
not shown here.
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Figure 1. S-GIXRD patterns near the (110) diffraction peak of unirradiated W.

The S-GIXRD patterns for the irradiated W at different incident angles from 0.1◦ to
10◦ are shown in Figure 2a. The basic diffraction peaks can be indexed as (110), (200),
(211), and (220) of the body-centered cubic structure [6]. The enlarged (110) peaks were
given in Figure 2b–d. It can be seen that, with the increasing incident angle, the (110)
peak shifts to a lower 2θ angle, and a shoulder peak appears gradually on the left of the
peak. The appearance of the shoulder peak means that irradiation-induced lattice swelling
exists. In addition, the diffraction peaks of the irradiated samples are more zig-zagged
than those of the unirradiated samples, indicating a non-uniform distribution of the (110)
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interplaner spacing from the surface to the interior. Therefore, analyzing these S-GIXRD
data at different incident angles is crucial to studying the microstructure evolution after
ion irradiation.
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Figure 2. (a) S-GIXRD patterns of 2 × 1021 He ions/m2 irradiated W at different incident angles. The
enlarged (110) peaks at incident angles of (b) 0.1–1◦, (c) 1–3◦, and (d) 3–10◦.

In our previous study [6], three sub-peaks corresponding to the compressed zone,
transition zone (similar to unstrained matrix), and expansion zone were used to fit the
S-GIXRD data for low-energy (100 eV) He-ion-irradiated W. In the present case of high-
energy He irradiation, however, the S-GIXRD patterns are much more complex and cannot
be accurately analyzed by the three sub-peaks model. Here, a new method is proposed to
handle the above-mentioned complexity of the present S-GIXRD data.

The penetration depth (Dw) refers to the depth at which the intensity of the incident
X-rays (I0) decays to 1/e, so the intensity diffracted from a layer at a depth larger than 5Dw
is negligible, and the S-GIXRD pattern was contributed to dominantly from the subsurface
in the range of 0 to 5Dw. To be accurate enough and to consider the complexity of the
fitting software, one divides such a range into 20 equal parts, as shown in Figure 3a,
and the diffraction intensity of each part can be approximated by the classical Pseudo–
Voigt function:

f (h, d) =
r

1 + g(h − d−1)
2 + (1 − r)e−C1g(h−d−1)

2
, (2)

where h = 2sinθ/λ in a unit of 1/nm, d is the interplaner spacing, C1 = 0.6931 is a constant,
r is the Lorentzian component, and g is the parameter related to profile asymmetry.
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strain-depth (kx) profile obtained from the fitting.

The integral of X-ray diffraction over the entire depth (I) can be expressed as:

I = Bg +
∫

I0e−kx f (h, d)dx, (3)

where Bg is the background diffraction, and k is the reciprocal of penetration depth. Since
the considered depth range is 0–5 Dw and divided into 20 parts, the integral in Equation (3)
can be calculated by the following summation:

I = Bg + I0∆x
20

∑
i=1

e−(i−0.5)k∆x f (h, di), (4)

where ∆x = Dw/4, and di is the (110) interplaner spacing of the parts at a depth of (i−0.5)∆x
(i = 1, 2, . . . , 20). According to Equation (4), the S-GIXRD data at different incident angles
can be well fitted, and the values of the interplaner spacing (di) can be obtained. As an
example, the fitting result of the (110) peak at an incident angle of 2.5◦ is shown in Figure 3b,
and the corresponding fitting parameters in the program are shown in Figure 3c.

Assuming that the diffraction peak at an incident angle of 10◦ is mainly contributed
to by the unstrained matrix as shown by the black straight line in Figure 2d, the (110)
interplaner spacing of the unstrained W can be calculated as d110 = 2.226 Å. Then, the strain
at different depths can be expressed as:

ε = di/d110 − 1 (5)
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The variation of the strain with kx obtained for the incident angle of 2.5◦ is shown in
Figure 3d. It can be seen that, with the increasing kx, the strain increases and then decreases
to slightly above 0 and finally remains stable after passing a maximum value of 0.5% at
kx = 2, which corresponds to a depth of 2Dw (~574 nm).

To make the strain–depth profile more accurate, the (110) diffraction peaks correspond-
ing to all 13 incident angles were fitted, and the di (i = 1, 2, . . . , 20) that can be obtained are
shown in Table 1. From these parameters, the strains can be calculated using Equation (5)
and are shown in Figure 4a. By averaging all calculated strain data, the final strain–depth
profile is obtained as the red curve in Figure 4a. It can be seen that, with increasing depth,
the strain increases firstly and then decreases to slightly above 0 and finally remains stable
after reaching a maximum of about 0.15% at 600 nm. At depths of 0–100 nm, the strain
is compressive due to mechanical polishing, while, when the depth exceeds 100 nm, an
expansion strain appears which was caused by irradiation-induced lattice swelling.

Table 1. Fitted (110) interplaner spacing di of a 2 × 1021 ions/m2 irradiated W at different incident
angles. Chi represents the fitting error.

Incident Angles (◦)

di (Å) 0.1 0.2 0.3 0.5 1 1.5 2 2.5 3 4 5 7 10

d1 2.208 2.208 2.208 2.209 2.212 2.217 2.216 2.217 2.219 2.224 2.223 2.224 2.223
d2 2.208 2.208 2.211 2.214 2.217 2.217 2.219 2.221 2.224 2.224 2.223 2.224 2.226
d3 2.208 2.212 2.215 2.217 2.217 2.217 2.222 2.223 2.224 2.224 2.230 2.226 2.230
d4 2.210 2.216 2.215 2.219 2.224 2.217 2.226 2.225 2.224 2.224 2.235 2.233 2.226
d5 2.214 2.216 2.219 2.224 2.224 2.232 2.227 2.227 2.227 2.234 2.227 2.226 2.226

d6 2.214 2.219 2.222 2.227 2.224 2.234 2.235 2.235 2.235 2.234 2.227 2.226 2.226
d7 2.219 2.222 2.223 2.232 2.233 2.233 2.235 2.238 2.235 2.234 2.226 2.226 2.226
d8 2.222 2.225 2.226 2.231 2.233 2.226 2.235 2.233 2.235 2.227 2.226 2.226 2.226
d9 2.222 2.225 2.228 2.231 2.233 2.226 2.235 2.233 2.235 2.227 2.226 2.226 2.226
d10 2.225 2.225 2.228 2.224 2.233 2.226 2.233 2.233 2.230 2.227 2.226 2.226 2.226

d11 2.228 2.229 2.228 2.223 2.233 2.226 2.229 2.230 2.228 2.227 2.226 2.226 2.226
d12 2.228 2.229 2.228 2.224 2.233 2.226 2.229 2.228 2.228 2.227 2.226 2.226 2.226
d13 2.228 2.230 2.228 2.224 2.233 2.226 2.229 2.228 2.228 2.227 2.226 2.226 2.226
d14 2.228 2.230 2.230 2.224 2.233 2.226 2.227 2.228 2.228 2.227 2.226 2.226 2.226
d15 2.228 2.230 2.230 2.223 2.224 2.226 2.227 2.228 2.228 2.227 2.226 2.226 2.226

d16 2.228 2.230 2.230 2.223 2.224 2.226 2.227 2.228 2.228 2.227 2.226 2.226 2.226
d17 2.228 2.230 2.232 2.223 2.224 2.226 2.227 2.228 2.228 2.227 2.226 2.226 2.226
d18 2.228 2.230 2.232 2.223 2.224 2.226 2.227 2.228 2.228 2.227 2.226 2.226 2.226
d19 2.228 2.231 2.232 2.223 2.224 2.226 2.227 2.228 2.228 2.227 2.226 2.226 2.226
d20 2.229 2.231 2.232 2.223 2.224 2.226 2.227 2.228 2.228 2.227 2.226 2.226 2.226

Chi
(%) 0.77 1.01 0.99 1.28 5.28 5.37 4.35 3.65 3.43 3.31 4.24 3.13 0.33
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It is worth noting that the variations at each specific depth, where compression and
expansion strains can be identified simultaneously, mainly result from fitting errors when
fitting the GIXRD with different incident angles. The contribution for GIXRD peaks at low
incident angles mainly comes from the surface layer (Figure 2b), which leads to inaccurate
calculations of the strain at higher depths, and vice versa for high incident angles. In
addition, the location at higher depths can only be detected significantly when the incident
angle is relatively high, but at this point the detected signal tends to come from the strain-
free matrix, and thus it is reasonable that the calculated strain is almost 0 at higher depths,
even though there is only a limited number of data points.

The TEM image superposed with a SRIM simulation under 2 × 1021 He ions/cm2

irradiation is presented in Figure 4b, where the maxima of the dpa and He concentration
appear at 750~900 nm. It was observed by TEM that helium bubbles with high density
and small size (~1 nm) were detected at a distance of about 680 nm from the surface
(Figure 4c–e). The helium bubble distribution area was 680–1000 nm. The corresponding
displacement per atom (dpa) and the atomic concentration of He versus the depth from
the sample surface were calculated by SRIM 2010 full-damage cascade simulations and
are also shown in Figure 4b. The fitting settings for energy and fluence were 400 keV and
2 × 1021 ions/m2, respectively. It can be seen that the helium bubble distribution and the
strain-depth profile obtained from the GIXRD analysis are in good agreement with the dpa
and He concentration profile simulated by SRIM. It is worth pointing out that the actual
damage region may be wider than that predicted by SRIM, owing to the atomic diffusion
at the actual irradiation temperature. In this sense, the strain–depth profile obtained by
fitting the S-GIXRD data is reasonable.

4. Conclusions

A new method for analyzing S-GIXRD data at different incident angles for high-
energy He-irradiated W was suggested, by which the complex peak shape induced by
ion irradiation can be well fitted. For 2 × 1021 He ions/m2 irradiated W, in addition to a
compressive strain, which exists in the depths of 0–100 nm due to mechanical polishing, an
expansion strain appears in the depth exceeds 100 nm, which was caused by irradiation-
induced lattice swelling. The strain–depth profile is in good agreement with the dpa and
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He concentration profile simulated by the SRIM. This work provides a reference for the
study of irradiation damage in the subsurface of W alloys by fitting GIXRD data.
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