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Abstract: Aluminum (Al) components of high quality often require an optimal ratio of lightness and
favorable mechanical properties. In order to improve the physical-mechanical properties of Al, an
aluminum oxide (Al2O3) film is usually formed on the surface of Al, which itself is characterized by
high strength, hardness, corrosion resistance, and other technical properties. Unfortunately, depend-
ing on the conditions, the oxide film may be formed from different crystal phases on the Al surface,
which are not always of desirable quality, i.e., the α-Al2O3 phase. The present review demonstrates
that the properties of the Al2O3 film may be improved by Al processing with a laser beam according
to the scheme: Al (Al alloy) → electrochemical anodizing → treatment with laser irradiation →
α-Al2O3. Both Al substrate and the anodizing electrolyte affect the phase transformation of anodic
Al2O3. Laser irradiation of the Al2O3 surface leads to high heating and cooling rates, which may
promote the formation of a highly crystalline α-Al2O3 phase on anodic Al2O3.
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1. Introduction

Al and its alloys are widely used in various fields, including aviation and high-tech
applications [1–3]. The Al surface is always covered with a native oxide layer of 2–3 nm in
thickness [4], but a thicker, denser oxide layer is usually needed. Anodizing is often used to
protect Al from external influences, which allows the formation of Al2O3 with a thickness
of up to 100 µm [5]. Basically, the properties of Al2O3 depend on the phase structure.
Al2O3 can have various metastable phase structures, with the most stable being α-Al2O3 [6].
α-Al2O3 can be obtained through several paths. The list of possible transformations of the
phase structures of Al oxides and hydroxides is presented in Figure 1.
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Figure 1. Structure transformation of aluminum oxides and aluminum hydroxides.
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Al2O3 can exist in the following phases: γ → δ → θ → α [7]. The phase struc-
ture of Al2O3 can be formed during its production or by using the calcination method.
Al2O3 is often produced through the Bayer process, beginning with bauxite, which is a
naturally occurring ore primarily composed of hydrated aluminum oxides along with
various impurities.

Gibbsite (γ-Al(OH)3) is the most common and stable form of Al(OH)3 naturally found
in bauxite deposits. The transformation of gibbsite to boehmite involves the dehydration
and subsequent rearrangement of its crystal structure to the γ-AlO(OH) phase at 165 ◦C
for 12 h in the steam-assisted crystallization method, and at 175 ◦C for 12 h in the hy-
drothermal method [8]. Gibbsite and boehmite are the most commonly used precursors
for the preparation of α-Al2O3. Boehmite can be transformed into γ-Al2O3 within the
temperature range of 500–550 ◦C [7]. Temperatures above 800 ◦C lead to the formation of
the δ-Al2O3 and θ-Al2O3 phases, while the transformation of θ-Al2O3 to α-Al2O3 takes
place within the temperature range of 1050–1200 ◦C [9]. The densification of Al2O3 is
related to nucleation and grain growth mechanisms and depends on the grain size, heating
rate, and chemical composition [10]. Any grain growth process leads to transformation
from the θ to the α phase if a critical grain size of ~20 nm is reached. However, additional
phases of other elements, for example, ZrO2 nanoparticles, may inhibit the formation of
α-Al2O3 at temperatures above 1000 ◦C.

On the other hand, gibbsite can be directly transformed into α-Al2O3, bypassing the
intermediate χ-Al2O3 and κ-Al2O3 phases [11]. The shape and size of Al2O3 particles
affect the phase transformation significantly. Particles larger than 40 nm must undergo the
χ-Al2O3 to α-Al2O3 transition via the κ-Al2O3 phase. In contrast, particles smaller than 40
nm may be directly transformed to α-Al2O3 without passing through the κ-Al2O3 phase at
a temperature of 1050 ◦C, although initial crystal growth is necessary to achieve this size.

The transformation path of bayerite (α-Al(OH)3) is possible through ρ-Al2O3, η-Al2O3
and θ-Al2O3 phases. Due to its instability, bayerite transforms to η-Al2O3 at temperatures
higher than 350 ◦C [12], and is characterized by a higher surface area, acidity, and level
of activity when compared to γ-Al2O3 [13]. On the other hand, the η-Al2O3 phase may
be obtained via the structural transformation of the ρ-Al2O3 phase. The dehydration of
bayerite leads to the formation of the ρ-Al2O3 phase at 200–400 ◦C under reduced pressure
and a slow heating rate [14]. ρ-Al2O3 may be transformed into crystalline α-Al2O3 via the
transitional η-Al2O3 and θ-Al2O3 phases, which require thermal treatment at temperatures
above 500 ◦C and 800 ◦C, respectively [15]. Temperatures above 1100 ◦C are required to
obtain the α-Al2O3 phase.

Diaspore is known as α-AlO(OH) and it shares the same chemical formula as boehmite,
but differs in its crystal structure. Along with boehmite and gibbsite, diaspore is one of the
main constituents of bauxite, the main raw material used to obtain Al via the Bayer process.
Diaspore is stable at temperatures lower than 380 ◦C [16]. However, it may be converted
directly to α-Al2O3 when heated to above 500 ◦C [15,17]. Transformations of α-Al2O3 occur
at relatively high temperatures, usually above 1000 ◦C. In this case, calcined diaspore results
in the formation of the α-Al2O3 phase at temperatures as low as 600 ◦C. α-Al2O3 is the
most stable Al2O3 phase and exhibits the same structure as naturally occurring corundum.

In practice, γ-Al2O3 and α-Al2O3 are the two most popular Al2O3 phase structures.
Since γ-Al2O3 has a large surface area (300–350 m2/g), it is mostly used in catalysis [18].
Meanwhile, α-Al2O3 is characterized by high hardness (up to 2000 Vickers hardness) and
is successfully applied in antifrictional surfaces [19].

In order to improve the functional properties of anodized Al, it is very important to
find a method that allows one to enhance the physical-mechanical properties of the anodic
layer. It is known that a thin amorphous Si layer can be formed after treating the crystalline
Si surface with a nanosecond laser beam [20]. During a nanosecond pulse (about 20 ns),
several stages of material transformation are passed: melting, evaporation, and solidifica-
tion. Since laser treatment of the material allows modification of its phase composition, this
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method can be used to treat the Al2O3 anodic layer with a laser beam, which can ensure
the formation of the α-Al2O3 phase without damaging the Al substrate itself.

The aim of this review is to present different methods for Al2O3 formation leading
to a high crystalline α-Al2O3 phase. The article summarizes that the α-Al2O3 phase can
be formed by calcination through several different phase structures, or directly by laser
irradiation. The importance of heating and cooling rates in Al2O3 phase transformation
is highlighted.

2. Dependence of the Al2O3 Phase on Its Formation Method

There are many known Al2O3 formation methods, including PVD (physical vapor
deposition), CVD (chemical vapor deposition), sol-gel, the electrochemical method, PEO
(plasma electrolytic oxidation), and laser ablation (Table 1).

Table 1. Methods of Al2O3 formation.

Method
The Phase Structure

Reference
As Received After Calcination

PVD
α-Al2O3 N/A * [21]
γ-Al2O3 N/A * [22]

CVD α-Al2O3 N/A* [23,24]

Thermal
spraying γ-Al2O3 and α-Al2O3 N/A * [25,26]

Sol-gel

N/A * θ-Al2O3 and η-Al2O3 at 800 ◦C;
α-Al2O3 at 1200 ◦C [27]

Amorphous Al2O3
γ-Al2O3 at 857–1029 ◦C;
α-Al2O3 at 1114–1200 ◦C [28]

N/A * amorphous Al2O3 at 500–700 ◦C [29]
AlO(OH) and Al(OH)3 γ-Al2O3 at 415–425 ◦C [30]

H2SO4 acid
Amorphous Al2O3

Amorphous Al2O3 to 800 ◦C; γ-Al2O3
at 850–900 ◦C; γ-Al2O3 and α-Al2O3 at

950–1000 ◦C;
α-Al2O3 over 1000 ◦C

[31]

α-Al2O3, γ-Al2O3, and
amorphous Al2O3

N/A * [32]

Oxalic acid
Boehmite, gibbsite, and θ-Al2O3 θ-Al2O3 at 500 ◦C [33]

Amorphous Al2O3
γ-Al2O3 and θ-Al2O3 at 750 ◦C;

α-Al2O3 at 1150 ◦C [34]

Selenic acid Amorphous Al2O3
γ-Al2O3 at 803 ◦C;
α-Al2O3 at 1153 ◦C [35]

Phytic acid α-Al2O3 N/A * [36]

H3PO4 and acetic acid γ-Al2O3 N/A * [37]

H3PO4 and oxalic acid Amorphous Al2O3 N/A * [38]

PEO
γ-Al2O3; γ-Al2O3, and α-Al2O3 N/A * [39]

γ-Al2O3 and α-Al2O3 N/A * [40]

Laser ablation γ-Al2O3; γ-Al2O3 and α-Al2O3 N/A * [41]

Laser texturing α-Al2O3 N/A * [42]

Laser texturing and PEO γ-Al2O3 and α-Al2O3 N/A * [43]

Laser-assisted CVD α-Al2O3 N/A * [44,45]

* N/A not applicable.

2.1. PVD Method

PVD is a technique for thin layer deposition of a material on a substrate surface in
vacuum conditions. The formation of Al2O3 by the PVD method is usually carried out at
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low temperatures, which results in amorphous films [46]. Crystalline Al2O3 can only be
obtained at elevated temperatures. For example, Cheng et al. [21] succeeded in obtaining an
aluminum oxide film on Si(100) substrates by radio frequency magnetron sputtering using
various targets of Al, α-Al2O3, and Al + 15 wt% α-Al2O3 composite at 550 ◦C. The results
showed that the film deposited from the α-Al2O3 target was composed of both amorphous
Al2O3 and α-Al2O3. Meanwhile, Al + 15 wt% α-Al2O3 composite resulted in an α-Al2O3
composite film on Si(100). Elsewhere, bipolar pulsed dual magnetron sputtering was
applied to deposit nanocrystalline γ-Al2O3 on TiN-precoated cemented carbide substrates
at 700 ◦C [22]. The deposited coatings demonstrated enhanced wear resistance, with surface
hardness exceeding 2000 HV.

2.2. CVD Method

CVD is a thin film formation process in which precursor gases chemically react with
substrates at elevated temperatures. The temperature of the substrate should be over
1000 ◦C to obtain α-Al2O3 phase structures [24]. The films deposited by CVD at 900 ◦C and
1000 ◦C were found to be of the θ-Al2O3 phase, and those deposited at 1100 ◦C were found
to be α-Al2O3. According to thermo-gravimetric analysis, CVD-coated specimens exhibited
18 times greater oxidation resistance compared to uncoated samples. Blittersdorf et al. [23]
successfully deposited Al2O3 on stainless steel with a pure α-Al2O3 structure at a total
pressure of 100 mbar and a substrate temperature of 1050 ◦C. Overall, CVD stands as
a versatile and effective method for thin film deposition, offering control over material
composition, surface morphology, crystal structure, film thickness, etc. [47].

2.3. Thermal Spraying

Thermal spraying is a coating formation process, wherein materials in either melted
or heated form are sprayed onto substrates to enhance surface properties, such as hardness,
corrosion resistance, wear resistance, and other technical parameters. Among all ceramic
materials, Al2O3 is one of the most commonly used in thermal spraying technologies due
to its hardness and abrasion resistance. Thermal spraying can be performed using various
methods, such as flame spraying, plasma spraying, high-velocity oxy-fuel (HVOF) spraying,
or arc spraying. Heating temperatures can exceed 10,000 ◦C when the plasma spraying
method is used [48]. Several studies have demonstrated that the spraying of Al2O3 using
standard thermally sprayed techniques usually reduces the content of α-Al2O3, due to its
transformation to the γ-Al2O3 phase [49,50]. On the other hand, the phase transformation
of α-Al2O3 to γ-Al2O3 may be significantly reduced by 8.7% using plasma-sprayed Al2O3
coatings doped with 13 wt% TiO2 [25]. Michalak et al. [26] demonstrated that high velocity
oxygen fuel spraying and plasma spraying using Al2O3 aqueous suspensions resulted in α-
phase rich Al2O3 coatings of up to 47 vol% and 62 vol%, respectively. Suspension-sprayed
Al2O3 coatings showed much higher wear resistance when compared to that of the coatings
obtained by conventional thermal spraying methods.

2.4. Sol-Gel Method

The sol-gel method is a wet chemical process used to produce oxide-based materials from
small molecules, typically metal alkoxides. This method is attractive because it allows the
synthesis of materials at low temperatures [51]. For example, Shojaie-Bahaabad et al. [27] and
Wang et al. [28] prepared alumina powders via sol-gel precipitation in ethanol followed
by washing-drying treatment and calcination. They demonstrated that the obtained alu-
mina powders had an amorphous phase. The γ-Al2O3 and α-Al2O3 phases were formed
only after heat treatment at temperatures from 857 ◦C to 1029 ◦C and from 1114 ◦C to
1200 ◦C, respectively.

Hu et al. [29] produced crack-free amorphous structured Al2O3 films from Al iso-
propoxide using the spin coating method and then calcined them at 500 ◦C for 3 h. During
the formation of Al2O3 powder by the sol-gel method, boehmite (AlOOH) was obtained at
20 ◦C, and γ-Al2O3 was formed after calcination at 600 ◦C [30]. Attention should be drawn
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to the fact that the structure of Al2O3 derivatives obtained by the sol-gel method may be
different after calcination (Table 1), depending on the reagents used for specific cases.

2.5. Electrochemical Method

One of the most widely accepted Al2O3 formation techniques is based on the electro-
chemical method [52]. Electrochemical oxidation (anodizing) is an electrolytic passivation
process that contributes to an increase in the thickness of the natural oxide layer on the
metal surface and enhances surface hardness, corrosion resistance, and other technical
features [53]. Non-porous barrier oxide coatings are usually formed in neutral or alkaline
electrolytes, while porous coatings are produced in acidic electrolytes. This method relies
on two competing processes: the formation of an oxide coating, and its chemical dissolu-
tion. Anodizing in acidic electrolytes produces porous coatings with a thickness of up to
100 µm or more, ending with a thin non-porous barrier layer next to the metal surface [5,54].
Anodic coatings are composed mainly of amorphous Al2O3, but a crystalline γ-Al2O3
phase with a grain size of about 20 nm may be formed by increasing anodizing voltage
up to 100 V [55]. Sulfates, oxalates, hydroxides, and other compounds have also been
found during anodizing, but on a much lower scale. Usually, porous anodic alumina can
incorporate up to 14 wt% sulfates, up to 8 wt% phosphates, and up to 3 wt% oxalates [56].

The phase transformation of amorphous Al2O3 to crystalline α-Al2O3 often requires
heat treatment at elevated temperatures [57]. In one study, anodic aluminum oxide (AAO)
films were formed in a 15% H2SO4 solution by the anodizing method, and the prepared
AAO films were heat-treated in the temperature range of 25–1000 ◦C. The phase structure of
the Al2O3 was amorphous and remained unchanged when heated to 800 ◦C. The γ-Al2O3
phase was formed after calcination of Al2O3 at 950 ◦C. As the calcination temperature was
increased, AAO represented a mixture of γ-Al2O3 and α-Al2O3 phases. Once a temperature
of 1000 ◦C was reached, AAO totally transformed into the α-Al2O3 phase [31].

Tian et al. [33] anodized Al alloys of 99.999% purity in an oxalic acid electrolyte using
the two-step anodizing method. Before anodizing, the samples were annealed at 500 ◦C
for 2 h in a nitrogen environment. X-ray diffraction (XRD) data showed that the Al2O3
consisted of a mixture of amorphous and θ-Al2O3 phases. Annealing at 500 ◦C resulted
in the predominance of θ-Al2O3. Meanwhile, Roslyakov et al. [34] anodized Al alloys
of 99.99% purity in oxalic acid, without annealing the samples before anodizing. In this
case, the obtained Al2O3 phase was amorphous. Different Al2O3 phases were detected
after calcination at various temperatures: γ-Al2O3 and θ-Al2O3 at 750 ◦C, and α-Al2O3 at
1150 ◦C.

Roslyakov et al. [35] anodized 99.99 wt% Al alloy without preheating in an selenic acid
electrolyte. The obtained Al2O3 was characterized by amorphousness. It was found that
Al2O3 transformed into the γ-Al2O3 and α-Al2O3 phases after calcination at temperatures
of 803 ◦C and 1153 ◦C, respectively.

Kim et al. [36] anodized Al alloy 6060-T6 using a 9.5 M phytic acid electrolyte. XRD
analysis showed that the predominant α-Al2O3 phase was formed in this electrolyte,
especially when Al2O3 was grown at temperatures of 0–10 ◦C. According to the authors,
crystalline α-Al2O3 ensures high corrosion resistance.

Since the anodizing electrolyte affects the phase composition of the Al2O3 coating, it is
also important to consider the effect of the acid mixture on Al anodizing. Juyana et al. [37]
steamed Al samples by melting Al pellets in a vacuum environment at 850 ◦C and per-
formed their anodization in a mixture of H3PO4 and acetic acids, obtaining dominantly
γ-Al2O3. Kao et al. [38] anodized Al samples of 99.98% purity in a mixed solution of H3PO4
and oxalic acids. The results obtained showed that the formed Al2O3 film was amorphous.
Interestingly, annealing of Al2O3, for example, at 600 ◦C for 2 h, did not change its phase,
and the Al2O3 remained amorphous.
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2.6. PEO Method

PEO is an electrochemical surface treatment method used to produce thick, hard, dense,
and highly crystalline ceramic coatings on Al, Mg, and Ti alloys. It is clear that during
the anodizing of Al, amorphous or γ-Al2O3 phase structures are usually predominant
(Table 1). The PEO method was used to produce α-Al2O3 by directly anodizing the Al
substrate without further calcination, which significantly improved the physical-mechanical
properties of Al. In other words, PEO is an electrochemical surface treatment method used
in aqueous electrolytes [58] in which the plasma temperature can vary from 3500 K (3227 ◦C)
to 16,000 K (15,727 ◦C) on the Al surface [59]. Unlike electrochemical anodizing, where
acidic electrolytes are most often used, the PEO coating formation method is usually
performed in alkaline electrolytes (KOH, Na2SiO3, Na3PO4, NaAlO2, and Na2O·3SiO2)
with inorganic salts and additives that make PEO electrolytes environmentally friendly.
The PEO process is performed at high voltage (up to 700 V), resulting in the formation of
electrical micro-discharges caused by the localized dielectric breakdown of the growing
oxide coating, which determines the structure, morphology, and phase composition of
the coating. The PEO process involves three simultaneous operations: electrochemical
reactions, plasma-chemical reactions, and thermo-chemical reactions [60]. PEO coatings
typically exhibit a morphological structure characterized by three distinct layers [60,61]. The
outer layer, constituting approximately 5% to 30% of the coating thickness, often displays
defects such as cracks and pores. It predominantly comprises the γ-Al2O3 phase and
exhibits relatively low hardness values, typically from 500 HV to 1000 HV. The intermediate
layer, comprising 70% to 95% of the total coating thickness, exhibits a greater density and
is composed of both γ-Al2O3 and α-Al2O3 phases, with a hardness ranging from 900 HV
to 2000 HV. The inner layer is amorphous Al2O3 and facilitates strong adhesion to the
coating and metal substrate. This method makes it possible to produce hard coatings with a
thickness exceeding 100 µm [62]. The PEO method can enhance surface hardness to values
ranging from 1000 to 1500 HV and improve wear resistance by 3–5 times [63]. Famiyeh
and Huang [39] demonstrated that a mixture of γ-Al2O3 and α-Al2O3 phases is most often
characteristic of the Al2O3 coatings obtained by the PEO method. However, the distribution
of the α-Al2O3 and γ-Al2O3 phases in coatings strongly depends on the compositions of the
Al substrate and anodizing electrolyte. Notably, during the initial stages of the PEO process
(for the first 5 to 10 min), only the γ-Al2O3 phase was observed in the coating. The α-Al2O3
phase appeared and remained predominant after 30–60 min due to the development of
micro-discharges during the PEO process. Similar results have been obtained by other
scientists [40].

2.7. Laser Ablation and Texturing

In order to create a textured surface, the most suitable method is laser surface texturing.
This is a process related to the removal of material (ablation), which enables changes in
the properties of the body surface including the tribological characteristics, wettability,
roughness, phase structure, etc. [64]. Laser surface texturing has been extensively used
in various applications to improve the adhesive bonding of coatings and films [65,66],
the wettability of self-cleaning surfaces [67], antibacterial properties for biomedical appli-
cations [68,69], anti-reflection properties for solar cells [70], and to reduce adhesion and
stiction in micro-electro-mechanical systems [71] and enhance friction and wear resistance
in mechanical components like gears [72], seals [73], piston rings [74], cutting tools [75],
and implants [76]. The laser ablation method has also found a unique application in cancer
treatment [77]. The most essential factor for cancer treatment of a specific organ or tissue is
the laser penetration depth, which depends on the laser type and wavelength. For example,
CO2 lasers with a wavelength of 10,600 nm have a low penetration depth and are most
suitable for skin cancer treatment. Nd:YAG (1064 nm) and diode (800–970 nm) lasers can
penetrate into deeper tissues and are used to treat liver, breast, brain, and other cancers.
Overall, laser ablation is a minimally invasive technique that causes local heating of tissues,
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with temperatures reaching 100 ◦C to 1000 ◦C in a short period of time (~0.1 s), resulting in
material loss and tissue removal.

Laser texturing allows the formation of specific design patterns, such as pits, dim-
ples, and grooves, on a variety of engineering materials, including polymers, metals, and
ceramics. Based on surface texture fabrication, this method can be divided into three
groups: (I) direct laser ablation; (II) direct laser interference patterning; and (III) laser shock
peening [72]. Direct laser ablation is the process of removing material by irradiation with a
laser beam at high efficiency and controllability, which results in specific surface pattering
with sizes ranging from one to several hundred micrometers [78]. Functional periodic
microstructures can be created by interference of two or more coherent laser beams using
direct laser interference patterning (DLIP). Laser interference is capable of creating texture
features with a high resolution and a fabrication speed of 0.1 m2/min, leading to structure
sizes ranging from 1 µm to 100 µm [72]. Laser shock peening (LSP) is an advanced surface
treatment technique based on laser shock-induced plastic deformation without a thermal
effect. These shockwaves induce changes in the material microstructure and residual stress
distribution, resulting in improved surface hardening, wear resistance, and tribological
performance [79,80]. Shukla et al. [81] demonstrated increased net compressive stresses
from 104 MPa to 168 MPa using LSP on Al2O3 ceramics. Elsewhere, LSP has resulted in
significant compressive residual stresses, which improved the resistance of polycrystalline
α-Al2O3 to indentation cracking [82].

Several studies have been devoted to the role of laser texturing in Al2O3 phase trans-
formation. Jing et al. [42] demonstrated that the texturing of Al2O3 ceramics obtained by
the hot-pressing sintering method with a fiber laser of 1064 nm wavelength, 50 ns pulse
duration, 20 kHz repetition rate, and 1 mJ pulse resulted in a reduced coefficient of friction
from 0.48 to 0.38 under lubricated friction conditions. XRD analysis showed that mainly
the α-Al2O3 phase was formed on the ceramic surface. Ismail et al. [41] formed Al2O3
nanoparticles by laser ablation of an Al target in ethanol. XRD studies showed that the
phase composition of the Al2O3 nanoparticles depended on the 532 nm laser fluence. The
γ-Al2O3 phase was formed at 3.5 J/cm2/pulse, while γ-Al2O3 and α-Al2O3 were obtained
at 5.3 J/cm2/pulse.

2.8. Laser Texturing and PEO

Crystalline Al2O3 can also be obtained using combined methods for Al surface prepa-
ration. Li et al. [43] demonstrated that the friction and corrosion resistance of Al alloy
6061 can be enhanced by formation of a protective coating using two processes: laser tex-
turing and PEO. According to the data of XRD studies, laser texturing with a picosecond
pulse laser followed by PEO has resulted in coatings with α-Al2O3 and γ-Al2O3 phases.

2.9. Laser-Assisted CVD

Ito et al. [44] presented a method based on CVD in combination with an Nd:YAG laser
of 1064 nm wavelength to form crystalline Al2O3 coatings. α-Al2O3 coatings were obtained
in the region at precursor vaporization temperatures above 150 ◦C (423 K) and deposition
temperatures above 827 ◦C (1100 K), at a total chamber pressure of 0.93 kPa. The orientation
and texture of the α-Al2O3 film also depended on the deposition conditions, such as
temperature and pressure. Elsewhere, the laser-assisted CVD method using a laser beam of
808 nm wavelength resulted in coatings consisting of the α-Al2O3 phase on polycrystalline
AlN substrates at deposition temperatures of 1100–1182 ◦C (1373–1455 K) [45].

3. Al2O3 Structure Transformation Depending on Heating and Cooling Rates

In order to form α-Al2O3, the simplest method is to calcinate the original Al2O3 at
a certain temperature. However, it has been observed that Al2O3 phase transformation
depends on both heating and cooling rates. Lamouri et al. [7] showed that γ-Al2O3 can
be transformed into the α-Al2O3 phase by increasing the heating temperature from room
temperature up to 1200 ◦C. In addition, they found that the phase transformation of
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Al2O3 depended on the heating rate, as determined by differential thermal analysis and
dilatometry. Low heating rates led to a significant reduction in temperature from 1240 ◦C
to 1190 ◦C, representing a temperature difference of 50 ◦C for α-Al2O3 formation. The
optimal heating rate was equal to 5 ◦C/min, leading to high relative density, low residual
porosity, and a homogeneous microstructure.

Sathyaseelan et al. [83] demonstrated that heating of Al2O3 powder for 2 h at a
heating rate of 20 ◦C/min lead to the formation of the α-Al2O3 phase at 900 ◦C. Meanwhile,
Matori et al. [84] demonstrated that the α-Al2O3 phase is formed only at 1200 ◦C by heating
of Al2(SO4)3·18H2O at 400–1400 ◦C for 3 h with heating and cooling rates of 10 ◦C/min.
Palmero et al. [85] investigated the phase transformation of 47 nm particles of the δ-Al2O3
and γ-Al2O3 phases to α-Al2O3 by increasing the heating temperature at a rate of 1 ◦C/min
or 10 ◦C/min and cooling the samples at a rate of 20 ◦C/min. They found that a longer
heating time (i.e., slower heating rate of 1000–1135 ◦C) resulted in more efficient formation
of α-phases. Such material heating and cooling rates can be obtained using a standard
heating furnace (Figure 2). This is a relatively slow calcination method.
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Mahat et al. [86] studied the influence of heating temperature on the phase state of
Al2O3 particles. According to the XRD method, the η-Al2O3 and α-Al2O3 phases were
formed after the heating of Al2O3 particles for 48 h at 800 ◦C and 1000 ◦C, respectively.

Since heating and cooling rates influence the phase structure of Al2O3, it would be
of interest to examine what effects rapid heating and cooling would have on the phase
structure of the material. Application of a laser beam would be the most appropriate
method for such an examination. Laser application for polishing [87], texturing [88],
and shock peening [89] results in material structural changes (formation of crystallites,
phase transformation, etc.), which inevitably affects the physical-mechanical properties
of the material. Therefore, it is important to understand the possible effects of laser
beam interaction with the material. Nanosecond (ns), picosecond (ps), and femtosecond
(fs) lasers can increase surface temperatures up to 2000 ◦C [90,91], and even further up
to 10,000 ◦C [92]. The shorter the duration of the laser pulse, the slighter the effect on
surrounding temperature [93].

Farshidianfar et al. [94] studied the changes in the microstructure of stainless steel 316L
powder melted on an AISI1030 carbon steel substrate with dependence on the solidification
and cooling rates. They showed that the cooling rate directly affected the formation and
growth of the phase structure, grain boundaries, and grain size. The grain diameter
decreased with the increasing cooling rate. The cooling time typically varied from 22 ◦C/s
to 764 ◦C/s, but in some cases it was possible to reach cooling rates of 7.93 × 106 ◦C/s [91].

The influence of the fast heating and cooling of polymers was studied across a very
wide range of cooling and heating rates (10−2 to 106 K/s) using the fast scanning calorimetry
method, and it was found that high heating rates affected the kinetics of crystallization [95].
Lee et al. [96] studied Cu50Zr50 metallic glass thin films under a wide range of temperature
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variations (13 K/s to 21,000 K/s) and demonstrated that the critical rate to avoid crystalliza-
tion is much higher during heating than that during cooling. Therefore, the treatment of
materials with laser irradiation allows maximum rapid heating and cooling rates (Figure 3).
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Laser treatment can have the opposite effect on phase transformation. Ibrahim and
Hung [97] investigated 5 mm thick Al2O3 coatings with 13 wt% TiO2 on mild steel. XRD
studies showed that the powdered α-Al2O3 phase transformed into the γ-Al2O3 phase
only if the plasma spraying method was applied, whereas surface treatment with a laser
possessing a wavelength of 248 nm and pulse duration of 24 ns led to a reduction in
the γ phase of Al2O3. This effect indicated that a very high cooling rate was achieved
using an ns pulsed laser, which suppressed the transformation of γ-Al2O3 to α-Al2O3. In
our opinion, such Al2O3 transformations in both the plasma sprayed and laser treatment
stages are related to short-term heating of the oxide and short-term cooling, i.e., the time
required for the formation of the corresponding phase is insufficient, as opposed to Al2O3
being annealed in a furnace. Moriya et al. [98] demonstrated that it is possible to achieve
phase transformation of alumina sprayed coatings from γ-Al2O3 to α-Al2O3 by using laser
irradiation of 1064 nm wavelength and reducing laser scan speed, which is associated
with a lower cooling rate. Phase transformation into α-Al2O3 led to the formation of a
dense pore-free surface microstructure with a reduced crack number, which was expected to
improve the corrosion and wear resistance of the coatings. Nevertheless, current knowledge
of the variations in the phase structure of anodic Al2O3 with laser beam treatment is still
insufficient. This topic remains debatable.

4. Conclusions

The data analysis suggests that Al2O3 can be transformed into high crystalline α-
Al2O3 through several heating stages at high temperatures, or directly by laser irradiation.
Several key points should be taken into account in order to improve the crystallinity of
anodic Al2O3.

1. The phase of anodic Al2O3 depends on its formation method and electrolyte composition.
2. The nature of the Al substrate may affect the phase composition of anodic Al2O3.
3. The phase of anodic Al2O3 is determined not only by the annealing temperature, but

also by the heating and cooling rates.
4. Annealing of pure Al substrate before anodizing has no pronounced impact on the

phase structure of anodic Al2O3.
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5. High heating and cooling rates influence the formation of the α-Al2O3 phase when
using laser irradiation. Therefore, laser treatment might be beneficial for the formation
of a highly crystalline α phase on anodic Al2O3 in a very thin surface layer.
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