
Citation: Tsioptsias, C.

Thermochemical Transition in

Non-Hydrogen-Bonded Polymers

and Theory of Latent Decomposition.

Polymers 2022, 14, 5054. https://

doi.org/10.3390/polym14235054

Academic Editor: Andrea Sorrentino

Received: 31 October 2022

Accepted: 18 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Thermochemical Transition in Non-Hydrogen-Bonded
Polymers and Theory of Latent Decomposition
Costas Tsioptsias

Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki,
University Campus, 54124 Thessaloniki, Greece; ktsiopts@auth.gr

Abstract: Although thermosets and various biopolymers cannot be softened without being decom-
posed, the vast majority of thermoplastics are believed to exhibit thermal transitions solely related to
physical alterations of their structure—a behavior typical of low molecular weight substances. In this
study, Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and
Thermogravimetry (TGA) were used to study the softening of four common non-hydrogen-bonded
thermoplastic polymers (polypropylene, polypropylene-grafted-maleic anhydride, poly(vinyl chlo-
ride) and polystyrene) along with a hydrogen-bonded polymer as a reference, namely, poly(vinyl
alcohol). It is shown that the softening of these polymers is a thermochemical transition. Based
on fundamental concepts of statistical thermodynamics, it is proposed that the thermal transition
behavior of all kinds of polymers is qualitatively the same: polymers cannot be softened without
being decomposed (in resemblance with their incapability to boil) and the only difference between the
various types of polymers is quantitative and lies in the extent of decomposition during softening. De-
composition seems to reach a local maximum during softening; however, it is predicted that polymers
constantly decompose even at room temperature and, by heating, (sensible) decomposition is not
initiated but simply accelerated. The term “latent decomposition” is proposed to describe this concept.

Keywords: simultaneous; decomposition; softening; latent; melting; glass transition; thermochemical

1. Introduction

Material softening (melting/glass transition) and thermal decomposition are simi-
lar phenomena in the sense that a disturbance of bonds/interactions is involved in both
cases. A primary difference is that in melting and glass transition, the physical interactions
between molecules are loosened and no chemical bond rupture occurs, while in decom-
position, the chemical bonds of molecules are broken. These phenomena, in the absence
of suitable solvents—i.e., in the solid state—become mixed up in various polymers such
as DNA, proteins, polysaccharides and thermosetting polymers, and an inherent relation
between their thermal transition behaviors and the chemical changes of their structure can
be identified. Such polymers are unable to exhibit actual melting or glass transition, that is,
they cannot soften without decomposing. For example, the protein gelatin, upon heating,
undergoes chemical changes before its thermal transition temperature is reached [1]. The
polysaccharides cellulose and chitin (two very common and abundant organic substances)
are other typical examples that do not exhibit any detectable thermal transition prior to
decomposition. Some low molecular weight substances exhibit similar peculiarities, and
during their decomposition some melting occurs. A specialized branch of kinetics, namely
Bawn kinetics, has been developed to describe the influence of liquid phase formation dur-
ing decomposition, i.e., how the decomposition rate is altered after fluidization [2]. Bawn
kinetics has been mainly applied to pharmaceuticals and explosives [2], i.e., various such
materials “melt” during decomposition, e.g., simultaneous melting and decomposition has
recently been reported for some energetic materials [3]. A similar peculiarity in thermal
behavior has been reported for lithium potassium tartrate [4]. Additionally, the variation in
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the various values for the melting point of succinic acid [5] in the literature, is suspected
to have arisen from the decomposition/dehydration and formation of succinic anhydride
upon heating. Interestingly, the vast majority of the above-mentioned polymers and low
molecular weight substances, which exhibit an inability for actual melting/softening, are
substances with increased capability for formation of hydrogen bonds. However, the vast
majority of low molecular weight substances exhibit thermal transitions solely related to
physical alterations of their structure.

This physical nature of thermal transitions has perhaps been taken for granted with
regards to thermoplastic polymers. PVA is an exception to this, and simultaneous crys-
tallization/melting and decomposition [6,7], or melting very close to decomposition [8],
has been reported; however, melting and decomposition were treated as two independent
effects. Recently [9], it was reported that the believed “melting” point of cellulose acetate
butyrate (CAB), detected as endothermic peak in DSC, actually does not arise from melting
but from decomposition which overlaps with the simultaneous softening of the material. It
was pointed out that the co-occurrence of softening and decomposition is not accidental
and should be treated as a unique effect. For this effect, the term “glass chemical transition”
was initially proposed, which was then also seen to occur in cellulose acetate (CA) [10,11]
and poly(vinyl alcohol) (PVA) [10,12]; the term “thermochemical transition” was proposed
as more descriptive and general [10]. Moreover, it was reported that the believed “glass
transition” of CAB is also a thermochemical transition [9]. Recently the concept of consec-
utive heating cycles [6,7] was adopted to re-examine the thermal behavior of PVA with
respect to the thermochemical transition [12]. It was concluded that the glass transition of
PVA is a thermochemical transition with no detectable mass loss. This interpretation could
provide an explanation for the various contradictions regarding the existence of, or extent
of, decomposition derived from different analytical methods, e.g., signs of decomposition
could be detected in the FTIR results, but no mass loss was detected in TGA [12]. Addi-
tionally, it was shown that the specific heat of “melting” measured by DSC is governed
by the heat required for decomposition, which can be expressed in an alternative way to
heat of fusion (to take into account the decomposed mass rather than the overall mass
of the sample). It was also discussed that the experimental values of the specific heat of
thermochemical transition may be characterized by large uncertainty due to various factors.
One major factor is the fact that some portions of the decomposition products may not be
able to vaporize [13] at the temperature range of the thermochemical transition and thus,
the heat measured by DSC does not correspond to the mass loss detected by TGA [12]. In
addition, recently the latent limit of detection (LLoD) of TGA was reported [14]. Briefly, it
was reported that due to the buoyancy exerted on the sample during a TGA measurement,
there is a hidden limit (LLoD) for the % degree of actual mass loss which must be surpassed
in order for the TGA sensor to be able to detect (apparent) weight loss [14]. Thus, the
combination of the absence of volatility of the polymers’ decomposition products in the
early decomposition stage, along with LLoD of TGA, can provide a reasonable justification
for the occurrence of decomposition with no detectable mass loss in TGA, as is the case for
the glass transition of PVA [12].

Almost simultaneously with the above mentioned studies regarding polymers, the
thermochemical transition was also reported to occur in some low molecular weight
substances, namely two flavonoids (silybin [15] and quercetin [16]) and gallic acid [17].
It was reported [16] that the thermochemical transition is the “connection” among three
different aspects [16]. These three aspects are: (1) the inconsistencies detectable in the
literature regarding the experimental values of the thermal thermodynamic properties of
such (pharmaceutical) substances [15–17]; (2) the reported difficulty and poor efficiency of
predicting the melting point of pharmaceuticals [18,19]; (3) the fact that Bawn kinetics has
been applied to study pharmaceuticals [2].

In these recent studies of thermochemical transition, all of the substances (both poly-
mers and low molecular weight substances) comprised molecules with increased hydrogen
bond formation. It was recognized that the increased hydrogen bonding formation favors
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thermochemical transition through a double effect [10,11,15–17]: (1) hydrogen bonding
hinders melting by keeping molecules close to each other by strong interaction and (2) it
facilitates decomposition through the weakening of chemical bonds. For the O-H chemical
bond, by FTIR spectroscopy it was found that in such substances, the free and strongly
bounded hydroxyl groups may vary up to ~30% in their chemical bond strength [11,15,16].
This weakening of chemical bonds enables decomposition reactions, and for cellulose
esters [9–11] and gallic acid [17] it was reported that the primary decomposition reaction is
dehydration caused by esterification.

In general, the decomposition of polymers is a complex effect which constantly attracts
research interest, e.g., recently, the enhanced char formation during thermal decomposition
of poly(vinyl chloride) (PVC) was studied [20], as well as the decomposition mechanism
of various vinyl polymers [21]. However, decomposition of polymers does not seem to
be fully understood (especially the decomposition at low temperatures); recently, it has
been reported that the use of high temperature data for modelling decomposition at lower
temperatures resulted in poor agreement between predicted and real data and a new equa-
tion was proposed in order to take into account the induction period of the decomposition
process at low temperatures [22]. Similarly, the recent finding of thermochemical transition
in some thermoplastic polymers points out that the thermal behavior of polymers may need
further understanding. Of course, thermal analysis in general is continuously developed
and updated, e.g., see [23]. However, among other effects, the four following effects in the
thermal transition behavior of polymers, to the best of the author’s knowledge, are either
under debate or not at all discussed: (1) the typical broad range/asymmetry of the melting
peaks of polymers, (2) the small endothermic peak in the glass transition temperature range,
(3) the existence of melting in both signals (reversing and non-reversing) of modulated
DSC and (4) the decrease in the heat capacity just after melting which can be seen in the
DSC curves of various polymers in the current body of literature. Interpretations of these
four effects are briefly discussed below.

The typical broad range/asymmetry of the melting peaks of polymers is commonly
attributed to successive melting of crystallites of different sizes [24]. Endothermic peaks,
which are sometimes observed at the end of the glass transition of polymers, are interpreted
solely in physical terms and, specifically, are attributed either to enthalpy recovery [25]
or related to melting [26]. Endothermic peaks in the melting temperature range, which
are detected in the non-reversing signal of modulated DSC, e.g., isotactic poly(propylene)
(PP) [27] and poly(L-lactic acid) (PLLA) [28], are attributed to the melting of crystals formed
by recrystallization of another form. In general, it is accepted that “most melting” is detected
in the reversing signal and “some melting” in the non-reversing signal of modulated
DSC [29], [30]. In other words, it seems that some polymer crystals behave differently to
others in the modulation of temperature. To the best of the author’s knowledge, there is no
available explanation for this. Recently, for CAB [9] it was proven that the endothermic peak
detected in the non-reversing signal of modulated DSC (and in the signal of the conventional
DSC) is related to decomposition (thermochemical transition) and not to melting.

There is another observation (the above mentioned fourth major effect) related to the
melting peak of polymers as detected in DSC which is worthy of discussion. Even for low
molecular weight substances, no general statement can be made about the alteration of
density and of the (specific) heat capacity during melting [31] and, usually but not always,
small changes in (specific) heat capacity occur [31]. The overall change in (specific) heat
capacity during melting is the result of various effects, some of which tend to increase
(specific) heat capacity and others tend to decrease it [31]. For most polymers, the (specific)
heat capacity in the liquid state is higher than that of the solid state [31,32]. However,
for most polymers in a simple DSC scan, the baseline (or in other words the DSC signal
which is directly related to the heat capacity of the polymer) just after the “melting” peak
is decreased; that is, it is less endothermic compared to its values before the occurrence
of “melting” (see Figure S1 and related text in supporting information). This suggests
that the heat capacity of the sample has decreased during “melting”. This effect can be
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detected in the DSC curves of various polymers such as (suggestively): isotactic PP [33,34],
poly(ethylene terephthalate) (PET) [35] and poly(l-lactic acid) PLLA [36]. To the best of the
author’s knowledge, there is no available explanation for this effect.

Independently of the partial or full correctness of the available interpretations for
these effects, it is clear that the correctness of an interpretation cannot guarantee its exclu-
siveness. The scope of this study is to demonstrate that the thermal transitions (melting
or glass transition) of polymers are not purely physical and occur simultaneously with
decomposition, and that this behavior is an inherent property of all polymers.

2. Materials and Methods

Isotactic PP with an average Mw of ~340,000 g/mol and an average Mn of
~97,000 g/mol was purchased from Sigma-Aldrich. Poly(styrene) (PS) (BDH limited)
with Mw of ~100,000 g/mol was used. PVA (Aldrich) 99+% hydrolyzed with Mw in the
range 89,000–98,000 g/mol was used. PVC (Aldrich) of very high molecular weight was
used. Polypropylene-g-maleic anhydride (PP-g-MA) (BONDYRAM® 1001) with a melt
flow index (190 ◦C, 2.16 kg) of 100 g/10 min and 1% maleic anhydride (MA) content was
also used. KBr (Chem-Lab) of purity 99.5+% was used for the FTIR measurements. Indium
was used as the standard sample for the DSC (see Section 1 of Supporting Information for
more details).

A Shimadzu DSC-50 differential scanning calorimeter, a Shimadzu TGA-50 Thermo-
gravimetric Analyzer (TGA), a Biorad FTS-175 Fourier Transform Infrared spectrometer
(FTIR) and a Sartorius scale (model B 120S, ±0.0001 g) were used.

DSC and TGA measurements were performed under nitrogen atmosphere (flow
20 mL/min) and a heating rate of 10 ◦C/min. Empty pan measurements were also per-
formed in DSC and TGA in order to take into account instrument drift. The DSC and TGA
raw data were corrected by subtraction of the empty pan measurement (see Sections 1 and
2 of Supporting Information for more details). For all samples, three consecutive heating
cycles were performed. The cooling between the heating cycles was not controlled, and
it occurred slowly at room temperature (the pans were kept under nitrogen flow during
cooling and were not exposed to room air). In the DSC, PP and PP-g-MA were heated from
40 to 190 ◦C, PS from 40 to 130 ◦C, PVC from 40 to 180 ◦C and PVA from 40 to 250 ◦C. In
TGA, PS, PP and PVA were heated at the same temperatures as in DSC while PP-g-MA
was heated from 40 to 180 ◦C and PVC from 40 to 250 ◦C. For PP, additional DSC and TGA
measurements were performed up to 350 ◦C. Details about the concept for selecting these
temperature ranges can be found in Section 3 of the Supporting Information. It should
be mentioned that a total of 16 TGA measurements were carried out (3 for every polymer
plus one additional for PP up to 350 ◦C). However, only 7 measurements will be presented
and discussed, specifically the ones in which the mass loss is indisputably detected in the
raw data.

Each polymer (except PVA) was mixed with KBr (at polymer-to-KBr-mass ratio ~1:200)
and processed into pellets (hydraulic press, 100 Bar). These pellets were measured by
FTIR. Then, the KBr pellets (along with the KBr reference pellet) were first placed in a glass
reactor and purged with nitrogen gas. They were then heated inside an air oven from room
temperature up to 170 ◦C for 5 min, and after cooling (at room temperature), the pellets
were measured again with FTIR. This process was repeated another two times. All samples
were heated up to 170 ◦C, except for PS which was heated up to 130 ◦C (three times in total).
All FTIR measurements were performed by collecting 64 scans with a resolution of 2 cm−1

in absorbance mode. For each polymer, the raw spectrum of the raw material is presented,
while the spectra of the samples after each heating are presented as subtracted spectra (e.g.,
2nd–1st heating). Prior to spectra subtraction, baseline correction was applied. Wherever
needed, spectra multiplication by an appropriate factor was performed to increase signal-to-
noise ratio. Details about the concept of the FTIR measurements and the adopted approach
can be found in Section 4 of the Supporting Information.
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3. Results and Discussion

To enable the reader’s understanding, a short description of the structure of the article
will now be presented. Five different polymers (PVA, PP-g-MA, PP, PVC and PS) were
studied under three consecutive heating cycles, by DSC, TGA and FTIR. Firstly, the results
for PVA will be presented and interpreted. PVA was recently studied [12] under four
consecutive heating cycles and thus no FTIR results will be presented; however, further
insights on the thermal behavior of PVA will be provided that focus on the (apparent) heat
capacity values before and after thermochemical transition. Then, the results for other
polymers will be presented, and it is shown that the same interpretations as those made
for PVA can be applied to other polymers which exhibit no capability for hydrogen-bond
formation (PP-g-MA is an exception, and the cause of this is critically discussed). The
discussions and the interpretations of the results for all polymers are mainly focused on
three aspects: (1) the decrease in the heat capacity at the end of melting or glass transition
(see Introduction section), (2) the inconsistencies among TGA and DSC regarding the
initiation of decomposition and, more precisely, the initiation of mass loss in TGA without
detecting, in the same temperature range, the heat required for decomposition in DSC and
(3) the presence of impurities and the low probability of them being exclusively responsible
for the observed behavior. However, a brief discussion of the effect of impurities is also
included. Finally, based on fundamental concepts of statistical thermodynamics, theoretical
support and explanations for the experimental observations and interpretations will be
presented and, specifically, a theory will be proposed which describes the thermal behavior
of all kinds of polymers under a unified basis.

Before proceeding, it is worth mentioning that the term “first heating” is used through-
out the text for describing the sequence of the experimental measurement, and not in the
sense that the polymer raw material is heated for the first time ever. Raw polymers may
have been already heated during their production. Of course, even if all of the particular
polymer samples had already been heated during their production, none of the conclusions
of this study are affected.

3.1. PVA

Three consecutive TGA measurements of PVA are presented in Figure 1a and the
respective DSC curves are presented in Figure 1b. From the TGA curves it is apparent
that in every subsequent heating cycle, the mass loss in the temperature range of the
thermochemical transition (around 200–230 ◦C) is decreased. From the DSC curves it is
apparent that in every subsequent cycle, the heat of “melting” is decreased. These have
been recently interpreted. Briefly, it was confirmed by FTIR spectroscopy, stereoscopy and
macroscopic observations (black color), that due to decomposition, regions of increased
thermal stability are formed and thus, in the next heating cycle, during thermochemical
transition, fewer regions are susceptible to decomposition (lower mass loss in TGA) [12].
Consequently, less heat is required/absorbed in the next cycle (less heat is detected in DSC).
In addition, it was reported that the glass transition of PVA is a thermochemical transition
with no detectable (in TGA) mass loss.

In the previous study regarding PVA [12], the heat of decomposition was examined
along with the mass loss, but there was no discussion about the alterations of the heat
capacity during thermochemical transition. In general, the DSC signal (s) is influenced
by the heat absorbed by the sample (apparent heat capacity). This heat equals to the heat
capacity (c) of the sample that is, mass (m) times specific heat capacity (Cp) plus any heat (Q)
that may be absorbed or released during heating, e.g., heat for vaporization of impurities,
heat for melting, decomposition, etc. That is, s = c + Q = m × Cp + Q.
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Figure 1. (a) Three consecutive TGA heating cycles of PVA; (b) Three consecutive DSC scans of PVA. 
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From the DSC curves it is obvious that, independently of the number of heating
cycles, besides the overall asymmetry of the peak, the DSC signal of PVA is decreased after
the thermochemical transition (end of the peak) compared to the respective value at the
beginning of the transition (also see Introduction and Figure S1 in Supporting Information).
In addition, the DSC signal after the endothermic peak is constantly decreasing (shifting
towards exothermic direction). This clearly points out that the heat absorbed by the
sample (DSC signal, s) is constantly decreasing. The following four factors can potentially
contribute to this decrease:

(1) Decrease in s due to decrease in c (=m × Cp) due to decreased Cp values of decompo-
sition products. More specifically, due to decomposition, a portion of the polymer
mass transits to the vapor phase in the form of volatile decomposition products. Such
products may have decreased specific heat capacities compared to that of the polymer.
Thus, this can cause the DSC signal to shift towards the exothermic direction.

(2) Decrease in s due to decrease in c (=m × Cp) due to decrease in mass (m) of the sample.
The DSC pans used in this study did not seal hermetically. If increased vapor phase is
formed, then a leak may occur and thus, an actual mass loss out of the DSC pan can
occur. This, again, can cause the DSC signal to shift towards the exothermic direction.

(3) Decrease in s due to decrease in c (=m × Cp) due to the decrease in the Cp of PVA.
More specifically, the decomposed (residue) regions formed in PVA [12] are expected
to be characterized by decreased thermal mobility and decreased number of available
conformations and these are translated to decreased Cp values. This can cause the
DSC signal to shift towards exothermic direction. It is stressed that the alteration of
the specific heat capacity of polymers caused by decomposition is not unambiguous
and competitive effects are involved. Decomposition, on the one hand, tends to
decrease the specific heat capacity due to new stable regions which are formed due to
decomposition and are characterized by constrained conformations; however, on the
other hand, decomposition tends to increase the specific heat capacity by increasing
free volume and the possible conformations. The number and size of the pendant
groups and the decomposition pathway (random scission, etc.) are some of the factors
that are involved in determining which of the two trends will ultimately prevail for a
given polymer and at a given temperature.

(4) Decrease in s due to appearance of exothermic Q. Especially in the early stages of
decomposition through the random scission pathway, large decomposition fragments
are formed which are incapable of vaporizing [13]. These large fragments initially
have highly reactive sites, e.g., free radicals, and react with each other (or with the
polymer residue). The formation of new chemical bonds releases energy. This can
cause the DSC signal to shift towards the exothermic direction.
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It should be mentioned that the above four effects are not contradictive to each other
and can simultaneously contribute, at different extents, to the exothermic shift of the DSC
signal. From the above, it can be concluded that the decrease in the apparent heat capacity
of PVA during and after the thermochemical transition is related to decomposition. If just
melting occurred, then the mass would be constant and thus the DSC signal after the peak
should be higher than its value at the beginning of the peak to reflect the increase in Cp by
increasing temperature. The decrease in the heat capacity during the thermal transition
will be mentioned throughout the text when discussing/interpreting the thermal behavior
of other polymers.

In order to provide more insights for the DSC signal alterations, curve fitting (with
four Gauss peaks) was performed on the DSC peaks presented in Figure 1. As it has
already been pointed out [12], the determination of the proper baseline for integrating or
performing fitting in a thermochemical transition peak is complex, since the baseline is
altered during the transition due to the various competitive and overlapping effects. In
Figure 2a, the DSC curve from the first scan of PVA, along with the cumulative fit peak and
the baseline, are presented. As can be seen, in order to take into account the fact that mass
loss occurs during the thermochemical transition, a baseline comprising two linear parts
was adopted. The two linear parts of the baseline intersect at the maximum of the DSC
peak. The first part of the baseline is characterized by the endothermic slope, representing
the expected increase in heat capacity caused by an increase in specific heat capacity, due
to an increase in temperature, or heat absorption due to decomposition. The second part
of the baseline has an exothermic slope, representing the decrease in the heat capacity
caused either by the decrease in mass, due to decomposition or/and the heat release from
the exothermic reactions among the decomposition products. In Figure 2b–d, the fitted
peaks for the three DSC peaks of the respective scans of PVA are presented. As can be
seen, in all three scans, at least one negative peak is needed for fitting the DSC curve. It
should be mentioned that in the preliminary fitting trials, it was observed that no satisfying
coincidence of the raw and cumulative fit peak was achieved if fitting was performed with
two or three fit peaks instead of four. The necessity for performing fitting with four peaks
arises from the high asymmetry of the DSC peak of PVA. Additionally, it should be noted
that the position as well as the areas of the fit peaks are baseline sensitive. For example,
by altering the baseline, four positive peaks, or more than two negative peaks, could be
obtained; however, above, the reason for choosing this baseline was justified. It is stressed
that after the determination of the baseline, the fitting procedure was performed without
setting any requirements/conditions, e.g., at least one of the fit peaks being negative. As
mentioned above, in order to describe the overall peak, at least one negative peak is needed.

The physical meaningfulness of the negative peak is related to the above mentioned
forth factor which can potentially contribute to the decreased heat capacity values at the
end of the melting peak. Specifically, some of the decomposition fragments (especially
in the early stage of decomposition) are expected to be too large to vaporize [13]. The
fragments, initially, are not inert molecules but free radicals and thus they are highly
reactive. These reactive intermediate products will react either with each other or with the
polymer residue, and new covalent bonds will be formed. Since the breakage of such bonds
is endothermic, the formation of new bonds will be exothermic, that is, heat will be released.
These exothermic reactions occur simultaneously with the endothermic decomposition
reactions which are responsible for the production of the intermediate decomposition
products. Thus, the negative fit peak, as well as the large endothermic fit peak (much larger
than the DSC peak), express the overlapping of the endothermic decomposition reactions
and exothermic reactions among the decomposition products.
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To summarize the discussions of this section, it seems that the high asymmetry of
the DSC peak as well as the decrease in the DSC signal at the end of the endothermic
peak can be interpreted and understood in terms of decomposition. Decomposition causes
exothermic shifts of the DSC signal due to mass loss (decrease in mass inside the DSC
pan) and due to exothermic heat released by reactions among the decomposition products
(this contribution is expected to be more intense if the decomposition products are large
fragments and consequently are not volatile). The overlapping of such exothermic shifts
with the heat absorption required for further decomposition leads to the asymmetry of the
DSC peak.

3.2. PP-g-MA

The first TGA heating of PP-g-MA which was used in this study was presented recently
in the discussion of LLoD [14] and, precisely, up to 180 ◦C mass loss of 0.37 wt.% occurs. This
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mass loss occurs at a temperature range which overlaps with the DSC peak of PP-g-MA. In
the second and third TGA heating, no mass loss is detected (curves not shown). In Figure 3,
the DSC curves of PP-g-MA for the first, second and third heating cycle are presented. Since
only in the first heating of PP-g-MA mass loss was detected in TGA, this mass loss could
be attributed to the evaporation/desorption of water and other impurities. However, such
processes are endothermic, and the required heat should be hidden/overlapped by the
“melting” peak. In addition, if the mass loss is attributed to factors such as the evaporation
of impurities, well, it surely is a very interesting coincidence that the impurities vaporize at
the same temperature range at which the polymer melts. However, as will be presented
in the following sections, similar observations can be made for other polymers. Thus, it
is difficult to accept that the impurities of PP-g-MA or PVA or PVC have boiling points
close to the melting points of the respective polymers. Additionally, and more importantly,
alterations in the chemical structure of PP-g-MA can be detected by FTIR. Before discussing
the FTIR results for PP-g-MA, it is stressed that as in the case of PVA, and in all three DSC
scans of PP-g-MA (Figure 3), the DSC peak is highly asymmetrical and also, the apparent
heat capacity of the sample is decreased at the end of the “melting” peak compared to its
values before the peak (simply this decrease is more mild compared to that of PVA, and is
related to the lower extent of mass loss).
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Figure 3. Three consecutive DSC scans of PP-g-MA.

The FTIR spectrum of the raw (unheated) PP-g-MA sample and the subtracted spectra
before and after the three consecutive heating cycles are presented in Figure 4 for two
different wavenumber regions. As can be seen in Figure 4a, a negative peak of the CH2-
CH3 bands at around 2900 cm−1 is clearly revealed in the 1st–0th subtracted spectrum,
suggesting a decrease in organic substance after the first heating (a negative peak can also
be detected in the 2nd–1st subtracted spectrum). Of course, the polar groups of maleic
anhydride are expected to cause water absorption by the PP-g-MA, and thus the mass
loss detected by TGA around 100 ◦C could be attributed mainly to water loss. However,
in the DSC curve of the first scan, there is no detectable thermal effect around 100 ◦C.
Thus, any removal of physically bounded water seems to occur at a very low extent
and cannot be the primary cause for the mass loss detected in TGA. However, removal
of chemically bounded water occurs. During production/storage of PP-g-MA, water
absorption leads to the hydrolysis of maleic anhydride groups, which in turn results in the
formation of maleic acid. Thus, PP-g-MA is actually polypropylene co-grafted with maleic
anhydride and maleic acid, and not just maleic anhydride. This can be clearly detected
by the FTIR measurements in the hydroxyl stretching region at 4000–3200 cm−1 (negative
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OH peak at around 3400 cm−1 in Figure 4a), but also in the carbonyl stretching region
at 1700–1800 cm−1 (Figure 4b). The peak at 1713 cm−1 (characteristic of C=O of acids)
becomes negative after the first heating, which indicates that acid groups have decreased.
A positive peak at 1780 cm−1 (characteristic of C=O of anhydrides) has appeared, which
indicates that new anhydride C=O groups have been formed (obviously related to the
decrease in acid groups due to dehydration during the first heating cycle). The same trend,
but at lower extent (to enable of visualization, spectrum multiplication was performed), is
detected between the first and second heating (Figure 4b). Between the second and third
heating a different behavior is revealed and along with the negative peak at 1713 cm−1, a
negative peak at 1780 cm−1 has appeared, clearly suggesting a decrease in the anhydrides
groups and the occurrence of decomposition through a different pathway than the one in
the first heating.
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Figure 4. FTIR spectrum of PP-g-MA raw material and subtracted spectra before and after three
consecutive heating cycles at 170 ◦C: (a) region 4000–2750 cm−1; (b) region 1820–1660 cm−1.

Although maleic acid should not be present in the structure of PP-g-MA, it is inter-
esting that the chemical reaction of dehydration occurs upon “melting”. The anhydride
groups can act as proton acceptors in a hydrogen bond, while the carboxyl groups can act
both as donors and acceptors. Thus, maleic anhydride groups cannot form hydrogen bonds
with each other, while acid groups can form hydrogen bonds with both anhydrides and
other acid groups. In other words, the occurrence of dehydration results in a reduction
in the number of possible hydrogen bonds, and this could enable “melting”. In addition,
dehydration results in the production of small highly mobile molecules (water) which
can act as plasticizers, i.e., increase polymer’s free volume and increase chain mobility
(through collisions). Again, this facilitates the softening of the polymer. Consequently, since
dehydration occurs in all three heating cycles and occurs simultaneously with “melting”, it
is clear that the softening of PP-g-MA is a chemically induced phenomenon and overlaps
with mass loss—that is, it is a thermochemical transition and not a melting point. To further
explore the thermal behavior of PP-g-MA, the enthalpy of the dehydration reaction of
maleic acid into maleic anhydride and water was calculated from the respective enthalpies
of formation, and curve fitting of the DSC curves was also performed. The enthalpies of
formation for (solid) maleic acid, (solid) maleic anhydride and (gas) water are equal to
−789.4, −469.8 and −241.8 kJ/mol [37], respectively. From these values, the enthalpy of
the reaction (dehydration of maleic acid into maleic anhydride and water) is estimated to
be 77.8 kJ/mol. Although this value is higher than that of the esterification/hydrolysis
reaction (16.4 kJ/mol) between glucose and acetic acid (resembling the reaction taking place
upon heating of cellulose acetate) [10], it is rather low for a chemical reaction—the energy



Polymers 2022, 14, 5054 11 of 27

of some hydrogen bonds may be as high as 80 kJ/mol and thus this chemical reaction
would be expected to occur easily. Additionally, this value (77.8 kJ/mol), if expressed per g
of produced water, is translated to 4319 J/g. In Figure 5, the curve fitting (with four Gauss
peaks) of the DSC peaks of the three scans of PP-g-MA is presented. As for the case of PVA,
again, negative peaks are involved in the fitting in order to describe the asymmetry of the
peak and the decrease in the baseline at the end of the peak.
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The area of the first fit peak (shown with pink dashed line in Figure 5a) at 151 ◦C of
the DSC peak of the first scan represents the 26% of the area of the cumulative peak. The
cumulative peak corresponds to the value of 167.4 mJ as measured by DSC, thus the first fit
peak corresponds to 26

100 × 167.4 = 44.2 mJ. In the DSC experiment, the mass sample was
2.3 mg. From the TGA the % mass loss is known (0.37 ± 0.1 wt.%) [14]. By assuming that
all this mass loss arises from water produced by the dehydration of acid groups, it follows
that the mass loss during the first DSC scan was 2.3 − 0.37×2.3

100 = 0.00851 mg. By dividing
the value of 44.2 mJ with this mass loss and by taking into account the uncertainty of the
% mass loss, a value in the range 4090–7125 J/g is obtained, which is of the same order
of magnitude as the above mentioned theoretically calculated value of 4319 J/g. Similar
calculations were not performed for the second and third scan, since no mass loss for these
cases was directly detected by TGA.

Besides this endothermic peak, there are two more endothermic contributions and one
exothermic in the DSC curve of the first scan (Figure 5a). However, no exothermic contribu-
tion is expected from the dehydration of acid due to the volatility of water. More specifically,
at temperatures close to or within the softening point of PP-g-MA, i.e., temperatures much
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higher than 100 ◦C, any produced water is expected to rapidly vaporize and thus the
reverse (exothermic reaction) of hydrolysis of anhydride groups by water is not expected
to proceed at any countable rate. In addition, if dehydration was the main cause for the
asymmetry of the DSC peak of PP-g-MA, then this should mainly be observed in the first
scan, since in the other two heating cycles the extent of dehydration is 10–20 times lower
(justification for this is provided below). In combination with the 3rd–2nd FTIR subtracted
spectrum (negative peak at 1780 cm−1 indicating decrease in anhydride pendant groups)
and the 1st–0th FTIR subtracted spectrum (negative in 2900 cm−1 indicating reduction of
backbone C-H groups) it seems that additional decomposition reactions take place along
with dehydration. Thus, as for the case of PVA, the exothermic contributions in all three
DSC curves, as well as the asymmetry of the DSC peaks, can be related to decomposition.

Finally, it is worth mentioning the following:

(1) From the FTIR (Figure 4b) it can be seen that the area of the negative peak at 1713 cm−1

(acidic C=O stretching) is almost the same in the 1st–0th subtracted spectrum and
the 2nd–1st subtracted spectrum. In other words, the decrease in acidic groups is the
same, however, the 2nd–1st subtracted spectrum was multiplied by 10. Thus, the
reduction of acidic groups (or the extent of dehydration) in the second heating is about
10 times smaller than that in the first heating. Accurate calculation of the areas of the
negative peaks yielded a ratio of 8.8 (in other words, the decrease in acidic groups is
8.8 times smaller in the second scan). Thus, in the second scan the % mass loss due to
dehydration is estimated to be 0.37%

8.8 = 0.042 wt.%. This value is very close to the LLoD
value for PP and PP-g-MA (measured under nitrogen atmosphere) which has been
reported to be ~0.03 wt.% [14]. The respective ratio of the areas of the negative peak
at 1713 cm−1 in the 2nd–1st subtracted spectrum and 3rd–2nd subtracted spectrum is
2.2 (the mass loss due to dehydration in the third scan is 2.2 times smaller than the
one of the second scan) corresponding to 0.019 wt.% mass loss due to dehydration in
the third heating. Thus, based on LLoD of TGA [14], it can be perfectly justified why
no mass loss is detected in the second and third TGA heating, despite the fact that
dehydration occurs in all three heating cycles as confirmed by FTIR.

(2) In the second and third heating cycles, it is more difficult for dehydration to occur
due to the smaller number of hydrogen bonds. A lower number of acidic groups is
translated to a decreased number of bounded acid groups and an increased number of
free ones. The free acid groups are stronger compared to the hydrogen-bonded groups
since hydrogen bonding weakens the O-H chemical bond. The chemical reaction of
dehydration of acid requires the breakage of O-H chemical bond. Thus, in bounded
acid groups the reaction is facilitated, since it is easier to break the O-H chemical
bond due to its weakening. In the third heating, the number of acidic groups is lower
and the % portion of free groups is expected to increase. Consequently, dehydration
occurs at even lower extent.

(3) Maleic acid, which is present in the PP-g-MA as a result of the hydrolysis of maleic
anhydride groups, is chemically similar to succinic acid which is suspected to exhibit
a “problematic” thermal behavior [5].

3.3. Isotactic PP

The three consecutive DSC scans and the FTIR spectra of PP are presented in
Figures 6a and 6b, respectively. In none of the three consecutive TGA heating cycles of
PP was mass loss detected (curves not shown). Regarding the DSC curves, the same
observations can be made for PP as for PVA and PP-g-MA; that is, an overall asymmetry
in the peak and a decreased heat capacity after the “melting” peak. Again, this can be
interpreted as a contribution of energy release during the formation of new bonds from
non-volatile decomposition products. Curve fitting for these DSC curves is presented in the
supporting information (see Figure S4). In the DSC traces of PP besides the “melting” peak,
no other thermal effect can be detected. Thus, the heat involved in this endothermic peak
must be responsible for the negative peaks realized by FTIR (Figure 6b). In addition, since
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there is no other thermal effect detected in DSC, that could justify the negative peaks; these
negative peaks after the first heating cannot be attributed to the evaporation of impurities
(unless if it is accepted that the previously mentioned coincidence holds, that is, that the
impurities of PP have similar boiling point with the melting point of PP).
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Figure 6. (a) Three consecutive DSC scans of isotactic PP sample; (b) FTIR spectrum of PP raw ma-
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Figure 6. (a) Three consecutive DSC scans of isotactic PP sample; (b) FTIR spectrum of PP raw
material and subtracted spectra before and after three consecutive heating cycles at 170 ◦C in the
region 3100–2750 cm−1.

A negative peak in the C-H region (2750–3000 cm−1) can be detected after the first
heating and after the second heating (but with a very low, close-to-noise intensity). After the
third heating, the appearance of a very small positive peak in the region 3100–3200 cm−1

(indicated by arrow in Figure 6b) seems to occur. As for the case of PVA [12], this may
be related to the formation of carbon–carbon double bonds (“char” regions). Of course,
in the case of PP, the intensity is very low even after spectrum multiplication, thus the
C=C content should be extremely low. In a later section, it will be theoretically justified
why PP is expected to exhibit a very low extent of decomposition during its softening.
Based on the above, it seems likely that isotactic PP exhibits a thermochemical transition,
but the extent of decomposition during softening is hardly detectable. Additionally, in
one study in the literature, the decomposition of isotactic PP was studied, and the first
decomposition products were detected by Mass Spectrometry at 177 ◦C—a temperature
very close to its melting point (7 ◦C above the melting point)—the authors speculated that
such a low temperature was “probably slightly in error” [38]. In the same study, by FTIR
spectroscopy, the first decomposition products were detected at 217 ◦C [38]. Besides these,
further insights can be provided by the DSC and TGA curve of PP up to 350 ◦C (Figure 7a).

As can be seen in Figure 7a, around 250 ◦C, an endothermic peak appears which
overlaps with the initiation of mass loss in TGA. This endothermic contribution can be
related to the sensible decomposition detected in TGA. The DSC baseline after this tem-
perature range is highly exothermic and is governed by the mass loss whose occurrence
is clearly detected in TGA. The actual mass loss out of the DSC pan is confirmed by the
photograph of the DSC pan after the measurement up to 350 ◦C, which is presented in
Figure 7b. The slope of the DSC baseline is less negative compared to the mass loss slope in
TGA (Figure 7a), since heat is continuously absorbed by the sample and this tends to shift
the DSC baseline towards the endothermic direction. However, as mentioned above, PP is
known to decompose at lower temperatures, i.e., in the range 177–217 ◦C [38], and in the
DSC curve (Figure 7a) an intense exothermic shift of the baseline is clearly visible at around
220 ◦C. As discussed numerous times throughout the text, the exothermic shift is related
to decomposition (energy release from reactions among the decomposition products). In
addition, DSC has no similarity to TGA limitation (LLoD) in detecting mass loss due to
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a sample’s buoyancy, since, in contrast to TGA, the DSC sensor is influenced by the real
mass of the sample inside the pan and not from the apparent weight of the sample. Thus, if
actual mass loss out of the DSC pan occurs, this would be directly detected by DSC, since
less heat would be required in order to keep the same rate of temperature increase in the
sample and in the reference (empty) pan. This mass loss would not be detected by TGA
until it became high enough to surpass the sample’s buoyancy [14]. However, besides the
“melting” peak, there is no other effect which can be responsible for the intense exothermic
shift at 220 ◦C.
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end of the measurement up to 350 ◦C revealing the actual mass loss (brown/black color) which has
occurred during the measurement.

Based on all the above, it is concluded that in the “melting” peak of PP there is a
considerable contribution for heat required for decomposition; that is, the softening of PP
is a thermochemical transition.

3.4. PVC

In Figure 8a, the three consecutive TGA heating cycles for PVC are presented. It can be
seen that PVC decomposes at temperatures above 200 ◦C. In Figure 8b the three consecutive
DSC scans of the PVC sample (along with one preliminary DSC scan) are presented. An
intense increase in the heat capacity initiates at 81 ◦C (in the first scan) and another one
initiates to occur around 140 ◦C. In the literature [39,40], these curves are considered as
melting peaks (indicated with arrows in Figure 8b—also in the same Figure, a dashed
baseline has been drawn to enable recognition of the peaks) and from these peaks, the heats
of fusion and the degree of crystallinity are estimated. In a very interesting review article
regarding the crystallinity of PVC [41], various DSC and X-ray diffraction (XRD) graphs
of PVC are presented. These DSC curves are very peculiar, like the ones presented in this
study. PVC in general has a diffuse broad XRD pattern and as it has been reviewed [41],
it exhibits a low degree of crystallinity of the order of 10%; however, this crystallinity
is of a different nature from that of other polymers and thus it has a significant impact
on the PVC’s properties. The two “melting” peaks have been attributed to two different
crystallite types, namely fringed micelle type and lamellar type [40]. Furthermore, although
polymers in general do not give sharp but rather broad asymmetric melting peaks in DSC,
the broadness and asymmetry of the “melting” peaks of PVC are very extensive, e.g., the
first peak covers a range of 80–140 ◦C (Figure 8b).
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Figure 8. (a) Three consecutive TGA heating cycles of PVC up to 250 ◦C. The green line points out
a decreasing trend of mass in the range 125–200 ◦C in the first heating; (b) Three consecutive DSC
scans of PVC up to 180 ◦C and a preliminary first scan up to 250 ◦C. The dashed line has been drawn
to enable the recognition of the peaks.

This inconsistency (low XRD signal but rather intense DSC signal) is similar to the
inconsistency [42] regarding the conclusion about the crystallinity of cellulose esters as
derived by XRD and DSC that was recently clarified [9] along with rather unusual interpre-
tations, e.g., that once melted they cannot be recrystallized by thermal treatment, but only
after solvent precipitation. On one hand, it seems reasonable that two different types of
crystallites would be responsible for two melting peaks, but on the other hand, how is it
possible for PVC, a polymer with such a low crystallinity (as implied by XRD), to exhibit
not one, but two melting peaks in the DSC? The behavior is exactly the same as that of CAB
and CA (that is, a transition appearing as glass transition with a small endothermic peak
at its end). In the third scan of PVC, the small peak at the end of the “glass transition” is
clearly visible and more easily realizable. In general, this peak is commonly attributed to en-
thalpy recovery upon heating, caused by the enthalpy relaxation that occurs in the polymer
when it is stored at lower temperatures but rather close to the glass transition temperature,
so an adequate chain mobility will exist in order to result in relaxation/rearrangement.
However, in the DSC scans which were performed in this study, the cooling rate was low
(room temperature cooling), and no quenching was applied. Thus, there should not be
any considerable tendency for enthalpy relaxation and thus enthalpy recovery. In addition,
between the consecutive scans there is not enough time for enthalpy relaxation to occur.
Thus, this peak at the end of “glass transition” should not and cannot be interpreted as
enthalpy recovery peak.

If it is assumed that PVC does not exhibit a thermochemical transition, then, as for PP,
the following inconsistency between DSC and TGA arises: From the TGA curves (Figure 8a)
it is apparent that considerable mass loss occurs in PVC at temperatures above 200 ◦C.
Obviously, heat is needed to break the chemical bonds and decompose PVC. However, in
the DSC curves above 200 ◦C (preliminary first scan in Figure 8b), no endothermic effect is
detected and, on the contrary, the DSC signal is shifted towards the exothermic direction
(this exothermic shift initiates at around 170 ◦C). If the peaks of DSC are considered to be
melting peaks, then where is the heat required for decomposition? Why does DSC not
detect the rather high amount of heat required to induce decomposition of 1–2 %wt. as
detected in TGA? This inconsistency can be easily solved by accepting that PVC does not
exhibit melting points but thermochemical transition. More specifically, the heat required
for decomposition is detected by DSC at temperatures lower than 200 ◦C. The exothermic
shift of the DSC signal (that initiates at 170 ◦C) is related to a decrease in heat capacity due
to heat release caused by the formation of new chemical bonds from the reactions among
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the early-stage non-volatile decomposition products. Additionally, note, that the PVC used
in this study is of a very high molecular weight (as stated by the manufacturer). Thus, it is
more likely at early stages to produce large, non-volatile fragments. TGA does not detect
mass loss at this temperature range due to lack of volatility of the decomposition products.
In addition, even after the formation of volatile decomposition products, TGA will not
detect any mass loss, unless the LLoD is surpassed [14]. As the temperature increases,
e.g., at 200 ◦C, two factors contribute to the mass loss: a) decomposition proceeds (both
endothermic and exothermic reactions) but the portion of volatile decomposition products
is increasing since smaller (more volatile) fragments are likely to be produced and b) the
vapor pressure increases, meaning that some products that could not vaporize at 170 ◦C
can vaporize above 200 ◦C. Thus, above 200 ◦C, mass loss increases and is detected by TGA.
This mass loss is also detected by DSC as further shifting (at around 210 ◦C) of the DSC
signal towards the exothermic direction because of a decrease in heat capacity due to a
decrease in mass sample.

The occurrence of decomposition of PVC at temperatures up to 170 ◦C is also con-
firmed by the FTIR measurements (Figure 9). The absorption around 2900 cm−1 (C-H
stretching vibrations) is negative after the first heating (Figure 9a). In other regions of the
spectrum some positive peaks have appeared. More specifically (Figure 9b), the absorption
detected in this work at 1426.5 cm−1 (literature value [43] at 1424 cm−1) is attributed to CH2
symmetric (scissors) deformation in the crystalline phase and has become positive, while
the absorption of the respective vibration of the amorphous phase at 1435 cm−1 (literature
value [43] at 1431 cm−1) is zero or slightly negative. These suggest a slight increase in
crystallinity. A similar conclusion is derived from the C-Cl vibrations (Figure 9c). The C-Cl
stretch in the amorphous phase at 612 cm−1 (literature value [43] 610 cm−1) is slightly neg-
ative after the first heating, while a new positive peak has appeared at 602 cm−1 (literature
value [43] at 603 cm−1), which is the corresponding vibration in the crystalline phase. The
overall absorbance of the multiple peaks related to C-Cl at around 620 cm−1 (A620) is in-
creased with respect to the absorbance at 2900 cm−1. More specifically, the ratio A620/A2950
increased from 2.9 in the raw sample to 3 after the first heating; however, a similar increase
is observed for the ratio A1430/A2950 that increased from 0.7 to 0.8. The comparison of C-Cl
and CH2 in the regions at 620 cm−1 and 1430 cm−1, respectively, that are both influenced by
the relative changes in crystallinity, can be considered more reliable. The ratio A600/A1430
decreased from 4.1 in the raw material, to 3.8 after the first heating, suggesting a decrease in
the overall (amorphous and crystalline) C-Cl with respect to the corresponding (amorphous
and crystalline) CH2 groups and these suggest a pendant group decomposition pathway.
The overlapping of the vibrations of C-Cl and CH2 in the crystalline and amorphous phases
does not allow us to distinguish a similar decrease in amorphous contribution and increase
in crystalline contribution between the first and second and the second and third heating
cycles. However, in the region 2750–3000 cm−1 (Figure 9a) both positive and negative
peaks can be detected even after third heating, suggesting alterations in chemical structure.
Finally, it is worth mentioning that the pendant group elimination mechanism for PVC
decomposition is in agreement with the literature [44,45] and is related to HCl production.
Although this is a volatile substance, its low molecular weight may also contribute to the
absence of severe mass loss at the early stage of PVC decomposition.
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Figure 9. FTIR spectra of PVC raw material and subtracted spectra before and after three consecutive
heating cycles at 170 ◦C: (a) in the region 3200–2750 cm−1; (b) in the region 1500–1400 cm−1; (c) in
the region 660–580 cm−1.

3.5. PS

As for the case of PP, and also in the case of PS, no mass loss could be detected in the
three TGA heating cycles (curves not shown). However, in the DSC traces of PS (Figure 10a)
decomposition can be realized. In all three scans an intense increase in heat capacity
initiates around 85–90 ◦C and ends around 105 ◦C. The above mentioned (for PVC) small
endothermic peak at the end of “glass transition” is clearly visible in all three scans of PS.
The major difference between the three scans is that in the first scan, the increase in heat
capacity from 85 to 105 ◦C is not continuous and a severe decrease occurs in the range
95–100 ◦C, and afterwards an intense increase occurs again. The decrease in heat capacity
makes the signal look like an endothermic peak. The decrease in the first scan is difficult
to explain in terms other than decomposition. It is either an endothermic decomposition
peak or it is a decrease in the heat capacity due to exothermic reactions of non-volatile
decomposition products (or most likely a combination of such overlapping effects). For
similar reasons to those already discussed for PVC, the interpretation that the peak at the
end of “glass transition” is related to enthalpy relaxation is highly disputable. This behavior
is the same as that of CAB [9].
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Figure 10. (a) Three consecutive DSC scans of the PS sample; (b) FTIR spectrum of PS raw material
and subtracted spectra before and after three consecutive heating cycles at 130 ◦C in the region
3200–2750 cm−1.

From the FTIR (Figure 10b), a reduction in both CH2 stretch (around 2900 cm−1) and
aromatic CH stretch (around 3050 cm−1) is realized after the first heating at 130 ◦C. After the
second heating, both absorptions become slightly positive and this could be attributed to
density increase due to physical factors (e.g., PS is completely amorphous and consequently
there is no equilibrium state, and thus, by heating and cooling, the chains may arrange in
slightly denser manner). However, the CH2 absorption (which is less intense in the raw
spectra compared to the aromatic CH absorption) becomes slightly more positive than
that of aromatic CH. The relative difference in these two absorptions suggest alterations
of density due to chemical (and not just physical) factors. Between the second and third
heating, slight decreases in both absorptions seem to occur. Finally, the impurities cannot be
the cause of the decrease in the heat capacity and the alterations of the FTIR spectra, unless
it is accepted that the impurities of PS have boiling points similar to the glass transition
temperature of PS, and for some reason they are not removed after the first heating.

3.6. Discussion on the Effect of Impurities

As mentioned several times throughout the text, the observed behavior cannot be
attributed to impurities. If this was observed for one polymer, then the matching of the
boiling point of the impurity with the melting point (or glass transition) of the polymer
could be considered a coincidence. However, this is observed in too many polymers (the
ones presented in this study, and also in CAB and CA). Even if the mass loss is attributed
to impurities, it is obvious that the removal of impurities and the softening of the polymer
are not independent, otherwise they should occur at different temperatures. Water is
an impurity for PP-g-MA, yet it seems to play an important role in its thermal behavior.
However, as discussed, PP-g-MA also decomposes through another pathway. Thus, the
presence of the impurity may intensify the “problem” but is not the primary cause. For
gallic acid, it was reported that the presence of different solvent impurities affects the
decomposition pathway, and higher or lower mass loss can occur during the solid–solid
thermochemical transition around 90 ◦C, but the presence of impurities is not the primary
cause for the thermochemical transition [17]. Similarly, composite membranes of CA with
gallic acid or quercetin exhibited depressed thermochemical transition temperature but
higher extent of decomposition during softening compared to pure CA membrane [11].
If gallic acid and quercetin are considered as impurities for CA, then it is apparent that
their presence intensifies but does not cause the thermochemical transition of CA. These
polymers are unable to actually melt (i.e., soften without decomposing). For polymers in
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general, there are various potential decomposition pathways/reactions and obviously the
easiest pathway (thermodynamically and kinetically favored) will prevail. The impurities
may favor a specific decomposition pathway, e.g., the dehydration of acid groups of PP-g-
MA due to low enthalpy of reaction but are not the primary cause for the thermochemical
transition. Additionally, the matching of the boiling point of an impurity with the softening
point of a polymer, which will be discussed in the next section, may be apparent and may
arise from factors other than the actual presence of impurities.

4. Theoretical Considerations and Discussion
4.1. Mobility of Pendant Groups and Some Interesting Coincidences

In polymers, the mobility of the high length backbone is lower than that of the small
pendant groups at any given temperature (except extremely low temperatures where the
mobility of pendant groups is also low). A similar statement can be made for the end
groups that are chemically bonded to the backbone only from one side. This large difference
in the mobility between the groups/bonds within the same molecule can be considered
as a general characteristic of high molecular weight substances and thus, it should play
a determining role in the properties of polymers. The influence of the increased mobility
of the pendant groups can be recognized, in some cases, from the obvious matching of
the boiling point of the pendant groups and the thermal transition temperature of the
polymer. The primary trigger for the work on CAB [9] was the observation that the
believed “melting” point of CAB was suspiciously close to the boiling point of butyric acid.
Additionally, the “glass transition” temperature of CAB (depending on the overall and
partial degrees of substitution) is suspiciously close to the boiling point of the pendant
groups/possible decomposition products such as butyric acid and acetic anhydride. In
cellulose esters besides thermal decomposition, chemical decomposition through hydrolysis
also occurs [9] leading to acid formation and complicating the interpretations; however, the
above mentioned matching can be realized in other polymers where there is no involvement
of hydrolysis. For PS, the “glass transition” in the first scan starts to occur at 85 ◦C, which is
just above the boiling point of its pendant groups (benzene), which is 80 ◦C. In the second
and third scan the onset temperature is higher (~95 ◦C) but it can still be considered to
be close to the boiling point of benzene. Benzene, as a pendant group, is of large volume;
thus, it governs the distance among chains and makes the contribution of the backbone
hydrogen atoms’ interactions negligible. In PS, the benzene groups are found in every
repeating unit and interact with each other. Although chemically bonded to the backbone
at one point, the other five of the six C atoms (and the corresponding H atoms) are found
in an environment not too different from that found in liquid benzene (that is, the benzene
groups of the polymer interact with each other with similar intermolecular forces as in
the liquid state of benzene). Thus, for a polymer like PS (low polarity backbone, pendant
groups of high volume and increased number of pendant groups), at the temperature at
which the energy/mobility of (free) pendant groups is increased to the point that it would
normally boil, it is perfectly reasonable for a similar (distorted) phenomenon to occur with
a tremendous impact on the polymer’s behavior. Decomposition/distorted boiling enables
any thermal transition/relaxation of the polymer, by increasing (to different extents) the
free volume of the polymer and by enhancing the mobility of the backbone (through the
extensive thermal motion of pendant groups). Additionally, the (volatile) decomposition
products may act as plasticizers that further enable relaxation.

As stated above, the end groups, like the pendant groups, also have increased mobility
compared to the backbone groups. The same seems to hold for other small distinguishable
parts of the backbone, such as the actual repeating unit or oligomers (2–5 repeating units),
since a matching of the boiling point of such distinguishable fragments of the backbone
and the polymer’s thermal transition temperature can be recognized. It is stressed that the
term “actual repeating unit” is used instead of “monomer”, since these two do not always
coincide. A typical example is the polyester named poly(L-lactic acid). The pendant groups
of PLLA are methylene and carbonyl oxygen. Methyl acetate (boiling point 56.8 ◦C) can be
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considered as the simplest organic substance to resemble the “actual” repeating unit and
the pendant/end groups of PLLA and, just above its boiling point, PLLA exhibits a glass
transition (~62 ◦C).

In the introduction section, the broadness and the asymmetry of the melting peaks
of polymers was discussed. In the DSC curves presented in the previous section, this
asymmetry of the “melting” peaks can be detected as a tail/shoulder in the beginning
of the peaks. For the case of PP, the tail seems to initiate in the range 110–125 ◦C. 2,4-
dimethyl-hexane (a distinguishable part of the backbone) has a boiling point of 109 ◦C.
Other (linear and branched) alkanes (C9-C10) have boiling points in the temperature range
120–175 ◦C. As mentioned in a previous section (Section 3.3), in one study in the literature,
the first decomposition products of isotactic PP were detected by Mass Spectrometer at a
temperature just 7 ◦C above its melting point [38]. In the decomposition products, higher
molecular weight species (C5-C7) were detected [38]. In any case, the random scission
decomposition pathway of PP and the boiling point of PP’s dimer/trimer are in agreement
with the tail of the peak and the decomposition after 125 ◦C that is interpreted from DSC.
The pendant (methylene) groups of PP are small, do not exhibit strong interactions and
although there is an increased number of pendant groups (one pendant group per repeating
unit), in contrast to benzene and the case of PS, the environment is quite different to that in
the liquid state of methane (the simplest compound to resemble the pendant group of PP).
Thus, in such a case, a direct matching of the boiling point of the pendant group and the
thermal transition of the polymer would not be expected.

The partial overlapping of PP-g-MA’s “melting” region with the melting point of
maleic acid (129–145 ◦C) does not seem likely to be accidental; however, as discussed,
a decomposition pathway seems to exist in addition to dehydration. For this second
decomposition pathway, a similar discussion to that for the case of PP also holds for the
case of PP-g-MA.

For the case of PVA [12], it was recently pointed out that its “glass transition” is also a
thermochemical transition and occurs very close to the boiling temperatures of methanol
and ethanol. The simplest compounds to resemble the pendant or end groups of PVA are
alcohols like methanol (boiling point ~65 ◦C) and ethanol (boiling point ~78 ◦C).

For PVC, the labile nature of the C-Cl bond governs its thermal transition, but for the
reasons explained, like with PP, no direct matching would be expected. Additionally, it is
noted that similar matchings have been recently reported for various vinyl esters [10].

Based on the results presented up to this point and the overall discussions, it is
proposed that the simultaneous softening and decomposition in polymers arises from a
distorted version of an actual first-order transition, i.e., boiling. In cases where a large
number of pendant groups exist, and depending on other factors such as size, strength
of physical interactions, etc., the thermal transition of the polymer may not be at all a
distorted, but instead a clear version of the boiling of the pendant groups. In other cases,
such as cases with two different kinds of pendant groups or a small number of pendant
groups— although the boiling point of the pendant groups is not readily recognized—
above some temperature (or temperature range), their mobility increases considerably, and
this distorted boiling causes the thermochemical transition (simultaneous softening and
decomposition) of the polymer.

4.2. Thermal Transition Behavior of Polymers under a Unified Basis and Latent Decomposition

Up to this point, it was discussed that: (1) various common polymers exhibit thermal
transitions that occur simultaneously with decomposition and (2) the increased mobility
(distorted boiling) of the pendant/end groups/small backbone segments seems to be
related to this effect. It is more reasonable and physically meaningful for thermoplastic
polymers to exhibit thermal behavior, more common of other polymers, such as thermosets,
rather than other low molecular weight substances. It is proposed that the simultaneous
softening and decomposition is a general property of polymers. More specifically, it
is proposed that polymers cannot be softened without being decomposed, and the only
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difference, among thermosetting polymers, biopolymers and thermoplastics, is the extent of
decomposition or, in other words the relative contributions of softening and decomposition
during thermochemical transition. What follows is an attempt to theoretically support
this idea. In essence, basic concepts of the kinetic gas theory (e.g., random collisions) are
applied to the pendant and end groups of the polymers.

Upon heating, not all of the pendant (or end) groups have the same mobility/energy,
due to the randomness of collisions and therefore they randomly exchange energy with
each other. An analogy can be drawn here between this and the boiling of a liquid. A
small number of bubbles are formed much before the whole liquid mass boils. Such high
energy bubbles (molecules with enough energy to form a stable vapor phase) will escape
from the liquid upon heating. In the case of polymers, a small quantity of pendant groups
(resembled by the initial bubbles) will have more energy than others at any given time.
However, the high energy pendant groups are chemically bonded to the backbone and
cannot escape as easily as the initial bubbles can from the liquid. By increasing temperature,
due to the more frequent collisions and exchange of energy, the mobility (energy) of some
of the pendant (or end) groups becomes so high that they can cause decomposition, either
by detaching themselves from the backbone (mechanism of decomposition: either pendant
group elimination or depolymerization) or by causing the breaking of the backbone bonds
(mechanism of decomposition: random scission or depolymerization).

Cellulose is a typical example of a polymer that does not exhibit any detectable thermal
transition prior to decomposition. The explanation for this behavior is the existence of an
extensive inter- and intra-molecular hydrogen bond network. In general, the energy of
a chemical bond is orders of magnitude higher than the energy of physical interactions.
However, in the case of cellulose, upon heating, some chemical bonds are broken before a
loosening of the physical interactions is accomplished. An attempt to explain this behavior
in terms of statistical thermodynamics will be made.

According to Boltzmann’s thermal distribution, high energy states are less populated
than low energy states and the probability of finding a molecule (pendant/end group in
this case) with a certain energy equals the fraction of molecules with this energy. Here, two
energy states will be considered for the mobility of the pendant groups of polymers during
a thermal transition: (1) one low energy state corresponding to softening, and (2) one high
energy state corresponding to decomposition. Before proceeding, the following should
be defined:

ND: number of pendant groups per repeating unit which are found in the high-energy
(decomposition) state during thermal transition/softening.

NS: number of pendant groups per repeating unit which are found in the low-energy
(softened) state during thermal transition/softening.

r =
ECHEMICAL
EPHYSICAL

, (1)

where:

ECHEMICAL: Is the energy of the weakest chemical bond of the polymer (bond other than
the C-H bond).
EPHYSICAL: Is the energy of the strongest physical interaction among pendant groups of
the polymer.

From the above it follows that the degree of apparent decomposition (d) equals

d =
ND

ND + NS
, (2)

The term “apparent” is used for decomposition, because the ND, is not the actual
number of the pendant groups that will decompose, but the number of pendant groups
with energy high enough to cause decomposition. In order to describe the proposed concept
with a simple equation, it is assumed that the ratio of the probabilities for softening and
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decomposition state (and thus the ratio NS/ND) is proportional to the ratio of the energy of
chemical bond to the energy of physical interactions, that is:

NS
ND

= a × r, (3)

where a: constant.
For simplicity, it is assumed that a = 1. From Equation (1) it follows that if there is

a poor physical interaction then r will be high. From Equation (3) it then follows that, in
such a case, the NS/ND ratio is also high which is translated to high Ns and low ND; that
is, high contribution of softening and low contribution of decomposition. In the opposite
case, e.g., for cellulose, the physical interactions are too strong and there are too many,
approaching the order of magnitude of chemical bonds, that is, the value of r is very low.
Consequently, the NS/ND ratio is also low which is translated to low Ns and high ND,
that is, low contribution of softening and high contribution of decomposition. So based
on these, the explanation for the behavior of cellulose, in terms of statistical mechanics,
may be the following: The difference in energy for the two states is small, therefore the
difference in the probability of finding a pendant group in each state is also small. This
means that the two states are more uniformly populated, and the contributions of softening
and decomposition tend to become comparable. For the degree of apparent decomposition
d, from Equations (2) and (3) the following expression is extracted:

d =
1

1 + r
, (4)

This concept does not take into account the influence of the pendant atoms (C-H), the
size of the pendant groups, tacticity, the effect of the end groups, the temperature variation
of the strength of chemical and physical bonds, differences in intra- and inter-molecular
interaction, weakening of chemical bonds due to strong physical molecular interactions,
etc., but it is sufficient for the purposes of the current work to describe qualitatively and
provide some elementary theoretical support for the idea of the unified thermal transition
behavior of polymers.

In Table 1, the values of ECHEMICAL [37] and EPHYSICAL that were used for the cal-
culations, along with calculated values of r, %d from Equations (1) and (4) and the %
decomposition from the first TGA heating (for each polymer in the temperature range of
the thermal transition) are presented. For the case of PP and PS where mass loss was not
detected in TGA, the mass of the sample used in the TGA measurement and an uncertainty
of 0.02 mg were used to calculate the minimum detectable decomposition. Besides the five
polymers that were experimentally studied, three more (hypothetical) cases were examined:
a hypothetic polymer to resemble cellulose and two hypothetical thermosetting polymers.
Except for the case of PVC where the weakest chemical bond is C-Cl, for all other cases for
the value of ECHEMICAL the energy of the C-C bond was used. For the EPHYSICAL, a value of 4
kJ/mol was used for the Van der Waals forces for PP, PS and PVC, and a value of 25 kJ/mol
for the hydrogen bond in PVA. The C-H and C-Cl physical interactions (for the case of
PVC) were given the same value, for simplicity, since the result for PVC is governed by the
much lower ECHEMICAL value. For the case of PP-g-MA (with 1% MA content) the value of
0.99 × 4 + 0.01 × 20 = 4.16 kJ/mol was used. The value of 20 kJ/mol was used suggestively
to resemble the high polarity of the maleic anhydride molecule. To resemble cellulose,
EPHYSICAL was set to 75 kJ/mol (3 × 25) since there are three hydroxyl groups per repeating
unit. Finally, for the thermosetting polymers, it was assumed that the pendant groups
are chemically bonded to each other (crosslinked) and thus two much higher values for
EPHYSICAL were used, in order to resemble the higher energy of the chemical crosslinking.
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Table 1. % apparent decomposition of various polymers calculated theoretically and % decomposition
experimentally observed in the first TGA heating.

ECHEMICAL
kJ/mol

EPHYSICAL
kJ/mol r

% Apparent
Decomposition
%d = 100/(1 + r)

% Decomposition
from TGA (1st Heating)

PP 610 4 152.5 0.65 <0.08

PS 610 4 152.5 0.65 <0.06

PP-g-MA 610 4.16 146.6 0.68 0.37 ± 0.1

PVC 397 4 99.3 1.00 0.4 ± 0.2

PVA 610 25 24.4 3.94 1–1.5

cellulose 610 75 8.1 10.95 not applicable

thermosetting 1 610 300 2.0 32.97 not applicable

thermosetting 2 610 609.9 1.0 50.00 not applicable

As can be seen in Table 1, the theoretical calculations indicate that polymers like PP and
PS exhibit the lowest decomposition, while polymers like PVC (with more labile chemical
bonds) or PP-g-MA (with increased polarity and thus increased physical interaction energy)
are expected to exhibit higher decomposition. These are in agreement with the experimental
TGA measurements for PP-g-MA and PVC (in the first heating the mass loss is high enough
to be realized, in contrast to the cases of PP and PS). A comparison of the rest of the
polymers with PVA also reveals an agreement between the theoretical calculations and
experimental observations. The strong physical interactions due to hydrogen bonding
in PVA are one order of magnitude higher than the interactions in PS, PVC, etc. The
theoretical calculations indicate that PVA exhibits decomposition at least one order of
magnitude higher than the one of other polymers, and this was also observed in the TGA
measurements. By increasing the energy of the physical interactions to resemble cellulose,
the theoretical calculations reveal an extent of decomposition during the softening point
one order of magnitude higher than PVA, which is a severe decomposition, in agreement
with reality. The extent of decomposition, by further increasing the physical interactions of
pendant groups in the order of magnitude of chemical bonds, becomes, as expected, even
higher. For the hypothetical case of a thermosetting polymer where the chemical bonds
and the “physical” interactions are the same, a 50% decomposition is estimated, or in other
words, the probability/contribution of softening and decomposition is the same.

If a distorted version of boiling of the pendant groups occurs in polymers at the thermal
transition temperatures then, at lower temperatures, a distorted version of evaporation
of the pendant groups (and end groups) is also possible. As in the case of liquids, where
some high energy molecules manage to evaporate, at temperatures well below the boiling
point, the same should hold for the case of the pendant groups (or other distinguishable
segments) of polymers. Inevitably, this leads to the conclusion that polymers should
constantly degrade at room temperature or even at temperatures below zero (◦C). To be
more accurate, polymers should (latently) decompose at any temperature higher than the
distorted melting point of the pendant groups. Extremely low (but not zero) numbers of
pendant groups, even at room temperature, will have energy/mobility high enough to
cause thermal decomposition. It seems that by increasing temperature, the sensible thermal
decomposition is not initiated but simply accelerated.

To avoid any misconceptions, it should be stressed that the decomposition products
of latent decomposition would not necessarily be the groups responsible for the matching
of the boiling and softening point. For example, in PS, the mobility, collisions, vibrations,
molecular interactions, etc., of the benzene group cause the matching and induce decompo-
sition; however, the breaking/decomposition can occur at various random points of the
macromolecule (depending on many factors), and thus the benzene will not necessarily
be the only or even the major decomposition product. Furthermore, it is not claimed that
the decomposition at low temperatures (distorted evaporation) will be detectable in short
time experiments and, in general, there is no reason to take for granted that the latent
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decomposition will be detectable in all polymers at any temperature. In addition, the above
claim of latent decomposition can raise various reasonable questions, and the following two
questions are perhaps among the most interesting/important: (a) If latent decomposition
of polymers is true, then this would mean that elastomers with a glass-to-rubber transition,
e.g., at −50 ◦C decompose at this low temperature and thus, at room temperature (that
is a temperature ~70 ◦C higher than the softening point) should these polymers not be
highly unstable and decompose rapidly? (b) An analogous question can be raised for
very common thermoplastics, e.g., PP. If PP decomposes at 165 ◦C during its “melting”,
then why in a typical TGA experiment is the onset (sensible) decomposition temperature
detected at much higher temperatures, e.g., at 270–300 ◦C? The mass loss after melting
should not increase rapidly, and thus, should the sensible decomposition not occur at lower
temperatures and closer to the melting point?

Insights for these issues, and more precisely the absence of detection of mass loss
have already been provided based on the absence of volatility of the initial decomposition
products and the LLoD of TGA [14]. However, an additional answer to the above questions
can be given, by bearing in mind that molecules (pendant groups in this case) exchange
energy through collisions. The above mentioned high and low energy states arise from
the random collisions of the pendant groups. In the beginning of softening (that is in the
solid state) the distances between chains are small, and thus the collisions between the
pendant groups are quite frequent and intense despite the relatively low temperature. After
polymer relaxation and softening (at the end of softening) the distances have grown, an
increase in the free volume has occurred, and thus, although the pendant groups have
increased mobility (due to the continuous increase in temperature) the collisions among
them are less often and weaker due to the increased distance and the fact that they are
bonded to the backbone from one side. Thus, it seems that latent decomposition reaches a
maximum at the softening point and then it becomes lower. If the temperature is increased
even more, again the intermolecular distances increase further (expansion of matter) but
the mobility of the pendant groups is also further increased. After some point, the increase
in the mobility and the vibration width of pendant groups overcompensates the increase in
distance/volume. Thus, at high temperatures, collisions among pendant groups become
again more frequent and intense (effective) and this leads to increased decomposition,
that is, the sensible decomposition. Finally, as mentioned many times in the previous
sections, not all the decomposition products are volatile and nor can they all react with the
remaining polymer. Such effects and depending on the transition temperature can prevent
the occurrence of a considerable reduction in molecular weight (thus various properties,
e.g., mechanical properties, may not change severely).

The above can explain why latent decomposition seems to continue to a lower extent
after softening and in agreement with experimental observations, where in many cases,
the decrease in the heat capacity is visible just after melting, but afterwards it continues to
increase with rising temperature (the decomposition after softening becomes lower, thus
any exothermic effect is less intense and cannot overcompensate the increase in specific
heat capacity due to increase in temperature). Additionally, all of these can provide an
explanation of how latent decomposition can occur during softening, that is, at much lower
temperatures than the onset temperatures of (sensible) decomposition of polymers that
is measured by TGA. Finally, these can provide an explanation for the room temperature
stability of polymers with sub-zero softening points: in general, thermal motion is a
function of (absolute) temperature and at room temperature the mobility is less intense and
the collisions of the pendant groups are weak (the exchanged energy is rather low); as a
result, the latent decomposition is extremely low and consequently these polymers appear
to be fairly stable. In addition, as already mentioned, the increased mobility of pendant
groups seems to be crucial for the origin and extent of the latent decomposition but under
no circumstance is this the only factor, and the detectability of latent decomposition in all
polymers is a matter to be further studied. It is stressed that the above interpretation for
the maximum latent decomposition at the softening point concerns polymers where the
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softening point and the onset decomposition temperature are not close, e.g., for PP. For the
case of PVA, the latent decomposition during softening seems to coincide with the onset
(sensible) decomposition temperature.

5. Conclusions

DSC, TGA and FTIR was used to study the thermal transition behavior of five common
thermoplastic polymers. New aspects in the thermal analysis of polymers were introduced.
Some of the DSC signal alterations were proven to arise from a minor decomposition that
occurs simultaneously with the thermal transitions of polymers. It was proposed and
theoretically supported that the simultaneous softening and decomposition is a general and
inherent property of all kinds of polymers. It seems that there is a fundamental qualitative
similarity in the thermal transition behavior of all polymers (thermoplastic, thermosetting
and biopolymers): They cannot be softened, or in other words, they cannot exhibit a glass
transition or a melting point without being decomposed. The only difference in their
thermal transition behavior is quantitative and lies on the extent of decomposition. An
interesting matching of the thermal transition temperature of polymers and the boiling
point of their pendant groups (or other distinguishable parts of the macromolecule) can be
recognized in many polymers. Based on this, it was proposed that this simultaneous effect
of softening and decomposition arises from a distorted version of the boiling of the pendant
(and end) groups, which is related to their increased mobility. However, the hidden (latent)
decomposition may occur constantly at any temperature higher than the distorted melting
point of pendant groups and arises from a distorted version of evaporation of the pendant
groups. By increasing temperature, the decomposition of the polymer is not initiated but
simply accelerated. Based on all the above, the purely physical nature of the thermal
transitions of polymers is disputed.
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All DSC measurements were performed with pans for this particular batch; Figure S4: Fitting of the
DSC curves of PP: (a) first scan (b) second scan and (c) third scan; Table S1: Specific heat of fusion
and melting temperature of various Indium measurements.

Author Contributions: Conceptualization, methodology, formal analysis, investigation, writing—
original draft preparation, writing—review and editing, visualization, by C.T. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon request.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Kozlov, P.V.; Burdygina, G.I. The structure and properties of solid gelatin and the principles of their modification. Polymer 1983,

24, 651–666. [CrossRef]
2. Brown, M.E.; Glass, B.D. Decomposition of solids accompanied by melting—Bawn kinetics. Int. J. Pharm. 2003, 254, 255–261.

[CrossRef]
3. Bhattacharia, S.K.; Weeks, B.L.; Chen, C.-C. Melting Behavior and Heat of Fusion of Compounds that Undergo Simultaneous

Melting and Decomposition: An investigation with HMX. J. Chem. Eng. Data 2017, 62, 967–972. [CrossRef]
4. Galwey, A.K.; Laverty, G.M. The thermal decomposition of dehydrated d-lithium potassium tartrate monohydrate: Molecular

modification by a homogeneous melt mechanism. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1993, 440, 77–93. [CrossRef]
5. Wilhoit, R.C.; Chao, J.; Hall, K.R. Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4.

Part 1. Properties of Condensed Phases. J. Phys. Chem. Ref. Data 1985, 14, 1–175. [CrossRef]

https://www.mdpi.com/article/10.3390/polym14235054/s1
https://www.mdpi.com/article/10.3390/polym14235054/s1
http://doi.org/10.1016/0032-3861(83)90001-0
http://doi.org/10.1016/S0378-5173(03)00025-5
http://doi.org/10.1021/acs.jced.6b00769
http://doi.org/10.1098/rspa.1993.0005
http://doi.org/10.1063/1.555747


Polymers 2022, 14, 5054 26 of 27

6. Li, C.; Hou, T.; She, X.; Wei, X.; She, F.; Gao, W.; Kong, L. Decomposition properties of PVA/graphene composites during
melting-crystallization. Polym. Degrad. Stab. 2015, 119, 178–189. [CrossRef]

7. Li, C.; Hou, T.; Vongsvivut, J.; Li, Y.; She, X.; She, F.; Gao, W.; Kong, L. Simultaneous crystallization and decomposition of
PVA/MMT composites during non-isothermal process. Thermochim. Acta 2015, 618, 26–35. [CrossRef]
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