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Abstract: Human skin is characterized by rough, elastic, and uneven features that are difficult to
recreate using conventional manufacturing technologies and rigid materials. The use of soft materials
is a promising alternative to produce devices that mimic the tactile capabilities of biological tissues.
Although previous studies have revealed the potential of fillers to modify the properties of composite
materials, there is still a gap in modeling the conductivity and mechanical properties of these types
of materials. While traditional Finite Element approximations can be used, these methodologies
tend to be highly demanding of time and processing power. Instead of this approach, a data-driven
learning-based approximation strategy can be used to generate prediction models via neural networks.
This paper explores the fabrication of flexible nanocomposites using polydimethylsiloxane (PDMS)
with different single-walled carbon nanotubes (SWCNTs) loadings (0.5, 1, and 1.5 wt.%). Simple
Recurrent Neural Networks (SRNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units
(GRU) models were formulated, trained, and tested to obtain the predictive sequence data of out-
of-plane quasistatic mechanical tests. Finally, the model learned is applied to a dynamic system
using the Kelvin-Voight model and the phenomenon known as the bouncing ball. The best predictive
results were achieved using a nonlinear activation function in the SRNN model implementing two
units and 4000 epochs. These results suggest the feasibility of a hybrid approach of analogy-based
learning and data-driven learning for the design and computational analysis of soft and stretchable
nanocomposite materials.

Keywords: data-driven; physics-based models; machine learning; recurrent neural networks; flexible
electronics; nanocomposite; PDMS; SWCNTs

1. Introduction

Flexible pressure sensors convert mechanical stimuli to electrical signals such as
resistance, capacitance, or electrical potential. For resistive force sensing, a conductive
material (polymers or metals) responds to an external force in arbitrary directions under
compression or stretching deformation. A capacitive flexible pressure sensor is typically
constructed as a parallel-plate capacitor with a dielectric polymer sandwiched between
two flexible electrode layers [1]. Usually, resistive sensors have good sensitivity and are
very sensitive to temperature, but they suffer from lower repeatability and high-power
consumption [2,3]. Moreover, capacitive-based sensors have excellent sensitivity and high
spatial resolution but are susceptible to electromagnetic interference, crosstalk, and parasitic
capacitance [4]. Sensitivity is typically characterized by using the Gauge Factor (GF) or the
fractional change in electrical resistance to the fractional change in length. Typically, the GF
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value of piezoresistive-enabled sensors is one or two orders of magnitude higher than in
non-piezoresistive materials [5].

Technological advances over the past twenty years have combined formative, sub-
tractive and additive manufacturing to produce complex composite devices within the
micrometric scale [6,7]. The finesse of parts manufactured by these technologies can be
applied to materials technology to produce devices with tunable properties. For example,
carbon nanotubes can create thermal paths between adjacent carbon fibers and increase the
thermal and electrical conductivity of composites [8,9]. The selection of resins that build up
the composite matrix material depends on the compatibility with carbon and the adequate
selection of processing conditions such as curing time, temperature, and pressure [10]. Typi-
cally, those parameters must be studied experimentally in the lab to develop procedures for
a particular application. Further modeling can be performed experimentally (which can be
expensive) or by employing numerical simulations. A recent review by Nurazzi et al. [11]
covers a comprehensive CNT/polymer composite research summary.

While these numerical studies can save reagents and other materials, they still must
tackle the high computation cost required for solving nonlinear and asymmetric models.
Models based on physical principles are typically described by partial/ordinary differential
equations (PDEs/ODE), where the description can be rigid and rely excessively on explicit
assumptions. Combining neural networks with FEM can provide scenarios where the
strengths of FEM (geometric flexibility and rich set of FE functions) and the flexibility of
neural networks to express unknown functions are combined [12].

The study of the correlation between the processing parameters and the mechanical
properties of materials are generally described experimentally. Neural network modeling
is suitable for simulating correlations that are hard to describe by physical models. An
important aspect of artificial neural networks is that a large amount of data is required
for better prediction. The Artificial Neural Network or ANN models are among the most
frequently employed machine learning models due to their performance, the proficiency
to approximate complex nonlinear relations, and the availability of open-source code
libraries [13]. Neural networks are control systems with determined connections between
input and output parameters and allowable error deviations between the predictive value
and the actual value calculated by the loss function [14]. Neural networks have been widely
used for the identification of nonlinear dynamical systems and their state space models of
different natures, such as biological neurons [15], oscillators [16], autonomous vehicles [17],
organic molecules [18], and economic systems [19]. There is a potential for applying neural
network architectures to obtain better predictive data modeling for a state-space model of
soft materials. Furthermore, ANN can replace parts of constitutive material laws or use
them as a surrogate for nonlinear materials [20].

The nonlinear constitutive modeling of composite materials remains a critical challenge
for scenarios with nonlinear deformation or arbitrary loading conditions, considering the
inability of standard forward neural networks to handle sequential information [21,22].
With the increasing complexity of composite microstructures, the nonlinear homogenized
constitutive behavior at the macroscale is likely to be driven by one or multiple nonlinear
mechanisms at the subscale [13], for instance, multi-walled carbon nanotubes can exhibit
nonlinear electrical behavior [23].

Previously, the authors have investigated the nonlinear elastic response of RTV silicone
and filler material SWCNTs (single-walled nanotubes) by fitting load-unloading curves
using traditional parameter fitting algorithms for well-known models such as the Ogden-
Roxburgh [24]. Viscoelasticity is a time-dependent mechanical behavior that can be easily
observed/measured in soft materials and is dependent on the current state of deformation
and deformation history. Theoretical models have been used to describe the behavior of
viscoelastic materials using a spring and a damper to model the elastic and viscoelastic
behaviors. Among these models, we can mention the Maxwell, Kelvin-Voight, Prony series,
or Standard Linear Solid model [25]. Recurrent Neural Networks (RNN) are well suited to
process this type of time series data and are designed to rely on historical information of
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sequential data. A hybrid approach of analogy-based learning and data-driven learning can
provide means to adapt mechanistic models of soft materials with complex time-varying
behaviors just as a dynamic system does.

Finite element results are highly accurate when the physical system is discretized
correctly and can be used to train the machine learning model along with the input pa-
rameters. One way to achieve these conditions effectively is to train the models using
large data sets produced by experimental data with well-defined standards. The learning
process required can also be significantly expedited if the equations used to solve problems
in several fields are the same (i.e., structural mechanics). Although some efforts have
already been made in this direction [21,22,26], most studies on matching FEM and RNN are
fragmentary. To the author’s knowledge, there is not a publicly available machine learning
tool that can currently replace or outperform finite element simulators. However, research
on this topic is relevant because the advance in artificial intelligence, machine learning, and
neural networks can lead to the development of tailored materials from the starting point
of desired functionality [27].

1.1. Analogy-Based Learning and Data-Driven Learning of Dynamic Mechanical Systems

A conventional dynamical system involves a state-space model that can be defined
as a behavior in function of continuous-time t. The state of the system can be one, or a set
of, different physical quantities (temperature, position, velocity, etc.) used to describe its
behavior in any instant of time. This promising idea has been well received for the design
of multi-joint systems such as ankle-foot prostheses. Additionally, there is an interest in
using dynamics models to analyze the performance of multifunctional materials, such as
flexible conductive materials, during large deformations. For simple problems, it is easy to
find an analytical solution to describe the state of the system via governing equations and
then to fit known parameters in advance. For many nonlinear dynamic mechanical systems,
an analytical solution does not exist or is very difficult to obtain. As a result, mechanical
analogies are used in the classic description to derive viscoelastic constitutive models.

For example, an analogy can be observed between a powered ankle–foot prosthesis
using a variable nonlinear spring and the Mullins effect in filled soft materials. A nanocom-
posite under uniaxial deformation, as shown in Figure 1a, usually undergoes a stretching
of the macromolecular chains attached to the filler particles as shown in Figure 1b. This
deformation mechanism in soft materials presents dissipative energy or hysteresis in the
force vs. displacement curves enveloped by the loading curve and the unloading curve, as
shown in Figure 1c. Analogically, the inherent viscoelasticity of these types of materials
can be assessed using the same fundamental mechanical descriptors of the dorsiflexion of
a prosthesis as shown in Figure 1d using viscoelastic units (Hookean spring ks and the
Newtonian damper kd, see Figure 1e) that can be combined in series or parallel, and include
nonlinearities in the mechanical behavior as shown in Figure 1f.
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(CNTs) [31]. On the other hand, Nagurka and Huang [32] and many others [33,34] subse-
quently analyzed the dynamics of a bouncing ball using a mass-spring-damper system 
analogy. The simple example of the bouncing ball clearly shows the presence of different 
deformation mechanisms acting on dynamically complex soft and stretchable objects. 
Other authors have used the damping-spring-mass, bouncing ball, and deep learning to 
provide a successful reduced-order model to describe the dissipative behavior of nonlin-
ear phenomena [35]. Therefore, at the end of the manuscript, we present the bouncing ball 
experiment as numerical proof to model the dynamic system from experimental data 
trained by the RNN architectures. 

1.2. Objective 
In this paper, data-driven computation simulations using three classic recurrent neu-

ral networks (RNN) architectures and a one-step approximation method are employed for 
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Figure 1. Flexible material (a) under stretching condition; (b) Cross-linked nanocomposite chains
using spring-based interaction: (c) Uniaxial cycle response to show Mullins hysteresis effect behavior;
(d) Powered ankle-foot prosthesis (image adapted from [28]); (e) Compliant dorsiflexor model with
a spring-damper system in parallel configuration (ks: elastic spring constant, kd: dashpot viscosity
constant; (f) Curves of restoring spring force.

Data-driven learning-based approximation strategy can generate superior results with
learned prediction models via neural networks and experimental data from a dynamic
system. A recurrent neural network—or RNN—has several advantages, including the
ability to process inputs of any length, the condition that the size of the model does not
increase with the input, and that these models learn faster if the gradient tends to have
a more drastic variation [29]. Researchers have shown promising results using RNN to
predict the dynamic hysteresis of soft magnetic material [30], and nanocomposite piezo-
resistive sensors fabricated from silicone rubber (Ecoflex) blended with carbon nanotubes
(CNTs) [31]. On the other hand, Nagurka and Huang [32] and many others [33,34] subse-
quently analyzed the dynamics of a bouncing ball using a mass-spring-damper system
analogy. The simple example of the bouncing ball clearly shows the presence of different
deformation mechanisms acting on dynamically complex soft and stretchable objects. Other
authors have used the damping-spring-mass, bouncing ball, and deep learning to provide a
successful reduced-order model to describe the dissipative behavior of nonlinear phenom-
ena [35]. Therefore, at the end of the manuscript, we present the bouncing ball experiment
as numerical proof to model the dynamic system from experimental data trained by the
RNN architectures.

1.2. Objective

In this paper, data-driven computation simulations using three classic recurrent neu-
ral networks (RNN) architectures and a one-step approximation method are employed
for learning the input-output behavior of the dynamical viscoelastic response of soft
nanocomposite materials. Physics-informed schemes are incorporated in the loss function
to optimize the training and learning processes for the time-varying dynamics of nonlinear
stress–strain and Mullins effect curves. The nanocomposite was synthesized to obtain
flexible polydimethylsiloxane (PDMS) samples with single-walled carbon nanotubes (SWC-
NTs) as material filler. There is previous work within the research group of this article to
manufacture molds using stereolithography to obtain well-defined geometric patterns of
RTV-CNT composites [24]. For this work, we explore the concept further for PDMS and
employ neural networks for the modeling.

Three behavior conditions are considered to obtain the data sets: the hysteresis loops
of the Mullins Effect, the uniaxial stress-strain curves, and two non-conventional tests
based on the spring-damper system analogy. We performed a benchmark of the well-
known vanilla recurrent neural network (RNN), see Figure 2a. These recurrent RNN
structures have feedback loops in the recurrent layer and can transfer time dependence
or maintain information in ‘memory’ over time through hidden units. In the case of
SRNN, the hidden state at time step k is calculated based on the previous hidden state
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qk−1 (containing information from the past) and the input at the current step xk as follows
qk = σ(W · [qk−1, xk] + b). The function σ usually is a nonlinearity such as tanh, W are
the weight matrices and b is the bias term. LSTMs and GRUs are a variant of RNN that
solve the long-term memory or vanishing gradient problem of the SRNN by introducing
new gates to control when information enters the memory, when it’s output, and when
it’s forgotten defined here as z and r for GRUs and i, o, and f for LSTM. For simplicity,
we illustrate in Figure 2b an RNN with only one hidden layer, i.e., one-stacked RNN, the
equations of SRNN, LSTM, and GRU cells are provided below in Figure 2a.
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Figure 2. Three types of vanilla Recurrent Neural Network cells: (a) Simple Recurrent Neural Network
(SRNN), Gate Recurrent Unit (GRU), and Long Short-Term Memory (LSTM); (b) an unfolded standard
Recurrent Neural Network in repeating module: The right-hand side schematic is the unfolding
version of neural network A through time. Here, x and ŷ represent input, and the output vectors for
the k-th state, while q represents the hidden state. This paper uses bold forms to represent vectors.

By using a neural network to approximate increments on the system and its surround-
ings we can avoid the governing equations to determine the behavior of soft material with
nonlinear deformation. To assess the effectiveness of the proposed strategy, we performed
out-of-plane non-conventional deflection tests for the maximum displacement and max-
imum Von mises stress using COMSOL Multiphysics without using hyperelastic model
equations or fitting parameters.

2. Materials and Methods
2.1. Composite Films Sample Preparation

We followed a similar methodology developed and documented by the authors in a re-
ported work [29]. For this paper we prepared nanocomposite samples using PDMS Sylgard
184 (Dow Corning, Midland, MI, USA) with ratio 10:1 and Tuball™ Matrix 601 SWCNTs
nanotubes (OCSial, Columbus, OH, USA) at concentrations of 0.5, 1.0, and 1.5 wt.%. The
nanocomposite was cast into 3D printed molds that do not inhibit curing to obtain 4 types
of specimens as listed in Table 1.
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Table 1. Composite material preparation.

Component
Sample I
Weight, g
(1.5 wt.%)

Sample II
Weight, g
(1 wt.%)

Sample III
Weight, g
(0.5 wt.%)

Sample IV
Weight, g
(0 wt.%)

SWCNTs Tuball™
Matrix 601 1.8 1.2 0.6 0

Sylgard 184 part A 107.45 108 108.54 109.09
Sylgard 184 part B 10.745 10.8 10.854 10.909

The double-layer films were poured into 91 mm × 91 mm commercial polycarbonate
square containers, the approximate thickness of 1 mm (each layer, see Figure 3a) was
controlled by measuring the volume poured into the containers, the bottom layer is 1.0 wt.%
nanocomposite material and the top layer was PDMS as shown in Figure 3b, the pouring
time between each layer had an intermediate time of 24 h, visual inspection was performed
using an OCA 15EC equipment (DataPhysics Instruments GmbH, Filderstadt, Germany)
to inspect the contours and layer thicknesses using backlight and the level surface of
the equipment (see Figure 3c). The low filler concentrations and the homogeneity of the
dispersion in the PDMS matrix were appreciable, showing that at such concentrations, the
flexible membrane is still translucent across its surface, as shown in Figure 3d.
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2.2. Testing Validation Method for Stretchable Materials

Flexible nonlinear and hyperelastic materials cannot be tested thoroughly with uniaxial
tension testing because they exhibit different behavior under different deformation states.
It is feasible to state that flexible materials (continuous or architected) present at least nine
deformation mechanisms (see Figure 4). Although the typical deformation mechanisms are
mostly well understood (Figure 4a), in this paper, we focus on deformation mechanisms
primarily determined by the boundary conditions on flexible and stretchable materials (see
Figure 4b). Squashing behavior as a descriptor of deformation in soft textured materials
under indentation conditions has been reported previously [36]. The change in the shape
of a generic bulk material may be due to other deformation mechanisms such as ripping,
shearing, tearing, sticking, pushing, poking, sliding, pushing, clenching, grinding, or
pulling. Therefore, it is helpful to perform mechanical performance tests beyond the
standard uniaxial tension or compression mechanical tests to fully capture the dynamic
or static response of a soft material. State-of-the-art on unconventional mechanical testing
shows that there are multi-axial testing platforms (i.e., biaxial testing) and out-of-plane
testing based on indentation (i.e., small punch testing) [37]. Our set-up experiment is based
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on a the punching device that characterizes the behavior of a material under biaxial tension
based on testing standard ASTM F2183 [38]. This assessment uses a spherical punch to press
a disk specimen held by an outer edge. The results are useful to characterize the biaxial out-
plane stress-strain response of the material, and for validation of the hyperelastic model
developed solely from the in-plane uniaxial approach. The spherical indenter (10 mm
diameter), the custom-made fixture, and the tensile strength (dogbone) molds were 3D
printed using a benchtop Form 3 additive manufacturing equipment (Formlabs, Somerville,
OH, USA) (see Figure 4c).
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Figure 4. (a) Traditional in-plane deformation mechanisms for continuous or architected flexible
materials; (b) deformation mechanisms inspired by out-of-plane indentation with unconventional
boundary conditions that reveal elastic performance similar to spring or damper behavior descriptors;
(c) custom-made fixture and indentation tip for out-of-plane deformation testing.

The uniaxial tensile tests were carried out using Type 1A dog bone shape samples with an
overall length of 100 mm and a 3 mm thickness following the standard ASTM D412-16 (2021) [39].
A universal machine (3365, INSTRON, Norwood, MA, USA) equipped with a 50 kN load cell
was used. Three specimens of each type of continuous pure PDMS material and assessed
composition (Sample I, Sample II, and Sample III) were loaded axially and monotonically at a
speed deformation of 0.3 mm/s until complete failure. Next, loading-unloading uniaxial cyclic
tests were performed with a maximum strain level ε = 0.6 considering a 300 mm/min rate for
10 first continuous cycles to observe the stability of mechanical softening.

2.3. Coupling RNN with Mechanical Models

The different viscoelastic phenomena that constitute the behavior of flexible materials
are classically studied separately. To model global behavior, it is necessary to combine ap-
proaches. Based on numerical analogies with the behavior of dynamical systems, recurrent
neural network (RNN) architectures approximate the nonlinear mechanical behavior of soft
nanocomposite materials. However, modeling techniques based on neural networks must
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consider the choice of efficient and compatible sub-models with few parameters for each
phenomenon. The present work uses the following two essential mechanical sub-models:

1. The first sub-model is the generalized Kelvin-Voigt equations viscoelastic model,
which can have a nonlinear spring in parallel with a nonlinearly viscous dashpot
through ε = f (σs),

.
ε = g(σd), σ = σd + σs, where f and g could be nonlinear

functions, σs and σd are the stresses in the spring and dashpot, respectively, σ is the
total stress. The fractional-order derivative that describes this analogous mass-spring-
damper system is m

..
d + kd

.
d + ksd = F, where d denotes the deformation that we can

obtain from uniaxial tests.
2. The second sub-model focuses on the behavior of hysteresis under loading conditions

to define f and g. That is, in a viscoelastic element such as a damper the dissipated
energy is expected to be higher, while in an elastic element, such as a spring, the
elastic energy is expected to be higher. As the elastic and dissipated energy depend
on the loading process, then, two deformation mechanisms inspired by out-of-plane
indentation were used with unconventional boundary conditions that reveal the
elastic and dissipative behavior of the nanocomposite similar to the behavior of
springs or dampers.

The above sub-models are compatible with a numerical simulation known as a bounc-
ing ball. The bouncing ball problem is a simple experiment that illustrates complex deter-
ministic dynamical systems associated with energy losses using a damper-spring system,
in this work this allows us to validate the analogy between the state–space model with
the recurrent neural network. On the other hand, the RNN-coupled FE model’s general
framework for learning a constitutive law is shown in Figure 5. The proposal RNN model
has the form σk = F (εk, εk−1, ξk, ∆ηk), where σ is stress, ε is strain, and the subscript k
and k− 1 denote the current and previous load increments. ζk and ∆ηk are the internal
variables defined as ζn = σk−1εk−1 and ∆ηk = σk=1∆εk. The ζk implies its previous state
along the equilibrium path by its energy quantity and ∆ηk implies the direction for the
next load step along the equilibrium path. The RNN–FE model receives the measurable
data (i.e., Force F, displacement d) from experiments. The global stiffness matrix K and
the strain-displacement matrix B make up the standard 2D finite element method (FEM).
Using the stiffness matrix created by the RNN model, the RNN–FE model first solves the
displacements at each loading step.
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2.4. Fundamental System Identification and RNN Analogy

First, the description of how the architecture of the recurrent neural network and the
dynamic system might be compared follows. It is possible to convert nonlinear models
to a linear model (in a small region around the equilibrium point), assuming a linear
time-invariant system without loss of generality. We consider a continuous-time linear
state–space model with n states, m inputs, and r outputs proposed as:

.
x(t) = Ax(t) + Bu(t) (1)
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y(t) = Cx(t) + Du(t) (2)

where at time t ≥ 0, x ∈ Rn is the state vector (internal system memory), u ∈ Rm is
the control input vector acting on the system, and y ∈ Rr is an observable (measured)
output vector. The matrices A ∈ Rn×n (system matrix), B ∈ Rn×m (input matrix), C ∈ Rr×n

(output matrix), and D ∈ Rr×m (feedthrough matrix) are real state–space matrices and have
compatible dimensions, where m, n, r integers are positive numbers (n is also often called
the order of the system). Similarly, the discrete-time version of the previous model has the
following form:

xk+1 = Ãxk + B̃uk (3)

yk = C̃xk + D̃uk (4)

where k is a discrete-time instant. That is, the approximations of the original state are
made at the time t = kh, where h is a sampling period or discretization step. On the other
hand, the RNN architectures such as Simple Recurrent Neural Networks (SRNN) have the
following mathematical expression:

qk = σq
(

Lqk−1 + Epk + z
)

(5)

vk = σu(Pqk + g) (6)

where qk is a hidden layer vector, pk is a Neural Network (NN) input vector, vk is an NN
output vector, z and g are vectors of NN parameters, L, E, and P are matrices consisting
of NN parameters, and σq, σv are vectors activation function, and k is discrete time. The
SRNN model described by Equations (5) and (6) resembles the state–space model described
by Equations (3) and (4) when activation functions are linear, and the parameter vectors z
and g are zero. Therefore, in some ways, an SRNN can be viewed as the traditional linear
state–space model and vice versa.

Hence, our main objective is to train the parameters of RNN such that trained networks
produce the input-output behavior of the discrete-time state–space model defined by Equation (2).

2.5. Baseline Numerical Mechanical Model and One-Step Approximation

Instead of training the discrete signal directly using RNN, the neural network in this
paper parameterizes the derivative of structural states with respect to time. For a mass-
spring-damper system, the equilibrium equation using Newton’s second law of motion in
terms of the fractional time derivatives can be written as:

m
..
d + kd

.
d + ksd = F (7)

where m is the mass, d is a displacement from the equilibrium point, kd and ks are viscous
damping and spring coefficients and F is the external control force. Using the state–space

variables x(1) = d and x(2) =
.
d. Hence,

.
x(1) =

.
d = x(2) and

..
x(1) =

..
d = − kd

m

.
d− ks

m d + 1
m F =

− kd
m x(2)− ks

m x(1)+ 1
m F. So, the model defined by Equation (3) can be rewritten as the following

state equation: [ .
x(1)
.
x(2)

]
︸ ︷︷ ︸

.
x

=

[
0 1
− ks

m − kd
m

]
︸ ︷︷ ︸

A

[
x(1)

x(2)

]
︸ ︷︷ ︸

x

+

[
0
1
m

]
︸︷︷︸

.
B

F︸︷︷︸
u

(8)

The position vector d (state variable x(1)) is the only one that can be directly measured.
Hence, the output equation takes the matrix form:

d︸︷︷︸
y

=
[
0 1

]︸ ︷︷ ︸
C

[
x(1)

x(2)

]
︸ ︷︷ ︸

x

(9)
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The state–space model defined by Equations (5) and (6) is in the continuous-time domain.
From the machine learning perspective, this is not convenient, so it is necessary to obtain
the representation in the discrete-time domain. The backward Euler method was used to
transform it into the discrete-time domain. Using this one-step approximation, we obtain:

xk = Ãxk−1 + B̃uk−1 (10)

where Ã = (I − hA)−1 and B̃ = hÃB, both discrete matrix representation, and the output
equation remains unchanged, and form as:

yk = C̃xk (11)

The discrete representations of the system defined in Equations (8) and (9) are suffi-
ciently convenient to define the estimation model. Note the similarities between the state
model defined above and the Simple Recurrent Neural Network described in the previous
section. First, the recursive relationship of the hidden layer vector (q) and the state of the
system (x), and the presence of input vectors (p and u) and output vectors (v, y), see Table 2.
This highlights the importance of establishing a comparison between the neural network
equations and the state–space system.

Table 2. Summary of state–space model and Simple Recurrent Neural Network definition.

Simple Recurrent Neural Network State-Space Model

qk = σq
(

Lqk−1 + Epk + z
)

xk = Ãxk−1 + B̃uk−1
vk = σu(Pqk + g) yk = Cxk

2.6. Data Sets Experimental Data and Network Setup

In order to train, fit, and learn the neural network parameters (L, E, z, g) based on
experimental data, the physical sequence force observable input vector u : {u0, u1, . . . , uN}
(and an initial state of the system) is required as input data, hence, it should produce the
predictable sequence of output vector data ŷ : {ŷ0, ŷ1, . . . , ŷN} that accurately approximates
the output sequence y : {y0, y1, . . . , yN} of the real system. In other words, the main
objective is to use a physics-driven model which takes an initial condition x0 at time t0 and
produces an accurate prediction x̂ of the actual state x such that x̂(t; x0) ≈ x(t; x0) as much
as possible. For the application of predicting state variables on a stress–strain curve that
this manuscript aims to solve, the data set is defined as:

S =
{

x(i)k , x(i)k−1; u(i)
k , hk

}
, i = 0, . . . , N (12)

where N is the length of sampled data pairs and x(i)k denotes the i:th state variable x in the

k:th data pair, and x(i)k−1 is the pertaining state variable one discrete time-step h. The force

u(i)
k is the force that is acting on the system at the k:th time point. The goal is to make the
L loss function adequately small which is achieved through training the NN parameters.
Here, the Mean Squared Error (MSE) function L is our loss function (also known as the
cost function) defined as:

L(ŷ, y) =
1
N

N

∑
i=1

(
ŷ(i) − y(i)

)2
(13)

In general, accuracy and loss are the two best-known metrics for neural network
models, but accuracy is a valid metric of evaluation only for classification problems. The
model addressed in this manuscript is a time-series-type regression problem, and therefore
it is not possible to compute accuracy.
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2.7. Coupled Discrete Numerical Simulation Framework

The full numerical simulation was developed in the computational machine with 16 GB
RAM, 1 TB SSD, and Microsoft Windows 11 version 21H2 operating system (Redmond,
WA, USA). The virtual environment Jupyter Notebook version 6.4.11 from NumFOCUS
(Austin, TX, USA) was used. In the integrated framework, we coupled using MPh 1.2.0,
a python scripting interface created by John Hennig as Open-Source software, to access
the COMSOL API. We implemented a custom programming code using Python 3.10 from
Python Software Foundation (Beaverton, OR, USA) installed in an Anaconda (version
1.7.2) environment from Anaconda Incorporated (Austin, TX, USA) to compute the discrete
data sample from continuous-time system response via the backward Euler method with
N = 200 simulation time steps and sampling period (discretization step) h = 0.01 s. The
code was used to generate training, validation, and test data for three NN methods via
Keras [40] (deep learning API) from TensorFlow open-source platform created by François
Chollet. The network setup is a fully connected neural network with several unit cell
conditions. Each unit cell architecture also has the variant sigmoid activation function
f (x) = tan h(x). The time taken to train the artificial neural network depended on the
quantity of data, the number of hidden layers, and the number of epochs. Experimental
data are from uniaxial mechanical tests on 20 specimens (5 of each type listed in Table 1),
12 uniaxial loading and unloading specimens (3 of each type listed in Table 1), and 6 out-
of-plane mechanical test specimens (3 tests in jumping/bouncing condition and 3 tests in
squeezing/squashing condition).

3. Results and Discussion
3.1. Stress–Strain Behavior, Mullins Effect, and Strain Energy

The elastic energy (UE), dissipated energy (UD), and input total energy (UT) of each
loading–unloading cycle for the PDMS-SWCNTs samples were calculated as:

U =
∫ x2

x1

Fdx (14)

UT = UD + UE, (15)

Figure 6a shows that the stress-strain and hysteresis curves of the three carbon nan-
otubes and PDMS combinations have nonlinear trends. The elastic energy (UE) stored in
the nanocomposite from elastic deformation is released during deformation recovery work.
The dissipated energy (UD) includes plastic strain energy which generates a permanent
strain in the flexible material (see Figure 6b). The energy loss index refers to the ratio of
the total energy accumulated to the strain energy dissipated in a uniaxial loading test. The
experimental data were further processed as UD

UT
× 100 (see Figure 6c).

While quasistatic uniaxial tests allow determining of the influence of nanocomposite
stiffness increase by varying the filler loads, as shown in Figure 6a, there is currently a
debate on the influence of these fillers in cyclic loading and unloading tests where hysteresis
behavior is present as a result of energy losses beyond the elastic behavior [41]. In practice,
it is common to find strain-softening models that fit the mechanical hysteresis curves using
parameterized equations. However, differences in fullness percentage are negligible (curves
show remarkably similar characteristics, Figure 6b). In this section, we attempt a more
quantitative analysis of the data, starting with a numerical calculation of the elastic energies
encompassed by these curves that allow us to quantify the energy that can no longer be
recovered by the well-known Mullins effect, according to Figure 6c the elastic energy tends
to reduce as the percentage of filling increases under uniaxial loading condition, the marked
trend of the loss energy index evidences the nonlinearity in the trend that is not possible to
identify in the loading and unloading curves, these data are essential for the RNN model
to learn the nonlinearity of the functions f and g of the Kelvin-Voigt viscoelastic model.
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Figure 6. Experimental data for (a) Uniaxial static test until failure of the four types of specimens
with different percentages of filler composition for 1.5 wt.% (green), 1.0 wt.% (blue), 0.5 wt.% (gray),
0 wt.% (olive); (b) Loading–unloading test showing the hysteresis behavior during nonlinear elastic
deformation, as well as the permanent strain present in the nanocomposite material (continuous lines
are during loading and dashed lines are during unloading); (c) Trend graph of the calculation of the
three types of energy presented during the cyclic-to-cycle tests performed.

The out-of-plane mechanical test data is relevant complementary data for the neural
network training model as it allows conditions to be obtained under unconventional
mechanical performance (see Figure 7a). A mechanical test dominated by jumping and
bouncing shows a highly deformable material with relatively low application forces and
which easily recovers its original state with energy losses at around 10% of all potential
strain energy, as seen in Figure 7a. In contrast, a squashing and squeezing dominated
condition reflects high energy hysteresis behavior with an exponential trend as the strain
in the material increases, as illustrated in Figure 7b. The matching FEM simulation was
coupled numerically with input data from the elastic tests and complementary cyclic tests
without using hyperelastic model equations or fitting parameters.
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in flexible materials under various nonlinear mechanical deformation conditions; (a) Spring-driven
deformation, (b) Damper-driven deformation.

3.2. Nanocomposite Ball Dynamics Tuning Experimental Data

The dynamic mechanical properties of a vertically dropped hollow ball are studied
to investigate the accuracy and efficiency of the proposed definitive data-driven method.
The elastic shell of the ball is assumed to be four layers with a thickness of 0.5 mm for each
one, one layer of PDMS, and one layer for each loading concentration of nanocomposite
(0.5 wt.%, 1 wt.%, and 1.5 wt.%). Next, the main parameters of the bouncing ball are
estimated from experimental data using a deep learning process to obtain an equivalent
virtual simulation configuration. Previously, this model has been tested using discretization
techniques and traditional computational optimizations with promising results [42]. The
training process considers the energy loss and elastic energy from experimental data to
obtain a closed-loop simulation. The governing equation of motion of the bouncing ball
dynamics in the instant impact with the ground is described using Equation (4), where
the F is the instant force gravity of the ball with initial conditions of x0 = 0 and

.
x0 = −v0,

and v0 is the impact velocity just before the impact. The main problem is that the bounce
mechanical behavior, involving nonlinear deformation, restitution, energy loss, and then
rebound, requires an underdamped solution. The other states of the system (before impact
and the steady solution) are trivial solutions.

The contact spring is used for the bouncing at impact and the contact damper for is for
the squashing energy dissipation. It is assumed that there is no air friction or other energy
loss that cannot be attributed to the spring-damper system. Different regimes should be
considered before, during, and after the impact. The graphs in Figure 8a show the free
fall and spring rebound. The vertical deformation and energy loss rates of the stretchable
object were well explained by the spring-damper model. This model will be conceptually
illustrated in Figure 8b using a nonlinear spring and a nonlinear viscous damper in parallel
configuration (Kelvin-Voight viscoelastic model).



Polymers 2022, 14, 5290 14 of 18

Polymers 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

(0.5 wt.%, 1 wt.%, and 1.5 wt.%). Next, the main parameters of the bouncing ball are esti-

mated from experimental data using a deep learning process to obtain an equivalent vir-

tual simulation configuration. Previously, this model has been tested using discretization 

techniques and traditional computational optimizations with promising results [42]. The 

training process considers the energy loss and elastic energy from experimental data to 

obtain a closed-loop simulation. The governing equation of motion of the bouncing ball 

dynamics in the instant impact with the ground is described using Equation (4), where 

the F is the instant force gravity of the ball with initial conditions of 𝐱0 = 0 and �̇�0 = −𝑣0, 

and 𝑣0 is the impact velocity just before the impact. The main problem is that the bounce 

mechanical behavior, involving nonlinear deformation, restitution, energy loss, and then 

rebound, requires an underdamped solution. The other states of the system (before impact 

and the steady solution) are trivial solutions. 

The contact spring is used for the bouncing at impact and the contact damper for is 

for the squashing energy dissipation. It is assumed that there is no air friction or other 

energy loss that cannot be attributed to the spring-damper system. Different regimes 

should be considered before, during, and after the impact. The graphs in Figure 8a show 

the free fall and spring rebound. The vertical deformation and energy loss rates of the 

stretchable object were well explained by the spring-damper model. This model will be 

conceptually illustrated in Figure 8b using a nonlinear spring and a nonlinear viscous 

damper in parallel configuration (Kelvin-Voight viscoelastic model). 

 

 

Figure 8. (a). Schematic representation of the deformation mechanism of bounding stretchable ball 

(a cross-section of the ball is shown); (b) A mass-spring-damper model of a bouncing ball showing 

phases of the first cycle (figure adapted and licensed from [42]). 

Data included in the supplementary material (Figure S1, see Supplementary Materi-

als) show that the capability of the predicted output to match the real reference input be-

tween p = 8 and p = 64 is clear but comparing p = 32 and p = 64 using only the real reference 

output curves and the predicted output curve is not entirely obvious. Therefore, we pro-

vide the loss function curves, in which it is observed that using p = 64 in SRNN, GRU, and 

LSTM the function decays rapidly to very low values after roughly 10 epochs. In contrast, 

for p = 32 the epochs increase to a range of 20–40. However, increasing the number of units 

improves the prediction but only to a certain point, and further addition of units can ac-

tually harm the model’s performance. A clear example is the instabilities observed at the 

      

  
 
 
  
 

 
 
 
  
  
 

      

       

      
  

        
    

Figure 8. (a). Schematic representation of the deformation mechanism of bounding stretchable ball
(a cross-section of the ball is shown); (b) A mass-spring-damper model of a bouncing ball showing
phases of the first cycle (figure adapted and licensed from [42]).

Data included in the Supplementary Material (Figure S1, see Supplementary Materials)
show that the capability of the predicted output to match the real reference input between
p = 8 and p = 64 is clear but comparing p = 32 and p = 64 using only the real reference output
curves and the predicted output curve is not entirely obvious. Therefore, we provide the
loss function curves, in which it is observed that using p = 64 in SRNN, GRU, and LSTM the
function decays rapidly to very low values after roughly 10 epochs. In contrast, for p = 32
the epochs increase to a range of 20–40. However, increasing the number of units improves
the prediction but only to a certain point, and further addition of units can actually harm
the model’s performance. A clear example is the instabilities observed at the end of the
SRNN loss function using p = 64 which results in a worse prediction curve fit than that
achieved using p = 32.

These loss plots allow us to identify three common dynamics that are likely to be
observed in learning curves: underfit, overfit, and good fit. A good fit is identified by
a training and validation loss that decreases to the point of stability with a minimal gap
between the two final loss values. A learning curve plot shows a good fit if the training
loss plot decreases towards stability or the validation loss plot decreases to the point of
stability and has a small gap with the training loss. It should be noted that the training was
terminated after 2000 epochs, and the effect of overfitting was not found, in other words,
if the gap between the performance in the training data and the test data is very wide, it
means that, effectively, our model is overfitting, i.e., memorizing, not learning. A larger
unit number permits a higher-order model for estimating the system and hence increasing
the number of epochs also allows for better outcomes. The results of the Supplementary
Materials incorporated the bias ‘b’ into the output function. For Figure 9, the bias was
applied only in the activation functions. Each neuron is characterized by its weight,
activation function, and bias. If there is any error during the prediction by the function,
bias can be added to the output values to obtain the true values.
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Figure 9. Prediction performance, training, and validation losses for modified neural networks;
(a) SRNN, (b) GRU, (c) LSTM architectures and (d) Comparison of processing times using 2 units
and 4000 epochs or 8–64 units and 2000 epochs.

Typically, GRU and LSTM are used to avoid the vanishing gradient problem in cases
where the sequential training data is redundant, and the memory loss is propagated over
time. However, these NN use more activation functions than SRNN. Figure 9a shows that the
activation function of the SRNN architecture (tanh) while reducing the neuron units to p = 2
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gives a better fit prediction in comparison to GRU and LSTM models. Furthermore, the LSTM
architecture presented as overfitting in the data due to the small number of neuron units p
and its complex architecture as shown in Figure 9c. If we observe the GRU and SRNN loss
graphs in Figure 9a,b, we will see that both configurations allow very low and similar loss
values to be obtained, showing that this stability value (position of equilibrium point) is the
first value that the system learns. On the Supplementary Materials, it is observed that for p = 8
the models predict a value close to the position of the equilibrium point.

For this specific case, the equilibrium position is extremely influential in the loss
function and therefore GRU and SRNN are models with good fit. However, if one looks
closely at the loss function in Figure 9a there is a slight decrease of the loss at the end
which allows us to adjust the rest of the data of the oscillating curve around the equilibrium
point. The values of loss of SRNN and GRU in 2000 and 3000 epochs shown in Figure 9a,b
show that the fit of the oscillations around the equilibrium point has an associated value
of roughly 1.4. Varying between 8 and 64 units has negligible impact on processing time,
however processing the learning model at twice the number of epochs requires significantly
more time, but the SRNN model requires significantly less processing time compared to
the other two architectures due to the simplicity of its architecture, see Figure 9d. The
Supplementary Materials is intended to test the performance of the system using half the
number of epochs (2000) as the test presented in Figure 8 (4000). That is, Figure 9c shows
LSTM with 4000 epochs and p = 2. However, LSTM requires at least p = 8 to obtain the
stability value of the equilibrium point as shown in the Supplementary Materials.

4. Conclusions and Future Work

We presented several neural network (NN) structures to approximate the nonlinear
mechanical behavior of soft nanocomposite materials based on an analogy with the behavior
of dynamic systems, using experimental elastic deformation data from static tensile testing
and loading and unloading. The NN structures are based on Recurrent Neural Networks
(RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). Derivations of
the simplest case were presented to show the analogy of state–space models and mechanical
dynamical systems. Once successfully trained, the methods produce discrete dynamical
systems that approximate the unknown underlying governing equations of the nonlinear
deformation of nanocomposite material.

The fundamental challenge with the approach proposed in this work is that it requires
knowledge of a beginning condition to be applied. In real-world applications, the beginning
state of a dynamic system is rarely known. However, if the system is stable, the initial state
can be ignored because the effect of the initial condition is neglected on the steady state. An
alternative to explore in the future is to develop an autoregressive-exogenous (ARX) model.
This model predicts the system’s output only based on previous inputs and outputs.

The solution of a general mechanical dynamical system can be estimated using only
the trained neural network and a state–space variables. When training the neural network
operator to approximate the effective output data, the analytical and experimental solutions
of test mechanical configurations are used to produce the training data on which the
network can be trained.

We successfully described the concept of neural networks and the surrounding con-
cepts without the necessity for a known governing equation when defining the system
to mechanically represent the behavior of a soft material with nonlinear deformation. A
broad mechanical dynamical solution of the system can thus be approximated using only
a trained neural network and state–space variables in complex deformation phenomena
such as the bouncing ball. Efficiency in other deformation mechanisms can be explored to
improve our compression of soft materials and their energy losses. Loading concentrations
affect the elastic and dissipative energy during the loading and unloading cycles. However,
the training data used covers a limited range of 0 to 1.5% wt. for the specific case of
SWCNTs nanotubes, so validating their effectiveness with other types of compositions or
constituents requires future research efforts.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14235290/s1, Figure S1: Predicted and real reference
outputs of the SRNN, GRU, and LSTM architectures.
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