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Abstract: Among the FDM process variables, one of the less addressed in previous research is the
filament color. Moreover, if not explicitly targeted, the filament color is usually not even mentioned.
Aiming to point out if, and to what extent, the color of the PLA filaments influences the dimensional
precision and the mechanical strength of FDM prints, the authors of the present research carried out
experiments on tensile specimens. The variable parameters were the layer height (0.05 mm, 0.10 mm,
0.15 mm, 0.20 mm) and the material color (natural, black, red, grey). The experimental results clearly
showed that the filament color is an influential factor for the dimensional accuracy as well as for
the tensile strength of the FDM printed PLA parts. Moreover, the two way ANOVA test performed
revealed that the strongest effect on the tensile strength was exerted by the PLA color (η2 = 97.3%),
followed by the layer height (η2 = 85.5%) and the interaction between the PLA color and the layer
height (η2 = 80.0%). Under the same printing conditions, the best dimensional accuracy was ensured
by the black PLA (0.17% width deviations, respectively 5.48% height deviations), whilst the grey PLA
showed the highest ultimate tensile strength values (between 57.10 MPa and 59.82 MPa).

Keywords: fused deposition modeling (FDM); fused filament fabrication (FFF); polylactic acid (PLA);
layer height; layer thickness; filament color; PLA color; dimensional accuracy; tensile strength

1. Introduction

Additive manufacturing (AM) technologies, also named 3D printing processes, have
opened a new era in many manufacturing sectors [1] and are considered to be “at the
forefront of the Fourth Industrial Revolution” [2]. According to ISO/ASTM 52900:2021 [3],
the term additive manufacturing includes all processes in which 3D components are made
by joining materials, layer-upon-layer, following a digital model received by a computer-
controlled machine (3D printer).

The growing interest in AM technologies is based on the numerous technical and
economic advantages they present. The possibility of reducing the fabrication costs and
shortening the production times, the ease of manufacturing parts with complex geometries,
the rapid transition from the CAD model to the finished product as well as the reduction in
waste have made AM technologies attractive for diverse sectors ranging from industry to
education, health, and leisure [3–8].

The additive technologies market is constantly developing, reaching a volume of
12.6 billion dollars in 2020 and financial analysts predict a significant increase, “to almost
triple in size between 2020 and 2026” [2]. Intensive research has been carried out regarding
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both the optimization of AM technologies and the development of suitable new materials
for 3D and 4D printing [5,6].

Among the seven AM process categories defined by [3], one of the most commonly
applied, given the relatively low cost of equipment and materials as well as the simplicity
of the process, which makes it accessible even to home users, is 3D printing by material
extrusion, known as FFF (fused filament fabrication) or respectively the FDM (fused
deposition modeling) method [9,10]. The extruded material is a molten thermoplastic
filament that is deposited on the build platform of the printer in successive layers, each
of them realized of adjacent filament roads by means of a printing head. Regarding the
materials suitable for FDM printing, polylactic acid, known as PLA, is considered to be the
most widely used 3D filament. Its low melting point, the ease of printability even on home
user machines and its low toxicity compared to other materials such as ABS are counted
among the main advantages [11]. PLA is a semi-crystalline and biodegradable polymer
made from renewable resources that is available in a wide range of colors.

Nowadays, AM technologies are no longer used only for rapid prototyping, but
increasingly for rapid manufacturing. When it comes to the printing of end user parts by
FDM, the selection of the numerous interdependent process parameters, which influence
both the part quality (with respect to dimensional precision, distortions, mass deviations,
porosity, surface texture, etc.), and the product’s final characteristics have proven to be a
difficult problem to solve. Moreover, other than in the case of traditional manufacturing
technologies, one has to consider “the strength of the part” instead of “the strength of
the part material” [12], as the properties of the products obtained by FFF are strongly
dependent on their mesostructure.

The topic of process optimization, aiming to obtain by FDM parts with predictable
end-user properties as well as good surface quality, dimensional, form and mass accuracy,
has been addressed by numerous researchers. In this respect, the influence of the following
variables has been studied by experimental investigations as well as by statistical meth-
ods [13,14]: printing temperature, build plate temperature, layer thickness, printing speed,
build orientation, raster angle, infill pattern and density, storage conditions before and after
the printing process, post-process treatments, and aging. Less considered influential vari-
ables are the filament (material, color, diameter, producer) and the 3D printing equipment
(producer, open or closed workspace), and related details are mostly not even provided
among the experimental conditions when addressing other process parameters.

The layer height (or layer thickness) is one of the most approached FDM process
parameters. The variation range of this 3D printing variable is set in relation to the nozzle
diameter, as its maximum value can usually reach up to half of this characteristic. The layer
thickness has a significant influence on the printing duration. For shorter production times
and enhanced process productivity, higher values for layer thickness have to be selected,
but the latter compromises the part resolution [13].

Regarding the influence of this printing parameter on the mechanical properties, most
researchers agree that the strength of the PLA prints is influenced by the layer height.
On the other hand, while some of them consider that this influence is low [15–22], others
highlight that this influence is significant [23], or have even stated that the layer thickness is
the most important factor that governs the values of the ultimate tensile strength (UTS) [24].

Neither in terms of the variation trend could there be found agreement in the previous
research analyzed. In this regard, whilst most of the researchers found that the UTS of the
parts manufactured by FFF is increasing with the decrease in the layer height [16–20,22–34],
others concluded the opposite [14,35,36] or defined optimal values of this variable, situated
inside a variation interval that was set for the optimization of the selected printing param-
eters [37–41]. These different or even controversial opinions could be explained by the
fact that the chosen combinations of process parameters determined completely different
thermal printing conditions as well as the distinct values adopted for the layer thickness,
situated within a wide range (0.06 mm–0.6 mm) [13].
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Regarding the effect of the filament type, especially its color on the mechanical proper-
ties of PLA prints realized by FDM with different layer heights, there is a lack of information.
If the behavior of different colored PLA filaments is not directly addressed by the authors,
the information about the color of the analyzed samples is not even mentioned in the
majority of studies, showing that this factor is usually not considered to be a significant
influential parameter for the properties of the FDM prints. Furthermore, filament manu-
facturers provide the same information for PLA filaments irrespective of their colors, thus
one must consider that by adding coloring filler materials, the thermal behavior of the PLA
composites might be influenced [42,43], and thereby the adhesion between adjacent roads
and successive layers under the same process conditions, affecting the mechanical proper-
ties of the prints [43–46]. This effect, for PLA samples of different colors obtained under the
same printing conditions, was found to be considerable, ranging up to a maximum of 29%
difference in ultimate tensile strength between various colors [43], or even up to 31% [44].
No study addressing the combined influence of the color and the layer thickness on the
UTS values of the PLA samples was found in the literature analyzed.

The impact of the layer height on the dimensional precision of PLA parts printed by
FDM has been extensively analyzed in previous research [8]. Moreover, in the majority
of cases, this process parameter is considered to have a significant influence on the print
quality [8,10,47–49] or even to be crucial [50,51]. For layer heights varying from 0.05 mm
up to 0.5 mm, most of the researchers concluded that reduced layer heights ensured
better dimensional accuracy [8,50–54], independent of the combinations of other process
parameters and that the deviations resulted along the X, Y, and Z-directions differed,
depending mainly on the build orientation [8,10,50,52,54,55]. An interesting result was
achieved by authors analyzing the combined effect of printing speed (50 mm/s, 60 mm/s,
and 70 mm/s, respectively) and layer height, set at 0.10 mm, 0.15 mm and 0.20 mm, on the
dimensional precision of a test specimen with protrusions and internal features [47]. It was
pointed out that the printing speeds and layer heights have to be selected in accordance
with the part geometry. However, it should be noted that the layer thicknesses were
considered only in the range from 0.10–0.20 mm in that study, respectively, having values
that are accepted as preferable for the dimensional accuracy of the PLA prints [51].

Regarding the influence of the layer height on the dimensional precision in connection
with the filament color, very few information could be found. In this respect, only in two
studies was the color of the PLA explicitly considered to be an influential variable for the
dimensional accuracy, but none of them pointed out the combined effect of the filament
color and layer height. Thus, the authors of [55] set the filament color at three values (white,
grey, and black) and defined the optimum combination of filament color-build orientation
for the best dimensional accuracy. The filament color–layer thickness–print orientation–
raster angle optimization was realized only for the white PLA. In [10], four different colors
(pink, grey, green, and transparent) were used to study the influence of pigmentation on the
dimensional deviations, but the value of the layer thickness was the same for all samples,
respectively 0.5 mm, and only the printing temperature was set at five levels. Otherwise, in
studies where the filament color was not considered as a variable, complete information
about the filament type selected for the experiments has been rarely provided.

Considering the above, the authors of the present study aimed to evaluate if, and
to what extent, the PLA color influenced the dependences of the dimensional accuracy
and the mechanical strength on the layer height in the case of samples printed by FDM.
In order to point out the effect of the filament pigmentation on the previously mentioned
dependences, the only process variables were the filament color (natural, black, red, and
grey) and the layer height (0.05 mm, 0.10 mm, 0.15 mm, and 0.20 mm). All other process
parameters were the same for all samples.

2. Materials and Methods

The experiments were carried out on ISO 527-2 type 1A [56] specimens with a thickness
of 3 mm.
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The CAD geometry of the specimen was modeled with SolidWorks (Dassault Systèmes,
Vélizy-Villacoublay, France) and the process parameters were defined in the Ultimaker Cura
5.0.0 slicer (Ultimaker B.V., Utrecht, The Netherlands). An Ultimaker 2+Connect equipment
(Ultimaker B.V., Utrecht, The Netherlands) with closed space was used for printing.

The printing parameters are listed in Table 1. The only variables were the layer
thickness and the material color. Before printing, the 2.85 mm diameter PLA filaments,
produced by Verbatim (CMC Magnetics Corporation, Taipei, Taiwan), were properly
preserved in a closed space, providing protection against humidity and UV irradiation. For
each material color, 20 specimens were printed (five specimens for each layer thickness),
resulting in a total of 80 specimens. All specimens were printed individually (one specimen
per build plate) by using the YX orientation, according to ISO/ASTM 52921:2013 [57]. No
pre-process (on filament) or post-process (on printed specimens) treatments were applied.

Table 1. The 3D-printing parameters.

Parameters Values

Fixed process parameters Printing head temperature, TH 210 ◦C
Build plate temperature, TB 60 ◦C
Printing speed, sp 50 mm/s
Nozzle diameter, dn 0.40 mm
Filament diameter, df 2.85 mm
Build orientation (acc. to [57]) YX
Raster angle, θ 45◦/−45◦

Infill density 100%
Number of wall lines, WL (-) 2

Variable parameters Layer thickness, t 0.05 mm; 0.1 mm; 0.15 mm; 0.2 mm
Material/Filament color PLA Natural; PLA Black; PLA Red; PLA Grey

The assessment of dimensional accuracy was carried out by measuring the width
and thickness of each specimen at three positions along the calibrated area (Figure 1).
The measurements were accomplished with a Mitutoyo 293-240-30 digital micrometer
(Mitutoyo Romania SRL, Otopeni, Romania), with a 0–25 mm measuring range and an
accuracy of ±0.001 mm. The dimensional deviations (%) for the widths b1, b2, and b3
and the thicknesses h1, h2, and h3 were determined for each specimen. Subsequently, the
average deviations of width and thickness were calculated and plotted. In addition, the
mean of the cross-sectional areas of each group of specimens was calculated.
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Figure 1. The CAD geometry of the printed tensile samples (YX-build orientation) with the positions
of the dimensional accuracy measurements (b1, b2, b3—width measurements; h1, h2, h3—thickness
measurements).

A Mecmesin Multitest 2.5 dV machine (PPT Group UK Ltd., Slinfold, UK) was used to
carry out the tensile tests, according to ISO 527-1 [58] and ISO 527-2 [56]. The test speed
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was set at 10 mm/min. For each combination of layer height and PLA color, five tensile
specimens were tested and the mean value of the ultimate tensile strengths (UTS) and the
standard deviations (according to ISO 2602:1980 [59]) were calculated. The confidence level
for the mean was 95%.

The mesostructure of the specimens was examined in the fractured surface and on the
surface of the top layers at a magnification of 12.5× using a Leica MZ 7.5 stereomicroscope
(Leica Microsystems, Wetzlar, Germany).

3. Results and Discussion

The experimental results are presented and interpreted in the following subsections.
Aiming to facilitate the association between the PLA colors and the corresponding values
measured for the dimensional deviations and the UTS, in all graphic representations, the
following color palette was used: yellow for natural PLA, dark grey for black PLA, red for
red PLA, and light grey for grey PLA.

3.1. Dimensional Accuracy

In order to point out the influence of the layer height on the dimensional accuracy
as well as the possible differences determined by the filler materials of the colored PLA
filaments, the dimensional deviations of the width and the thickness in the calibrated region
of the test specimens were calculated and represented in Figure 2.
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Figure 2. Dimensional deviations of the test specimens printed with different layer heights and
filament colors: (a) with deviations (nominal value: 10 mm); (b) thickness deviations (nominal value:
3 mm).

Analyzing the dimensional deviations along the two considered directions, one can
observe that the deviations of the specimens’ widths (Figure 2a), ranging between 0.17%
(black PLA, t = 0.05 mm) and 4.10% (red PLA, t = 0.15 mm), were significantly smaller
than those of the thicknesses (Figure 2b), where the minimum value was 2.32% (grey PLA,
t = 0.10 mm) and the maximum one was 12.19% (red PLA, t = 0.20 mm). In agreement
with [55], this phenomenon may be explained by the fact that the samples could expand
freely in the vertical direction to the build plate (along the Z-axis, thickness), whilst the
increase in the width (along the X-axis) was restricted by the two wall lines that made up
the contour (or shell) of the prints.

As significant differences were found regarding both the magnitude and the variation
profiles of the specimens’ width and thickness deviations with the layer height and the
filament color, in order to evaluate and visualize the overall effect of the two variables on
the dimensional precision, the mean value of the cross-section area was calculated and is
represented in Figure 3.
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filament color.

The experimental results showed that for all colors and layer heights, the dimensions
of the prints exceeded those of the CAD model (see the dashed line), a phenomenon that
characterizes, in general, the FFF fabrication process [37].

Regarding the influence of the filament color on the dimensional precision of the
samples obtained for different values of the layer height, the experimental results visualized
in Figures 2 and 3 obviously show that the presence of coloring additives should not be
neglected in relation to the print quality. Under the same printing conditions, the best
overall dimensional accuracy was ensured by the black PLA and the worst by the red PLA.
The differences in the cross-sections of the red and black colored prints ranged from 3.94%
for t = 0.10 mm to 11.23% in the case of t = 0.20 mm. Previous studies have indicated that
the critical temperatures for glass transition and the degradation of colored polymers are
influenced by the addition of coloring additives [60], so these differences may be explained
by the different thermal properties of the four types of filaments.

On the other hand, although the magnitudes of the samples’ dimensional deviations
were obviously color-dependent, their variation trends with increasing layer thicknesses in
the range from 0.05 mm to 0.20 mm were very similar. Thus, for all four PLA filament types,
the best dimensional accuracy was obtained for layer heights situated between 0.10 mm
and 0.15 mm. Aiming to explain these results, after tensile testing, the specimens were
examined with the stereomicroscope, as described in Section 2. Representative images for
the different color–layer height combinations are shown in Figures 4–7.

As one can observe in Figures 4a, 5a, 6a and 7a, the mesostructure of the specimens
printed with the smallest layer height (t = 0.05 mm) was extremely dense for all PLA colors,
indicating that during the printing process, the temperature of the already deposited layers
was maintained higher, as in all other cases. On the other hand, printing with smaller
layer heights involves an increased number of heating and cooling processes during the
filament deposition, and hereby the formation of internal stresses and subsequent part
distortions [61,62], which could explain the higher values measured for the dimensional
deviations in the case of the 0.05 mm layer thickness, as also considered by the authors
of [63].
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The worst dimensional accuracy was obtained, for all types of PLA filaments, in the
case of the 0.20 mm layer height. Figures 4–7 reveal that the number of voids (delamination
of successive layers and air gaps between adjacent roads, as marked, for example, in
Figures 4d and 5d increased with the increase in the layer thickness, so the worsened
adhesion between the deposited filaments could be the reason for enhanced dimensional
deviations. This conclusion is in accordance with the findings of previous research [52].

Regarding the effect of the filament color on the variation in the dimensional deviations
with the layer height, the top views of the samples shown in Figures 4–7 revealed the fact
that, as above presumed, the same process parameters determined different printing
conditions with respect to the state of the polymer, ranging from over-extrusion determined
by too low viscosity of the filament (red PLA, 0.05 mm, Figure 4a) to under-extrusion
caused by too high viscosity (black PLA, 0.20 mm, Figure 7d). Therefore, the reasons are
most probably the differences regarding the glass transition temperatures and the thermal
conductivities of different colored PLA filaments.

Furthermore, one can observe that the red PLA exhibited, in both directions (width
and height), significantly larger dimensional deviations than the other colors. Whilst the
surfaces of the red tensile specimens presented characteristic aspects for over-extrusion
(non-uniform filament roads and oozing, marked in Figure 4), indicating a too high printing
temperature, the increase in the layer thickness led to the appearance of air gaps between
the filament roads, and, in the case of the 0.20 mm layer height, even to the delamination of
successive layers. In accordance with previous research [10], a high printing temperature
and thereby increased fluidity of the PLA filament allows the layer to expand in the side
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faces [10], leading to higher width deviations. On the other hand, the probably low thermal
conductivity of the red PLA, and thereby its late response to the repetitive heating and cool-
ing cycles, caused a high temperature gradient during the printing process with enhanced
layer thickness. As also concluded by previous research [61], a high temperature gradient
determines distortions within or between the layers, resulting in interlayer cracking.
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3.2. Tensile Behavior

The mean values of the UTS, calculated for the specimens manufactured with the same
color-layer height combination as well as the standard deviations are presented in Figure 8.

The experimental results revealed beyond doubt that the tensile strength of the PLA
prints is significantly color-dependent. As one can observe in Figure 8, the overall variation
trend of the UTS vs. layer height was the same regardless of the PLA color, in the sense
that the tensile strength decreases with increasing the layer height. On the other hand, the
differences between the extreme values of the samples’ UTS, measured for different PLA
colors, ranged between 4.77% (grey PLA) and 23.41% (black PLA), whilst the natural PLA
and the red PLA manifested a very similar conduct (6.73% for natural PLA, 6.37% for the red
PLA differences between the extreme UTS values obtained for different layer thicknesses).
As also concluded by [13], the increased number of thinner layers intensified the re-heat
effect for the already deposited layers and conducive to improved diffusion and adhesion
between the layers. This phenomenon can be observed clearly in the mesostructure of the
breakage surfaces of the samples, as presented in Figures 4–7.
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Furthermore, a slight increase in the UTS could be observed for the natural PLA
printed with a 0.10 mm layer thickness and for the red PLA at 0.10 and 0.15 mm. This
phenomenon may be explained by the fact that the re-heating cycles during the deposition
process of the successive layers, created in the case of the two filament colors, the thermal
conditions ensuring the maximum content of in-process crystallinity and thereby the
superior mechanical strength of the samples, as also concluded in previous research [64].

Comparing the variation in the UTS vs. layer thickness (Figure 8) with that of the
dimensional deviations vs. layer thickness (Figures 2 and 3), two facts can be observed:

- The colors leading to better dimensional accuracy (respectively black and natural)
unfortunately conduced to lower mechanical strength of the prints, caused by the
weaker adhesion between the adjacent roads, as evidenced in the top-views of the
tensile samples presented in Figures 6 and 7. These bond deficiencies may be explained
by the higher thermal conductivity of the natural PLA and black PLA in comparison
to the grey and red filaments, and thereby by faster cooling rates of the filaments,
with a subsequent faster contraction of the material, which led to the occurrence of
adhesion loss between the deposited lines. Similar findings were also described by
the authors of previous research [43,65];

- The effect of the layer thickness on the UTS values was more pronounced in the case
of the black PLA, whose thermal conductivity was also reported by other researchers
to be significantly higher than that of the other PLA filaments [66,67]. In this case,
the difference between the UTS value for the sample printed with the 0.05 mm layer
thickness and that realized with 0.20 mm amounted to 23.41%. This variation in the



Polymers 2023, 15, 2377 10 of 15

UTS values is in accordance with the mesostructure of the fractured surfaces presented
in Figure 7, showing a continuous recrudescence of the bond between the deposited
filaments with the layer thickness increase.
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In order to find out whether the two independent variables, the PLA color and the
layer height, had a significant influence on the ultimate tensile strength, a two way ANOVA
test was performed under the following conditions:

- Nominal variable—the PLA color, expressed by four different colors (natural, black,
grey, red);

- Ordinal variable—the layer height, expressed by four different thicknesses (0.05 mm,
0.10 mm, 0.15 mm, 0.20 mm);

- Dependent variable—the UTS, expressed in MPa.

The interaction effect of the two independent variables on the dependent variable was
also evaluated.

The results of the two way ANOVA test rejected the three null hypotheses, thereby
showing that the PLA color, the layer height, and the interaction between the PLA color
and the layer height influence the tensile strength.

Moreover, the statistical analysis led to the conclusion that the strongest effect on the
tensile strength is exerted by the PLA color (Partial Eta square η2 = 97.3%), followed by the
layer height (η2 = 85.5%) and the interaction between the PLA color and the layer height
(η2 = 80.0%). The confidence interval was set to 95%.

4. Conclusions

Aiming to point out if, and to what extent, the color of the PLA filament influenced
the dimensional accuracy and the tensile strength of samples printed by FFF, the authors
of the present research carried out experimental investigations on tensile ISO 527-2 type
1A specimens. The variable parameters were the layer height (0.05 mm, 0.1 mm, 0.15 mm,
0.20 mm) and the material color (natural, black, red, and grey). In order to avoid interactions
of simultaneous varied parameters, all other process parameters were set at the same values
for all samples as follows: printing temperature of 210 ◦C, build plate temperature of 60 ◦C,
printing speed of 50 mm/s, 0.40 mm nozzle diameter, build orientation YX, raster angle
45◦/−45◦, infill density 100%, and two wall lines.

Based on the experimental results and the discussion presented in Chapter 3, the
following conclusions can be drawn:

• First of all, the layer height influenced the dimensional accuracy of the PLA samples
manufactured by FDM. While the trend of variation was the same regardless of the
filament color, the experiments carried out within this study revealed that the coloring
fillers determined significant differences with respect to the effective values of the
dimensional deviations (7% up to 12% in the case of the cross-section area);

• The deviations of the samples’ dimensions differed depending on their positions
in relation to the build orientation, as for all PLA colors, the thickness deviations
of the samples exceeded the width deviations. The best dimensional accuracy was
obtained for layer heights situated between 0.10 mm and 0.15 mm for all filament
types. However, when considering the magnitude of the dimensional deviations,
the influence of the PLA color was significant. Thus, for example, in the case of
the thickness (Z-axis), the dimensional deviations of the samples printed with the
0.20 mm-layer height ranged between 5.48% (black PLA) and 12.19% (red PLA), whilst
in the case of the width (X-axis), the values of the deviations were situated between
0.17% (black PLA) and 3.86% (red PLA) for the lowest layer height (0.05 mm);

• With respect to the tensile strength, the experimental results showed that regardless of
the PLA color, the tensile strength decreased with the increment in the layer thickness.
On the other hand, considering the magnitude of the variation in the UTS depending
on the layer height for all of the investigated samples (4.77% for grey PLA up to 23.41%
for black PLA), the results obtained within this study clearly reveal that the influence
of the PLA color is also significant;

• Moreover, the two way ANOVA test performed by the authors in the case of the layer
height—PLA filament color—UTS dependence revealed that the strongest effect on the
tensile strength was exerted by the PLA color (partial Eta square η2 = 97.3%), followed
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by the layer height (η2 = 85.5%) and the interaction between the PLA color and the
layer height (η2 = 80.0%);

• Finally, the experimental results showed that the colors leading to better dimensional
accuracy (respectively black and natural) unfortunately led to the lower mechanical
strength of the prints. Therefore, the color of the PLA filament has to be chosen
depending on the targeted properties of the prints manufactured by FDM.

Considering the above, the overall conclusion that can be drawn is that any study
regarding the optimization of the FDM process parameters for the 3D-printing of PLA,
aiming to define the proper combinations of variables for the best quality and properties of
the prints, should take into consideration the fact that coloring additives modify the thermal
properties of the semi-crystalline PLA polymers and thereby their in-process behavior, so
that, under the same printing conditions, different results in terms of the print’s quality
and properties may be obtained. In other words, the color of the PLA filament used for the
sample fabrication has to be mentioned among the process parameters as it is an influential
factor that cannot be neglected.
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