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Abstract: Plant fiber-reinforced composites have the advantages of environmental friendliness,
sustainability, and high specific strength and modulus. They are widely used as low-carbon emission
materials in automobiles, construction, and buildings. The prediction of their mechanical performance
is critical for material optimal design and application. However, the variation in the physical
structure of plant fibers, the randomness of meso-structures, and the multiple material parameters
of composites limit the optimal design of the composite mechanical properties. Based on tensile
experiments on bamboo fiber-reinforced, palm oil-based resin composites, finite element simulations
were carried out and the effect of material parameters on the tensile performances of the composites
was investigated. In addition, machine learning methods were used to predict the tensile properties
of the composites. The numerical results showed that the resin type, contact interface, fiber volume
fraction, and multi-factor coupling significantly influenced the tensile performance of the composites.
The results of the machine learning analysis showed that the gradient boosting decision tree method
had the best prediction performance for the tensile strength of the composites (R2 was 0.786) based
on numerical simulation data from a small sample size. Furthermore, the machine learning analysis
demonstrated that the resin performance and fiber volume fraction were critical parameters for the
tensile strength of composites. This study provides an insightful understanding and effective route
for investigating the tensile performance of complex bio-composites.

Keywords: bamboo fibers; bio-resin; bio-composites; finite element simulation; machine learning

1. Introduction

Sustainable bio-composites have attracted extensive attention for reducing carbon
emissions by replacing traditional synthetic fiber-reinforced, petroleum-based resin com-
posites. Plant fibers, such as hemp fiber, palm leaf fiber, wood fiber, and bamboo fiber
(BF) [1], have the advantages of abundant resources, low price, renewability, degradability,
and high specific strength and modulus [2,3]. Among them, BFs have outstanding mechan-
ical properties and the potential to be applied in green composites. The thermosetting resin
made from vegetable oils has become an interesting topic in sustainable materials. Palm
oil (PO) has the lowest price and the largest production among plant oils in the world,
and some developed PO-based resins (PORs) have shown high strength, good fatigue
resistance, biodegradability, and low environmental impact [4–6]. Thus, by combining the
advantages of BFs and PORs, the BF/POR bio-composite was prepared and expected to
be widely used in construction, automobile parts, furniture, and packaging. A profound
understanding of the mechanical properties is necessary for the design and application of
this composite. However, the tensile performance of the composite varies largely due to the
high variance in structural and mechanical parameters of plant fibers and bio-based resins,
random meso-structures of discontinuous fibers in composites, and complex interface
properties between fibers and resins. Thus, it is difficult to determine the mechanism for
the tensile properties of this composite, limiting its potential for wide application.
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Experimental methods such as mechanical testing, scanning electron microscopy, atom
force microscopy, and nano-indentation have been used to characterize the mechanical
properties, microstructure, interfacial morphology, and microscopic stiffness distribution
of composites [1,4]. However, it is difficult to investigate various failure modes such as
matrix failure, fiber fracture, and interfacial debonding using experimental methods [7,8].
Moreover, it is also difficult to systematically investigate the effect of multiple factors on
the mechanical properties of plant fiber-reinforced composites [9–13].

Numerical simulation can show stress distributions in the microstructures of compos-
ite materials, revealing the mechanical mechanism and accelerating material optimization.
Finite element simulation has been used to obtain stress distributions and analyze failure
modes in the representative volume element (RVE) of composites [14–16]. However, finite
element simulation has mainly been used for composites with uniform, continuous, and
periodic fiber structures [17,18]. Therefore, an effective method should be further devel-
oped to model the BF/POR bio-composites with distinctive microstructures, i.e., the long
discontinuous and uniformly orientated bamboo fibers distributed in the composites [19].

Machine learning (ML) methods are powerful tools for predicting the mechanical prop-
erties of composites with various parameter combinations, identifying the most important
factors [20–22], and investigating the nonlinear relationship between multiple factors and
the mechanical properties of composites [23]. The support vector machine, decision tree,
random forest, gradient boosting, artificial neural network, extreme gradient boosting, and
other ML methods have been applied to predict and analyze the strength of concrete in the
marine environment [24], the compressive strength of high-performance concrete [25], the
interfacial strength of steel and carbon fiber-reinforced composites [26], the strength of con-
crete with microencapsulated phase change material [27], and the strength of concrete-filled
steel tubes [28]. Numerical simulation obtains material performance by building models for
the RVE and calculating the stress and strain based on physical principles. Meanwhile, the
ML predicts material properties by learning the relation between parameters and properties
of materials based on data. Thus, the prediction using ML methods is much quicker, which
is necessary to efficiently investigate the performance of materials with multiple parameters
and large parameter ranges.

The size of the data set for ML is usually small due to the time and economic costs
required to collect samples for a specific material, significantly limiting the performance
of ML models. Thus, integrated ML methods have attracted attention for improving the
forecast accuracy when using small volume samples by aggregating multiple base learners
using two main strategies, i.e., the bagging and boosting strategies. The bagging strategy
can reduce prediction variance by repeating the training and calculating the average of
multiple forecast results [29]. The boosting strategy can decrease prediction errors by
iteratively compensating the prediction errors and calculating the sum of multiple analysis
results in series [30]. Based on the decision tree (DT) method, the integrated random
forests (RF) method was established according to the bagging strategy. The gradient
boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and categorical
feature-supported gradient boosting (CatBoost) methods were established according to the
boosting strategy [31–33].

This study investigated the tensile properties of BF/POR bio-composites using para-
metric modeling, finite element simulation, and ML methods including DT, RF, GBDT,
XGBoost, and CatBoost. The effects of resin type, interface property, fiber volume fraction,
and fiber length and diameter on the tensile properties of composites were investigated.
The tensile properties of composites with different material parameters were predicted,
and the most important parameter for tensile strength was identified. This study pro-
vides an effective approach for investigating the tensile properties of plant fiber-reinforced
bio-composites and guidance for optimizing these composites.
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2. Materials and Methods
2.1. Preparation of Bamboo Fiber-Reinforced, Palm Oil-Based Resin Composites

The preparation and measurement of three kinds of PO-based resins (PORs) and
bamboo fiber (BF)-reinforced composites were previously reported in our study [34].
Briefly, three PORs, namely POFA_EA_EM, POFA_EA_GM, and POFA_EA_TM, were
synthesized from palm oil (PO) using transesterification followed by a reaction with
three natural polyphenols. First, PO fatty acid–ethyl acrylamide (POFA-EA) was syn-
thesized from PO and N-(2-hydroxyethyl) acrylamide. Then, the POFA-EA was further
reacted with three natural phenolic cross-linkers, i.e., eugenol–methacrylate (EM), methyl
gallate–methacrylate (GM), and tannic acid–methacrylate (TM). The resultant resins were
represented by POFA_EA_EM, POFA_EA_GM, and POFA_EA_TM, respectively. The BF-
reinforced composites were prepared by carding original BFs into unidirectional fiber mats,
coating the mats with resin, and hot-pressing the mats. The average length and diameter of
the BFs were 22.81 mm and 150 µm, respectively. The composites exhibited a key feature of
regularly arranged discontinuous long fibers. Tensile tests on the composites were carried
out using an Instron 3365 universal testing machine (Instron, Norwood, MA, USA) at a
crosshead speed of 10 mm/min. Each measurement was repeated 6 times.

2.2. Finite Element Simulation

The improved sequential random perturbation method was used to establish a two-
dimensional model of the randomly distributed fibers in the cross-section of the composites.
The initial two-dimensional model was established according to the parameters including
area size, fiber radius, fiber volume fraction, and the minimum distance between fibers.
Each fiber center was randomly moved to generate the final two-dimensional model of
the composites. Python software was used to generate three-dimensional discontinuous
fiber clusters. The distance between fiber ends was set as 150 µm. Boolean operations were
carried out to build the fiber part and resin part in an RVE. The size of the RVE was set as
1 mm× 1 mm× 5 mm The C3D6 element was used to mesh the fiber and resin with a mesh
size of approximately 4 µm. The BFs and POR were simulated as linear elastic material and
plastic material, respectively.

2.3. Machine Learning (ML) Method

The dataset containing composite tensile strength for the ML analysis included
82 samples obtained using finite element simulation. The output value was the tensile
strength (TS) of the composites, while the input features consisted of BF volume fraction
(VF), fiber length (L), fiber diameter (D), the ratio of length to diameter (L/D), the fiber
reinforcement coefficient (RI = VF × L/D), resin failure stress (Rstress), and resin failure
strain (Rstrain). The interface between the fiber and resin was set as a combined condition
for this dataset.

The dataset was randomly divided into training data and test data with a ratio of 7:3.
Then five ML models including DT, RF, GBDT, XGBoost, and CatBoost were developed to
predict the tensile strength of the composites and analyze the importance of each feature.
For each ML model, ten cross-validations were performed, and the average of the cross-
validation results was used to assess the performance of the ML models with different
datasets. The performance of the ML models was evaluated using three statistical indicators
including the mean absolute error (MAE), root mean square error (RMSE), and coefficient
of determination (R2). These metrics were obtained as follows (Equations (1)–(3)):

MAE =
1
n

n

∑ |y− ŷ| (1)

RMSE =

√
1
n

n

∑
i=1

(y− ŷ)2 (2)
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R2 = 1− ∑n (y− ŷ)2

∑n (y− y)2 (3)

where n is the number of observations in the dataset, y is the observed output, y is the
average observed output, and ŷ is the predicted output of the ML models.

2.4. DT Algorithm

The DT algorithm predicts the output by recursively dividing the data into smaller
groups based on conditions and finally classifying data samples. To enhance the ML model,
the DT algorithm can be used as a base learner in integrated ML models.

2.5. RF Algorithm

The RF algorithm randomly selects training samples and input features to establish
various training datasets for different decision trees. The final output value of a RF is
obtained by averaging the results of all decision trees as follows (Equation (4)):

Ŷ =
1
N

N

∑
i=1

Ŷi (4)

where Ŷ is the final predicted value of the RF model, N is the number of basic DT models
in a given RF model, and Ŷi is the predicted value of the ith DT model. This “bagging”
strategy can reduce the variance and avoid overfitting.

2.6. GBDT Algorithm

The GBDT algorithm progressively generates new base learners and trains them based
on the residual error of the previous model to continuously reduce the prediction error.
The final result of this model is obtained by combining base learners with different weights
as follows (Equation (5)):

fM(x) =
M

∑
m=1

T(x; θm) (5)

where M denotes the number of basic models, T(x; θm) is the basic tree model, x represents
the splitting condition of nodes, θm represents all the parameters in the basic model such as
random state and the parameters for branch cutting, and fM(x) is the final output. This
“boosting” strategy can reduce the prediction deviation.

2.7. XGBoost Algorithm

The XGBoost algorithm uses the same “boosting” strategy as the GBDT algorithm
mentioned above. XGBoost uses second-order Taylor expansion for the loss function
to promote the model convergence by obtaining a quadratic convex function, while
GBDT only considers the first-order derivative. Furthermore, XGBoost includes an im-
proved method to determine the splitting node based on the objective functions. The
objective function in the XGBoost model before and after splitting a node is shown in
Equations (6) and (7), respectively. The best splitting node is identified when the largest
difference between the two objective functions is obtained (Equation (8)).

Obj1 = −1
2

[
(GL + GR)

2

HL + HR + λ

]
+ γ (6)

Obj2 = −1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

]
+ 2γ (7)

Gain = Obj1 −Obj2 =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (8)
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where Obj1 and Obj2 are the objective functions in the XGBoost model before and after
node splitting, respectively. Gain is the change in the objective function after splitting,
G represents the sum of the first derivatives of all leaf nodes, H represents the sum of
the second derivatives of all leaf nodes, and the subscripts L and R represent the left and

right branches, respectively. (GL+GR)
2

HL+HR+λ is the score before branching, G2
L

HL+λ + G2
R

HR+λ is the
score sum of two sub-trees after branching, and λ and γ are used to control the complexity
of the model.

2.8. CatBoost Algorithm

The CatBoost algorithm is another integrated ML model that uses the “boosting”
strategy [35]. In other boosting algorithms, the true value of a category feature is calculated
as the average of the true values of this category feature for all samples (Equation (9)):

xi, k =
∑n

j=1

[
xj, k = xi, k

]
·Yj

∑n
j=1

[
xj, k = xi, k

] where
[

xj, k = xi, k

]
=

{
1, xj, k = xi, k
0, xj, k 6= xi, k

(9)

where Xi = (xi, 1, . . . , xi, m) is the vector including m features, Yi is the true label value of
the ith sample for a dataset of D = {(Xi, Yi)}i=1···n, and xi, k is the kth feature of the ith
training sample. This approach may lead to conditional shifts [36].

To solve the problem of calculating the true value for a category feature using boosting
algorithms, CatBoost sorts the samples randomly and calculates the kth category feature of
the pth data in the sorted dataset, i.e., xσp, k , according to Equation (10).

xσp, k =
∑

p−1
j=1

[
xσj, k = xσp, k

]
Yσj + βP

∑
p−1
j=1

[
xσj, k = xσp, k

]
+ β

(10)

where P is the prior value and β is the weight of the prior value. CatBoost uses a greedy
strategy to consider new features produced by combining current features, thus improving
prediction performance.

3. Results and Discussion
3.1. Preparation and Numerical Model of the Composites

Figure 1a shows the preparation processes for the composites, including combing
BFs into oriented fiber clusters, pouring POR onto the bamboo fiber clusters, and hot-
pressing [34]. The SEM image shows the features of the composite, that is, the discontin-
uous long fibers were regularly arranged. To establish the RVE of the numerical model
for the composites, the two-dimensional structure of cross-sections with oriented fibers
distribution was built according to the various volume fractions of fibers. The circles stand
for the cross-sections of fibers (Figure 1b). Then, the circles randomly migrated to obtain
the two-dimensional sections with randomly distributed fibers. A minimum distance
between the circle centers was set to avoid overlap between fibers (Figure 1c). Based
on the two-dimensional structures of the cross-sections, three-dimensional fiber clusters
were established by stretching the circles along the direction perpendicular to the two-
dimensional cross-sections. The fiber lengths and interruption distances between the ends
of the fibers were set to reflect the discontinuity of fibers. Then, the RVEs for the composites
were established based on the three-dimensional fiber clusters using Boolean operations
(Figure 1d). The simulation results provided the dataset for ML analysis (Figure 1e–g).
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POFA_EA_TM composite was much higher than the others, which may be owed to the 
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Figure 1. Preparation, numerical model, and ML models of the composites. (a) The preparation
process and SEM image of the composites. The fiber distribution in the cross-section of the composites
with different fiber volume fractions at (b) the initial stage and (c) the final stage. (d) The 3D models
for fiber clusters, fibers in the RVE, the resin in the RVE, and the RVE of composites. Structural sketch
of the ML models including (e) DT, (f) RF, and (g) GBDT.
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3.2. Experiment and Simulation of PORs

Figure 2 shows the tensile stresses obtained from simulations and experimental results
for three kinds of PORs, which were developed and measured in our previous study [34].
The results indicate the accuracy of the simulation and the significant difference in the
tensile properties among the resins. The tensile strength of the POFA_EA_TM composite
was much higher than the others, which may be owed to the rigid aromatic structure of TM
and the high cross-linking density of the resin. The POFA_EA_EM composite had a much
higher elongation at the break due to fewer C=C bonds and benzene rings in EM [37]. The
mechanical parameters of the resin in the subsequent composite models were set based on
the above simulations of the PORs.
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Figure 2. Tensile properties of three kinds of resins. (a) Comparison of the tensile curves of resins
from experiments and simulations, where EM Exp, GM Exp, and TM Exp refer to the experimental
results for the POFA_EA_EM, POFA_EA_GM, and POFA_EA_TM resins, respectively; and EM
Sim, GM Sim, and TM Sim refer to the simulation results for the POFA_EA_EM, POFA_EA_GM,
and POFA_EA_TM resins, respectively. The stress and strain distributions in (b) POFA_EA_EM,
(c) POFA_EA_GM, and (d) POFA_EA_TM resins.
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3.3. Effect of Resin Type on the Tensile Properties of Composites

Figure 3a shows that the numerical results of the stress–strain curves for the composites
with three resins agree well with the experimental ones, thus suggesting the accuracy of
the simulations. The tensile properties of three composites were demonstrated using the
numerical stress and strain distributions of composites and their components (Figure 3b–d).
Because of the small modulus and large elongation at the break of the POFA_EA_EM resin,
the main failure mode of this composite was the tensile fracture of BFs. Furthermore, due to
the significant modulus difference between the POFA_EA_EM resin and BFs, the failure at
the interface between BF and resin occurred by shear force (Figure 3b). For the composites
with the POFA_EA_GM and POFA_EA_TM resins, the failure occurred at the resin matrix
caused by the combination of tensile and shear forces (Figure 3c,d).
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Figure 3. Effect of resin type on composite properties. (a) Tensile curves for the three composites
from simulations and experiments, where EM Comp Exp, GM Comp Exp, and TM Comp Exp
refer to the experimental results for the POFA_EA_EM composite, POFA_EA_GM composite, and
POFA_EA_TM composite, respectively; and EM Comp Sim, GM Comp Sim, and TM Comp Sim
refer to the simulation results for the POFA_EA_EM composite, POFA_EA_GM composite, and
POFA_EA_TM composite, respectively. Stress distributions in the components and the composites
with (b) POFA_EA_EM, (c) POFA_EA_GM, and (d) POFA_EA_TM resins. The fiber volume fraction
was set at 50%, and the interface adhesion was set to an ideally combined mode.
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The simulation results indicate the significant influence of fiber continuity on the
composite performance. The continuous fibers in the composite RVE mainly bear the
tensile force, and the discontinuous fibers majorly withstand the shear force transferred
from the resin matrix. For the composite with the POFA_EA_EM resin, because of the low
shear stress transferring from the low-modulus resin matrix, the stress on the discontinuous
fibers was only about 15% of the continuous ones (Figure 3b). The POFA_EA_GM and
POFA_EA_TM resins have relatively higher moduli; therefore, the shear force transferred
from the resin matrix to the discontinuous fiber was larger, and there was no significant
difference in the stress between the discontinuous and continuous fibers (Figure 3c,d).

The simulations proved the micro-mechanism for the tensile strength of the composites.
Resin with higher strength, such as POFA_EA_TM, can bear higher stress. Furthermore,
higher shear stress can be transferred to the discontinuous fibers from resin with a higher
modulus to improve the bearing efficiency of fibers. Moreover, the shear force at the
interface was mild when the moduli of the resin and fiber were comparable, which avoided
premature shear failure of the resin at the interface and improved the bearing efficiency of
the resin.

3.4. Effect of Interface Properties on Tensile Properties of Composites

To investigate the influence of interface properties on composite performance, the
fiber–resin interface was set from the combined mode (Figure 3a) to the contact mode
(Figure 4a). The tensile strength of the composites with POFA_EA_EM, POFA_EA_GM,
and POFA_EA_TM resins decreased by 4.1%, 45.2%, and 48.6%, respectively, as the in-
terface property changed from the combined mode to the contact mode. This result was
attributed to the lower shear force transferred from resin to the discontinuous fibers by
the weak interface bonding (Figure 4b–d). Moreover, the influence of interface bonding
was more significant for the composites with high-modulus resins. The tensile strength of
the composite with a high-modulus resin, i.e., the POFA_EA_TM resin, significantly de-
creased by about 50% and the stress of the composites with discontinuous fibers decreased
by 89% as the interface property changed from the combined mode to the contact mode.
Meanwhile, for the POFA_EA_EM resin, i.e., a relatively low-modulus resin, the decrease
in strength and stress distribution in the composite was not significant. These results
indicate that the fiber–resin interface adhesion is critical for composite performance with
high-modulus resins. The interface property also affected the failure mode of the composite.
As the interface property was set to the contact mode, the tensile fracture of fibers was
the main failure mode for the composite with the POFA_EA_EM resin, while the resin
tensile failure was the dominant failure mode for the composite with the POFA_EA_GM
and POFA_EA_TM resins.
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set at 50%, and the interface property was set to the contact mode.

3.5. Effect of Fiber Volume Fraction on Tensile Properties of Composites

As the fiber volume fraction increased from 12.6 to 63.6%, the tensile strength of the
composites with the POFA_EA_EM and POFA_EA_TM resins increased by 272.0% and
86.4%, respectively (Figures 5a and 6a). With the increase in the fiber volume fraction,
the low-modulus POFA_EA_EM resin was replaced with BFs, significantly improving
the tensile strength of the composites. Moreover, the interface area with large stress
distributions between the BFs and resin increased with the increase in the fiber volume
fraction, improving the bearing efficiency of the resin matrix and the composite tensile
performance (Figure 5b−d). However, the fiber fraction and interface area had less impact
on the composites with the high-modulus POFA_EA_TM resin matrix (Figure 6b−d).
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3.6. Predictive Performance of Composites using ML Models

Five ML models, namely DT, RF, GBDT, XGBoost, and CatBoost, were used to forecast
the tensile strength of the composites based on a dataset from the simulations. Table 1
displays the characteristics of the dataset, consisting of seven input variables, i.e., VF, L,
D, L/D, RI = VF × L/D, Rstress, and Rstrain, and one output variable, i.e., TS. The deviations
between the true and predicted values for the test dataset samples are shown in Figure 7a−e.
The results demonstrate that all five models were able to learn the non-linear coupling
relationships among the features and predict the tensile strength. Figure 7f−h shows
the quantitative analysis of the performance of the ML models. GBDT performed the
best with the highest R2 value (0.786) and the lowest MAE and RMSE values (5.904 and
7.456 MPa, respectively). The results also indicate that the integrated ML models had better
performance than the basic DT model for predicting the tensile strength of the composites.
The non-excellent prediction accuracy of the ML models was attributed to the small dataset
size and the deviations in the numerical simulations, which were caused by the complexity
and randomness of the composite materials.
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Table 1. Characteristics of the dataset.

Attribute VF
(%)

L
(µm)

D
(µm) L/D RI Rstress

(MPa) Rstrain
TS

(MPa)

Count 82 82 82 82 82 82 82 82
Mean 40.98 3939.02 207.32 23.09 916.26 15.30 0.10 38.670

Standard Deviation 19.66 1589.69 82.07 14.75 786.05 6.77 0.06 16.305
Minimum 10.00 1000.00 100.00 6.67 66.67 3.35 0.03 9.662

25% 30.00 2000.00 100.00 13.33 400.00 10.61 0.03 26.656
50% 50.00 4000.00 200.00 20.00 666.67 14.95 0.07 39.376
75% 50.00 6000.00 300.00 30.00 1200.00 21.22 0.15 50.306

Maximum 70.00 6000.00 300.00 60.00 4200.00 31.83 0.23 68.799
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3.7. Feature Importance

The matrix heat map for the input and output variables shows that the fiber volume
fraction and resin failure stress have a high correlation with the composite tensile strength,
with correlation coefficients of 0.55 and 0.68, respectively (Figure 8a). Figure 8b shows the
relative importance of the features for the prediction of the four integrated learning models.
The results indicate that Rstress and Rstrain were the most important feature for the RF, GBDT,
and CatBoost models, which aligns with the effect of resin properties on the composite
tensile strength due to the better stress-transferring ability between the discontinuous fibers
and the larger stress distributions in resin. Moreover, for the XGBoost model, the VF for
the fibers was an important structural feature in the current range of parameters.
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4. Conclusions

This study found that the finite element simulation was effective for investigating
the stress and strain distributions and failure mechanism of the BF/POR composites. The
composite tensile performance was significantly influenced by parameters such as resin
type, contact interface, fiber volume fraction, and multi-factor coupling. Machine learning
methods based on numerical data were appropriate for predicting tensile properties and
analyzing feather importance for tensile strength. Using small datasets for finite element
simulation, the integrated ML models including RF, GBDT, XGBoost, and CatBoost showed
much better prediction ability than the basic DT model. The GBDT model showed the
best prediction performance with an R2 of 0.786. The resin properties and fiber volume
fraction were critical parameters for the tensile performance within the current parameter
ranges. This study provides an insightful understanding of the simulation, prediction, and
optimization of plant fiber-reinforced bio-composites on their tensile properties. In the
future, it is worth systematically investigating the mechanical properties of composites
under complex loads including tension, shear, and torsion.
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