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Abstract: Rubber composites are hyperelastic materials with obvious stress-softening effects during
the cyclic loading–unloading process. In previous studies, it is hard to obtain the stress responses of
rubber composites at arbitrary loading–unloading orders directly. In this paper, a hyper-pseudoelastic
model is developed to characterize the cyclic stress-softening effect of rubber composites with a fixed
stretch amplitude at arbitrary loading–unloading order. The theoretical relationship between strain
energy function and cyclic loading–unloading order is correlated by the hyper-pseudoelastic model
directly. Initially, the basic laws of the cyclic stress-softening effect of rubber composites are revealed
based on the cyclic loading–unloading experiments. Then, a theoretical relationship between the
strain energy evolution function and loading–unloading order, as well as the pseudoelastic theory,
is developed. Additionally, the basic constraints that the strain energy evolution function must
satisfy in the presence or absence of residual deformation effect are derived. Finally, the calibration
process of material parameters in the hyper-pseudoelastic model is also presented. The validity of
the hyper-pseudoelastic model is demonstrated via the comparisons to experimental data of rubber
composites with different filler contents. This paper presents a theoretical model for characterizing
the stress-softening effect of rubber composites during the cyclic loading–unloading process. The
proposed theoretical model can accurately predict the evolution of the mechanical behavior of rubber
composites with the number of loading–unloading cycles, which provides scientific guidance for
predicting the durability properties and analyzing the fatigue performance of rubber composites.

Keywords: cyclic stress-softening effect; strain energy evolution function; hyper-pseudoelastic model

1. Introduction

According to the participation of filler particles during the vulcanization process,
rubber composites can be divided into the filled rubber composite and the unfilled rubber
composite. The durability, toughness, and wear resistance of polymer composites can be
significantly improved by incorporating filler particles [1–3] so that the filled rubber com-
posites have been widely used in automobile tires, mechanical equipment, housing shock
absorption structures, and aircraft door sealing [4,5]. Different from the unfilled rubber
composites, the stress-softening effect and residual deformation are significant for the filled
rubber composites, leading to the strong inelastic properties of filled rubber composites
during the cyclic loading–unloading process [6,7]. Judging from the current research results,
the magnitude of stress softening increases with the increase of the initial volume fraction
of the filler particles [6,8]. In addition, the inelastic properties of the rubber composites
vary greatly under different loading–unloading orders due to the residual deformation
and the changes in internal structures [9]. Mullins [10,11] carried out systematic theoretical
research and experimental tests on the stress-softening effect of rubber-like materials in
the last century, so this phenomenon was named the Mullins effect. This phenomenon
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not only exists in the uniaxial tension [6,12–14] but also in the compression [15,16] and
pure shear [17] and manifests as deformation-induced damage anisotropy [18]. Similar
softening effects can also occur in other soft materials, such as hydrogels [19,20]. Because
the stress-softening effect of rubber composites has an important influence on their fatigue
damage characteristics and safe utilization, it is necessary to describe the basic physical
characteristics of the stress-softening effect of rubber composites under cyclic loading–
unloading processes. There are two main research ideas to study the stress-softening effect.
One is the micromechanics theory, and the other is the phenomenological theoretical model.

In micromechanical theory, it is believed that the stress softening of rubber composites
is caused by the following mechanisms: the breakdown of bonds between chains and
filler particles [21,22], the internal sliding of the macromolecular chains, and the sliding of
connecting chains on reinforcing filler particles [23], the breakage and re-agglomeration of
the filler clusters [24], the aggregate-polymer debonding and network rearrangement [7],
the damage of macromolecular chain [25], the rearrangement after macromolecular chain
breakage [26], and chain delamination [27]. Govindjee et al. [21] introduced the concept
of strain-induced debonding between the matrix and filler particles in the free energy
density, assuming that the free energy of the polymer network could be decomposed into
the free energies of chains in pure rubber network and chains distributed between filler
particles. Additionally, the damage evolution process of the rubber composite is related to
the maximum strain in the entire time history. In other words, if the current strain exceeds
the maximum strain in the entire time history, further damage will occur. Subsequently,
Horgan et al. [9] and Beatty et al. [28] reported that the stress-softening material has a
memory effect on maximum deformation history. Göktepe et al. [22] and Miehe et al. [29]
regarded the microstructure of rubber composites as being constructed by crosslink-to-
crosslink (CC) networks and particle-to-particle (PP) networks. The stress-softening effect
is mainly caused by a breakdown of bonds between chains and filler particles, and an
anisotropic constitutive model for the description of the Mullins effect is proposed based on
the non-affine micro-sphere model of rubber elasticity. Dargazany et al. [7] claimed that the
inelastic behavior of the CC networks was negligible compared to the PP network, and the
changes in the network structure included the aggregate-polymer debonding and network
rearrangement during the loading process of rubber composites. Thus, a micromechanical
network evolution theory was proposed to describe the damage mechanism of the internal
network during the loading–unloading process based on the energy dissipation of the
debonding chain and the orientation change of the chain distribution between the aggre-
gates. According to the physical explanation of network rearrangement, Ayoub et al. [30]
proposed a new network alteration theory to establish the relationship among the number
of chain segments, chain density, and damage variables so as to characterize the stress-
softening effect of rubber composite under large deformation. Zhu et al. [26] proposed the
evolution laws of the network structure parameters for rubber composites by combining
the micro-sphere model with the network alteration theory [12]. They analyzed the phys-
ical mechanism of the stress-softening effect of the rubber composites. Zhong et al. [25]
proposed a quantitative model to characterize the anisotropic stress-softening effect of
soft materials caused by the damage inhomogeneity during deformation. Although the
micromechanical theory provides a reasonable physical explanation for the stress-softening
effect, it is still difficult to describe the stress-softening effect of rubber composites accu-
rately due to the complexity of the mechanical behaviors, such as the large deformation,
nonlinear behavior, and viscoelasticity, etc.

The phenomenological theoretical model provides an appropriate way to investigate
the stress-softening effect, even if there is no reasonable physical explanation for the phe-
nomenological parameters. The phenomenological theoretical model does not specifically
focus on the changes in the internal network structure of rubber composites but introduces
some internal variable parameters, such as the damage variable, to describe the damage
to the internal chain and microstructure and microcavity formation of rubber composites.
In the phenomenological theoretical model proposed by Mullins et al. [1,31], the rubber
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composite was assumed to have a soft phase and a hard phase. Most of the strain occurs
in the soft phase during deformation, but the proportion of the hard phase decreases con-
tinuously and transforms into the soft phase when the current stress exceeds the previous
maximum stress. The stress-softening effect could be interpreted as the external manifesta-
tion of the internal damage of the rubber composite during the cyclic loading–unloading
process. To this end, Lu et al. [32] introduced a rheological model considering the damage
effects to characterize the stress-softening effect of soft materials. As for damage evolution,
Simo [33] used the equivalent strain defined by the previous maximum strain energy to
describe the damage evolution of rubber composites. In the last two decades, the most
widely used phenomenological theoretical model is the pseudo-elasticity theory proposed
by Dorfmann et al. [6]. In this theory, two internal variables are introduced to character-
ize the stress-softening effect and the residual deformation effect of rubber composites,
respectively. Due to its excellent agreement with experimental results, the pseudo-elasticity
theory has been embedded into the commercial finite element software Abaqus [34]. Based
on the pseudo-elasticity theory, Dorfmann et al. [35] established the evolution law of
the dissipation function and relaxation variables in the loading–unloading process and
further deduced the stress response during loading, partial unloading, and reloading of
the rubber composites. However, this model is only suitable for the case of no residual
deformation, and the complexity of the dissipation function increases with the increase
of loading–unloading order. Fazekas et al. [36,37] pointed out that the difference between
loading response and unloading response in the presence of residual deformation was
mainly caused by the Mullins effect and viscoelastic effect, so a hyper-visco-pseudoelastic
model was established by combining the pseudoelastic theory with the viscoelastic theory.

In conclusion, it can be found that the existing theoretical models are mainly used to
characterize the stress-softening effect of the single loading–unloading process. However,
there are few studies focusing on the stress-softening effect during cyclic loading–unloading
processes with a fixed stretch amplitude, and the mechanical response changes caused by
the cyclic loading are not taken into account. In this paper, the concept of strain energy
evolution function is proposed, and a hyper-pseudoelastic model with cyclic loading–
unloading order N is established. Thus, the nominal stress–stretch curve corresponding
to different loading–unloading orders is characterized quantitatively. The research results
have important guiding significance for the durability of rubber composites. The rest of
the paper is organized as follows: in Section 2, the basic laws of stress-softening effect are
revealed based on the cyclic loading–unloading experiments. Then, the phenomenological
hyper-pseudoelastic model is established in Section 3. Furthermore, the application of the
hyper-pseudoelastic model, including the model validation and parameter calibration, is
presented in Section 4. Finally, several important conclusions are drawn in Section 5.

2. Basic Laws of Stress-Softening Effect

The nominal stress–stretch curves of 1 phr (by volume), 20 phr, and 60 phr filled
rubber composites are tested by Dorfmann et al. [6] during loading–unloading cyclic at
the temperature of 25 ◦C, the strain rate of 0.02 s−1.The cross-sectional dimension of the
specimen is 2 × 4 mm in the initial state. The specimen was subjected to cyclic loading–
unloading with constant strain amplitude and the maximum principal stretch λ = 3. Since
the nominal stress–stretch curves after the fifth loading–unloading cycle are essentially
repeatable with negligible additional stress softening and residual deformation, only the
nominal stress–stretch curves for the first five loading–unloading cycles are plotted here.
Compared with the 20 phr and 60 phr filled rubber composites, the stress-softening effect
of 1 phr filled rubber composite is negligible. In order to demonstrate the basic laws of the
stress-softening effect under different loading–unloading orders, the experimental results
corresponding to the 20 phr and 60 phr filled rubber composites are taken here, as shown
in Figure 1. From the detailed observation of Figure 1, some basic laws are summarized
as follows:
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(1) The area enclosed by the loading–unloading curve gradually decreases with the
increase of the cyclic loading–unloading order.

(2) In the presence of residual deformation, a negative load must be applied to completely
restore the rubber composites to a non-deformed state; that is, the unloading nominal
stress is less than 0 when the principal stretch λ equals 1. In addition, the residual
deformation increases with the increase of the loading–unloading order, and the
residual deformation of the rubber composites mainly occurs during the first loading–
unloading process.

(3) The nominal stress difference corresponding to the previous loading–unloading curve
is greater than that corresponding to the subsequent loading–unloading curve under
the same stretch, which actually confirms the basic law (1).

(4) The previous loading curves are always above the subsequent loading curves, and
the unloading curves also have the same feature. And there is an intersection point
between the previous unloading curve and the subsequent loading curve.

(5) When the maximum stretch amplitude remains unchanged, the stress-softening effect
corresponding to the first loading–unloading process is the most obvious. After sev-
eral loading–unloading, the stress response tends to be stable. A similar phenomenon
was also observed by Dorfmann et al. [18], Simo [33], and Sasso et al. [38].

(6) Compared with 20 phr filled rubber composite, 60 phr filled rubber composite has a
more obvious stress-softening effect, which indicates that the stress-softening effect is
more significant with the increase of filler content in rubber composites.

3. Hyper-Pseudoelastic Model of Cyclic Stress-Softening Effect

The nominal stress–stretch curve of the rubber composite for the first two cycles
is presented, as shown in Figure 2. It can be observed from Figure 2 that the rubber
composite cannot recover to its initial state after unloading. In addition, both the first
and second cycles exhibit stress-softening effects, but the theoretical models used to de-
scribe the stress-softening effects in these two cycles differ. The stress-softening effect
during the first loading–unloading is mainly attributed to pseudoelasticity, while the
stress-softening effect during the second loading–unloading is influenced not only by
pseudoelasticity but also by the evolution of strain energy. It is necessary to establish a new
hyper-pseudoelastic model to investigate the stress-softening effect of rubber composite
during cyclic loading–unloading.

Dorfmann–Ogden model [6] introduced two internal variables η1, η2 into the hyperelas-
tic strain energy model to characterize the stress-softening effect and residual deformation
during loading–unloading process, which could characterize the stress-softening effect of
rubber composites during single loading–unloading process well. But this model could
not characterize the cyclic loading–unloading characteristics of rubber composites. A large
number of experimental results show that there are differences in the mechanical properties
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of rubber composites not only in the loading process and unloading process but also in
different loading–unloading orders. For this purpose, the strain energy evolution function
ϕ(N, λ1, λ2, λ3) considering the loading–unloading order N is introduced into Dorfmann–
Ogden model to investigate the cyclic stress-softening effect of rubber composites. The
rubber composites are regarded as incompressible and isotropic, and the specific form of
strain energy function WN(N, λ1, λ2, λ3, η1, η2) in the cyclic loading–unloading process is
given as follows:

WN(N, λ1, λ2, λ3, η1, η2) = W(λ1, λ2, λ3, η1, η2)ϕ(N, λ1, λ2, λ3)

= [η1W0(λ1, λ2, λ3) + (1− η2)R(λ1, λ2, λ3) + φ1(η1) + φ2(η2)]ϕ(N, λ1, λ2, λ3)
(1)

where (λ1, λ2, λ3) are the principal stretches of rubber composite. For incompressible
rubber composite, λ1λ2λ3 = 1. W0(λ1, λ2, λ3) is the original strain energy function of
rubber composite. η1 = η2 = 1 in the loading process and η1, η2 depend on (λ1, λ2, λ3)
during the unloading process. R(λ1, λ2, λ3) is used to characterize the residual deformation
effect and φ1(η1), φ2(η2) denote the dissipation function. N is the loading–unloading order.
The value range of strain energy evolution function is 0 < ϕ(N, λ1, λ2, λ3) ≤ 1. In a sense,
the strain energy evolution function is equal to (1-D), and D represents the damage variable
in the continuum of damage mechanics.
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According to the explanation proposed by Ogden et al. [39,40], the non-recoverable
dissipation energy is equal to the area enclosed by the loading curve and unloading curve,
which may be interpreted as a measure of the energy required to cause the damage in
the rubber composite. Based on the principle of energy conservation, the non-recoverable
dissipation energy of rubber composite during the previous N-1 loading–unloading process
can be expressed as the following form:

Wdiss(N − 1) = H(N)
N−1

∑
i=1

W(λi
1r, λi

2r, λi
3r, ηi

1r, ηi
2r)ϕ(i, λi

1r, λi
2r, λi

3r) (2)

where
(
λi

1r, λi
2r, λi

3r
)

represent the residual principal stretch, and ηi
1r, ηi

2r are the corresponding
internal variables during the i-th unloading process. H(N) has the following form:

H(N) =

{
1, N > 1
0, N = 1

(3)
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For the uniaxial loading state, λ2 = λ3 = λ
− 1

2
1 can be carried out by the incompressible

characteristics of rubber composite, Equations (1) and (2) can be expressed as follows:

WN(N, λ, η1, η2) = W(λ, η1, η2)ϕ(N, λ)

= [η1W0(λ) + (1− η2)R(λ) + φ1(η1) + φ2(η2)]ϕ(N, λ)

Wdiss(N − 1) = H(N)
N−1
∑

i=1
W(λi

r, ηi
1r, ηi

2r)ϕ(i, λi
r)

(4)

3.1. No Residual Deformation Effect

It is assumed here that the rubber composites do not have any residual deformation
after complete unloading. Although there is usually more or less residual deformation after
unloading for most rubber composites, the stress-softening effect of rubber composites can
be better evaluated without considering the residual deformation effect, and it can provide
a basis for the investigation of the residual deformation effect. According to the pseudo-
elasticity theory [6,12–14], η1 is a monotonically increasing function of λ, and ηi

1r = ηi
1min

when the principal stretch λi
r = 1 after the i-th unloading. Based on Equation (4), the

strain energy function and the dissipation energy under uniaxial cyclic loading–unloading
without residual deformation can be obtained as follows:

WN(N, λ, η1) = [η1W0(λ) + φ1(η1)]ϕ(N, λ)

Wdiss(N − 1, 1, ηi
1min) = H(N)

N−1
∑

i=1

[
ηi

1minW0(1) + φ1(η
i
1min)

]
ϕ(i, 1)

(5)

Because η1 = 1 and φ1(1) = 0 in the loading process, the nominal stress tN
L can be

obtained in the following form:

tN
L =

∂WN(N, λ, 1)
∂λ

= t0 ϕ(N, λ) + W0(λ)
∂ϕ(N, λ)

∂λ
(6)

The nominal stress tN
U in the unloading process has the following form:

tN
U =

∂WN(N, λ, η1)

∂λ
= η1t0 ϕ(N, λ) + [η1W0(λ) + φ1(η1)]

∂ϕ(N, λ)

∂λ
(7)

Since the nominal stress is 0 after complete unloading (λ = 1), the nominal stress in
the whole loading–unloading process must satisfy tN

L ≥ tN
U ≥ 0. According to Equations (6)

and (7), tN
L and tN

U must satisfy the following:

tN
L − tN

U = (1− η1)t0 ϕ(N, λ) + [W0(λ)− (η1W0(λ) + φ1(η1))]
∂ϕ(N,λ)

∂λ ≥ 0

tN
U = η1t0 ϕ(N, λ) + [η1W0(λ) + φ1(η1)]

∂ϕ(N,λ)
∂λ ≥ 0

(8)

According to the pseudo-elasticity theory [6,12–14], η1 and φ1(η1) have the following
forms, respectively:

η1 = 1− 1
r

tanh
[

Wm −W0(λ)

µm

]
(9)

φ1(η1) = −µm(η1 − 1)tanh−1[r(η1 − 1)]−Wm(η1 − 1)− µm
2r

ln
[
1− r2(η1 − 1)2

]
(10)

Here, r and m are dimensionless positive pseudoelastic material parameters and µ
denotes the shear modulus of the rubber composite in initial configuration. Wm = W0(λm)
represents the maximum strain energy during the loading process, where λm denotes the
maximum principal stretch.

Because 0 < ϕ(N, λ) ≤ 1, and

W0(λ)− (η1W0(λ) + φ1(η1)) =
µm
2r

ln
[
1− r2(η1 − 1)2

]
< 0 (11)
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According to Equation (8), ϕ(N, λ) must satisfy

−η1t0

η1W0(λ) + φ1(η1)
≤ ∂ϕ(N, λ)

∂λ
/ϕ(N, λ) ≤ −(1− η1)t0

W0(λ)− [η1W0(λ) + φ1(η1)]
(12)

Since ∂ϕ(N,λ)
∂λ

/
ϕ(N, λ) is either a constant or a function of N. And[

−η1t0 ϕ(N, λ)

η1W0(λ) + φ1(η1)

]
max

=

[
−(1− η1)t0 ϕ(N, λ)

[W0(λ)− (η1W0(λ) + φ1(η1))]

]
min

= 0 (13)

Therefore, in the case of no residual deformation, in order for Equation (12) to be
satisfied under arbitrary loading–unloading order and arbitrary principal stretch, the
following constraints must be satisfied:

∂ϕ(N, λ)

∂λ
= 0 (14)

Thus, the following formula can be obtained:

ϕ(N, λ) = ϕ(N) (15)

According to Equation (5)2, the dissipation energy in the first loading–unloading
process is:

W1
diss = WN(1, 1, η1

1min) =
[
η1minW0(1) + φ1(η

1
1min)

]
ϕ(1) = φ1(η

1
1min) (16)

Since η1 is positively related to the principal stretch λ, η1
1min is the internal variable

value at λ = 1. Similarly, the dissipation energy WN
diss generated during the N-th loading–

unloading process is

WN
diss = WN(N, 1, ηN

1min) = φ1(η
N
1min)ϕ(N) (17)

According to the basic law (1), there is the following relationship:

φ1(η
N
1min)ϕ(N) > φ1(η

N+1
1min)ϕ(N + 1) (18)

Since there is no residual deformation after the rubber composite is completely un-
loaded, ηN

1min = ηN+1
1min, φ1(η

N
1min) = φ1(η

N+1
1min). Then, the following property of strain

energy evolution function can be obtained:

ϕ(N) > ϕ(N + 1) (19)

As shown in the above equation, ϕ(N) a monotonically decreasing function with the
loading–unloading order N.

Basic law (3) summarizes the relationship of nominal stress during the cyclic loading–
unloading process. According to Equations (6) and (7), it can be known:

∆tN = tN
L − tN

U = (1− η1)t0 ϕ(N)

∆tN+1 = tN+1
L − tN+1

U = (1− η1)t0 ϕ(N + 1)
(20)

According to Equation (19), ∆tN ≥ ∆tN+1 is always satisfied under any principal
stretch. It can be found that as long as the basic law (3) is satisfied, the basic law (1) can be
deduced. Similarly, tN

L > tN+1
L , tN

U > tN+1
U can be further deduced.

To satisfy the above requirements, an exponential expression is chosen to represent ϕ(N):

ϕ(N) = 1−
n

∑
i=1

gi(1− e
1−N

Ai ) (21)

where gi and Ai are dimensionless positive material parameters. The value range of gi
is (0,1].
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It can be seen from basic law (4) that there is an intersection point between the
subsequent loading curve and the previous unloading curve, that is, when λ = λN

e ,
tN
U = tN+1

L . λN
e can be obtained by solving the following equation:

η1(λ
N
e )ϕ(N) = ϕ(N + 1) (22)

3.2. Residual Deformation Effect

As described in basic law (2), in order to fully restore the rubber composite to a non-
deformation state, a negative load must be applied in the presence of residual deformation.
Here, η2 and φ2(η2) are introduced into the strain energy function to describe the residual
deformation effect. Because of the existence of residual deformation, the initial stretch of the
subsequent loading is the residual stretch of the previous unloading, which will affect the
mechanical characteristics of the subsequent loading–unloading. Therefore, it is necessary
to consider the influence of the previous residual stretch on the strain energy function of the
subsequent loading–unloading process. Thus, the strain energy function and dissipation
energy Wdiss during the cyclic loading–unloading process are given as follows:

WN(N, λ, ηN
1 , ηN

2 ) =
[
ηN

1 W0(λ− λN−1
r + 1) + (1− ηN

2 )R(λ− λN−1
r + 1) + φ1(η

N
1 ) + φ2(η

N
2 )
]
ϕ(N, λ− λN−1

r + 1)

Wdiss(N − 1) = H(N)
N−1
∑

i=1

[
ηi

1rW0(λ
i
r − λi−1

r + 1) + (1− ηi
2r)R(λi

r − λi−1
r + 1) + φ1(η

i
1r) + φ2(η

i
2r)
]

ϕ(i, λi
r − λi−1

r + 1)
(23)

Here, λi
r represents the residual principal stretch of i-th unloading. Here, the ini-

tial state is still considered the reference state. Since the subsequent loading process is
performed on the basis of λi

r, the relative principal stretch λN
R of the subsequent loading–

unloading process is given by

λN
R = λ− λN−1

r + 1 (24)

which means that the principal stretch of the subsequent loading–unloading process needs
to consider the residual principal stretch after the previous unloading. Because the λN

R is
related to the previous loading–unloading processes, a Matlab code is written to calculate
λN

R for arbitrary loading–unloading process. The residual principal stretch λN−1
r is reflected

through the relative principal stretch λN
R in ηN

1 and ηN
2 . Thus, ηN

1 and φ1(η
N
1 ) specialize to

ηN
1 = 1− 1

r
tanh

[
WN

m −W0(λ
N
R )

µm

]
(25)

φ1(η
N
1 ) = −µm(ηN

1 − 1)tanh−1
[
r(ηN

1 − 1)
]
−WN

m (ηN
1 − 1)− µm

2r
ln
[
1− r2(ηN

1 − 1)
2]

(26)

where WN
m = W0(λ

N
Rm). λN

Rm = λm − λN−1
r + 1 represents the maximum relative principal

stretch.
As WN

m > WN+1
m , λN

r > λN−1
r , the residual principal stretch increases with the increase

of loading–unloading order.
According to the pseudo-elasticity theory [6,12–14], the specific forms of η2 and φ2(η2)

are as follows:

ηN
2 = tan h

(W0(λ
N
R )

WN
m

)a+b∗WN
m /µ

/tanh(1) (27)

φ2
′(ηN

2 ) = R(λN
R ) (28)

where a and b are the material parameters.
Since it is difficult to obtain an explicit expression for φ2(η

N
2 ), we use numerical

integration to compute φ2(η
N
2 ) with φ2(1) = 0.

Due to η1 = η2 = 1 and φ1(1) = φ2(1) = 0 in the loading process, the corresponding
nominal stress tN

L has the following form:
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tN
L =

∂WN(N, λ, 1, 1)
∂λ

= t0(λ
N
R )ϕ(N, λN

R ) + W0(λ
N
R )

∂ϕ(N, λN
R )

∂λ
(29)

The nominal stress tN
U in the unloading process has the following form:

tN
U =

∂WN(N,λ,ηN
1 ,ηN

2 )
∂λ

=
[
ηN

1 t0(λ
N
R ) + (1− ηN

2 )R′(λN
R )
]
ϕ(N, λN

R ) +
[
ηN

1 W0(λ
N
R ) + (1− ηN

2 )R(λN
R ) + φ1(η

N
1 ) + φ2(η

N
2 )
] ∂ϕ(N,λN

R )
∂λ

(30)

Because tN
L ≥ tN

U , the following constraint must be satisfied:[
t0(λ

N
R )−

[
ηN

1 t0(λ
N
R ) + (1− ηN

2 )R′(λN
R )
]]

ϕ(N, λN
R ) ≥

−
[
W0(λ

N
R )−

[
ηN

1 W0(λ
N
R ) + (1− ηN

2 )R(λN
R ) + φ1(η

N
1 ) + φ2(η

N
2 )
]] ∂ϕ(N,λN

R )
∂λ

(31)

In the above formula,

W0(λ
N
R )−

[
ηN

1 W0(λ
N
R ) + (1− ηN

2 )R(λN
R ) + φ1(η

N
1 ) + φ2(η

N
2 )
]
≤ 0 (32)

Here, the equal sign is taken when λN
R = λN

Rm. When λN−1
r ≤ λ < λm, the following

inequalities need to be satisfied:

∂ϕ(N, λN
R )

∂λ

/
ϕ(N, λN

R ) < −
t0(λ

N
R )−

[
ηN

1 t0(λ
N
R ) + (1− ηN

2 )R′(λN
R )
]

W0(λ
N
R )−

[
ηN

1 W0(λ
N
R ) + (1− ηN

2 )R(λN
R ) + φ1(η

N
1 ) + φ2(η

N
2 )
] (33)

In addition, tN
L ≥ 0 when λN−1

r ≤ λ < λm, the equal sign is taken when λ = λN−1
r ,

so that
∂ϕ(N, λN

R )

∂λ

/
ϕ(N, λN

R ) ≥ −
t0(λ

N
R )

W0(λ
N
R )

(34)

Combined with Equations (33) and (34), the constraints of the ϕ(N, λN
R ) are

−
t0(λ

N
R )

W0(λ
N
R )
≤

∂ϕ(N, λN
R )

∂λ

/
ϕ(N, λN

R ) < −
t0(λ

N
R )−

[
ηN

1 t0(λ
N
R ) + (1− ηN

2 )R′(λN
R )
]

W0(λ
N
R )−

[
ηN

1 W0(λ
N
R ) + (1− ηN

2 )R(λN
R ) + φ1(η

N
1 ) + φ2(η

N
2 )
] (35)

4. Results and Discussion

The Ogden model [41,42] is used to characterize the hyperelastic properties of rubber
composites, and the specific form is as follows:

W0(λ1, λ2, λ3) =
J

∑
j=1

µj

αj
(λ

αj
1 + λ

αj
2 + λ

αj
3 − 3) (36)

where µj, αj are the phenomenological hyperelastic material parameters, which is obtained

by fitting the first loading curve. For uniaxial loading, λ2 = λ3 = λ
− 1

2
1 , the above strain

energy function becomes

W0(λ) =
J

∑
j=1

µj

αj
(λαj + 2λ−αj/2 − 3) (37)

According to the above formula, the nominal stress under uniaxial loading can
be obtained:

t0 =
J

∑
j=1

µj(λ
αj−1 − λ−αj/2−1) (38)
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where µj, αj can be determined by the initial loading curve. The hyperelastic material
parameters µj, αj corresponding to 20 phr and 60 phr filled rubber composites are listed in

Table 1, where J = 3. The initial shear modulus µ = 0.5
J

∑
j=1

µjαj.

Table 1. The material parameters of 20 phr and 60 phr filled rubber composites.

20 phr

Hyperelastic material parameters

µ1(MPa) α1 µ2(MPa) α2 µ3(MPa) α3
0.05 4.221 −0.815 −0.156 −0.286 −4.63

Pseudoelastic material parameters

ν1(MPa) ν2(MPa) r m a b
0.491 0.596 0.963 0.753 0.438 1.952

60 phr

Hyperelastic material parameters

µ1(MPa) α1 µ2(MPa) α2 µ3(MPa) α3
−1.528 −1.011 0.223 4.205 −1.134 × 10−3 −4.399

Pseudoelastic material parameters

ν1(MPa) ν2(MPa) r m a b
0.354 0.496 1.25 0.965 0.3 0.16

Dorfmann et al. [6] suggested the modified neo-Hookean model to represent the
specific expression of R(λ1, λ2, λ3):

R(λ1, λ2, λ3) = 0.5
[
ν1(λ

2
1 − 1) + ν2(λ

2
2 − 1) + ν3(λ

2
3 − 1)

]
(39)

For uniaxial loading, the above expression becomes

R(λ) = 0.5
[
ν1(λ

2 − 1) + 2ν2(λ
−1 − 1)

]
(40)

where ν2 = (ν2 + ν3)/2.
ν1, ν2, r, m, and a, b are the pseudoelastic material parameters, which can be deter-

mined by the initial unloading curve. The fitting process for hyperelastic and pseudoelastic
material parameters is as follows: first, Equation (38) is used to fit the first loading curve to
calibrate the hyperelastic material parameters. Then, with the hyperelastic material parame-
ters fixed, Equation (30) is used to fit the first unloading curve to calibrate the pseudoelastic
material parameters. Finally, based on the fitting results of the two steps mentioned above,
the initial values of the hyperelastic and pseudoelastic material parameters are set, and
these material parameters are fine-tuned. The hyperelastic and pseudoelastic material
parameters of 20 phr and 60 phr filled rubber composites are listed in Table 1.

Combined with Equations (36)–(40), the cyclic loading–unloading characteristics of
rubber composites in the presence or absence of residual deformation effect can be carried
out according to the hyper-pseudoelastic model.

4.1. No Residual Deformation Effect

According to the theoretical model presented in Section 3.1, Equation (21) is used to
describe the cyclic loading–unloading characteristics of rubber composites without residual
deformation. Here, n = 1 to simplify the complexity of parameter analysis, Equation (21)
becomes the following form:

ϕ(N) = 1− g(1− e
1−N

A ) (41)

Here, the influences of A and g on the stress-softening effect are discussed. The
hyperelastic and pseudoelastic material parameters of 60 phr filled rubber composite are
used in this section. Figure 3 shows the nominal stress–stretch curves corresponding
to different A and g. It can be found from Figure 3a,c,e that the larger g means that
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more cyclic loading–unloading times are needed to reach a stable stress state and a larger
reduction in the maximum stress. When g is fixed, the larger A means that more cyclic
loading–unloading times are also needed to reach a stable stress state. But the stress–stretch
curves shown in Figure 3b,d,f are only slightly different. Therefore, g mainly controls the
stress-softening effect of rubber composites, while A mainly plays a role in fine-tuning the
stress–stretch curve. In addition, the area enclosed by the loading curve and unloading
curve represents the dissipation energy during the loading–unloading process. In order
to compare the effects of g and A on the dissipation energy, Figure 4 illustrates the ratio
of the dissipated energy in the subsequent loading cycle to that in the first loading cycle
corresponding to different g and A. It can be found that the dissipation energy decreases
the most, reaching 78.5% when g = 0.8, A = 1. And the dissipation energy is larger when g
is smaller, or A is larger corresponding to the same loading–unloading order.

4.2. Residual Deformation Effect

Based on the theoretical model in Section 3.2 and the experimental results shown in
Figure 1, this section will conduct the parameter calibration and the deduction of specific
expression of strain energy function considering the residual deformation effect. According
to the research results in Section 3.1, the strain energy evolution function considering the
influence of residual deformation is given in the following form:

ϕ(N, λN
R ) =

[
1− g(1− e

1−N
A )
]
× eβ(λN

R ) (42)
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Figure 3. The stress–stretch curves corresponding to different A and g. (a) g = 0.2, A = 1,
(b) g = 0.5, A = 0.8, (c) g = 0.4, A = 1, (d) g = 0.5, A = 1.2, (e) g = 0.8, A = 1, (f) g = 0.5, A = 2.
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Figure 4. The area changes of loading–unloading curves corresponding to different A and g. (a) Dif-
ferent g, (b) Different A.

In order to satisfy the constraints of Equation (35) and the value range of the strain
energy evolution function, β(λN

R ) must satisfy the following constraints:[
−

t0(λ
N
R )

W0(λ
N
R )

]
max

≤
dβ(λN

R )

dλN
R

<

[
−

t0(λ
N
R )−

[
ηN

1 t0(λ
N
R ) + (1− ηN

2 )R′(λN
R )
]

W0(λ
N
R )−

[
ηN

1 W0(λ
N
R ) + (1− ηN

2 )R(λN
R ) + φ1(η

N
1 ) + φ2(η

N
2 )
]]

min

(43)

β(λN
R ) < − ln

[
1− g(1− e−

1
A )
]

(44)

The specific expression form of β(λN
R ) needs to be determined according to the nominal

stress–stretch curve of the rubber composite. The specific expression form of β(λN
R ) will

be complicated when the nominal stress–stretch curve is complex or when the nonlinear
properties of the loading nominal stress–stretch curve and the unloading nominal stress–
stretch curve are quite different. Additionally, it can be seen from Equations (29) and (30)
that the unloading stress formula naturally has stronger nonlinear characteristics than the
loading stress formula. Therefore, a more complicated expression of β(λN

R ) is required when
describing loading nominal stress–stretch curve, while a more concise form can be chosen
to describe unloading nominal stress–stretch curve. Here, β(λN

R ) is given as the following
form:

β(λN
R ) =

[
k1 + k2(1 + sign(λ′NR ))(k3(λ

N
Rm − λN

R )
3
+ k4(λ

N
Rm − λN

R )
2
)
]
×[

k5(λ
N
R )

4
+ k6(λ

N
R )

3
+ k7(λ

N
R )

2
+ k8λN

R + k9

] (45)
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where ki, i = 1, 2 . . . 9 are the material parameters of strain energy evolution function,
which are determined by fitting the cyclic loading–unloading experimental curve. sign()
denotes the signum function, which is used to distinguish between the loading process and

unloading process. λ′NR =
dλN

R
dt represents the derivative of the relative principal stretch

with respect to time, which is positive during the loading process and negative during the
unloading process. It is worth mentioning that its specific form of β(λN

R ) is not fixed, and it
can be chosen according to the mechanical behavior of rubber composites. The selection
principle for β(λN

R ) is mainly as follows: firstly, it should ensure that β(λN
R ) can accurately

describe the nonlinearity of the loading–unloading curve, while minimizing the complexity
of the β(λN

R ) and reducing the number of fitting parameters as much as possible. Secondly,

it should ensure the continuity of both β(λN
R ) and its derivative dβ(λN

R )

dλN
R

at the maximum

stretch λN
Rm. Thirdly, β(λN

R ) must satisfy Equations (43) and (44).
Figure 1 records the cyclic loading–unloading mechanical behavior of 20 phr and

60 phr filled rubber composites, which are used for parameters calibration and model
verification. Here, the first three loading–unloading curves are used to determine the
above material parameters, and the last two loading–unloading curves are used to verify
the hyper-pseudoelastic model. The calibration process of material parameters is as fol-
lows: First, only the unloading nominal stress–stretch curve is fitted using Equation (30);
the values of k2, k3, k4 can be given arbitrarily and fixed so that the material parameters
k1, k5, k6, k7, k8, k9, g, A can be obtained. Then, fix the parameters k1, k5, k6, k7, k8, k9, g, A
obtained in the first step. The material parameters k2, k3, k4 can be obtained by fitting the
loading nominal stress–stretch curve using Equation (29). Finally, set the initial value of
material parameters based on the fitting results of the above two steps, and fine-tune those
material parameters. Figure 5 shows the calculation diagram of optimization objectives
during the parameter fitting. Here, the calculated results of the cyclic loading–unloading
curve are computed at each optimization and compared with the experimental results. The
following formula is used to estimate the relative error between calculated results and
experimental results and serves as the optimization objective value during the fitting pro-
cess. The Matlab code is written to realize the above fitting process, in which the constraint
conditions of Equations (43) and (44) are incorporated into the Matlab code to ensure that
the β(λN

R ) always satisfy Equations (43) and (44). The interior-point algorithm [43] is used
to minimize the optimization objective value.

Error =
K

∑
i=1

(
abs

(
texp
i − tcal

i

texp
i

))
(46)

where K is the number of experimental data points and texp
i , tcal

i are the experimental and
calculated stress at the same stretch, respectively.

Figures 6 and 7 show the comparison of experimental and theoretical results of 20 phr
and 60 phr filled rubber composites, respectively. Figures 6a and 7a show the experimental
results and fitting results of the first three loading–unloading curves of 20 phr and 60 phr
filled rubber composites. Thus, the material parameters g, A and ki, i = 1, 2 . . . 9 can be
determined, as shown in Table 2. The 4th and 5th loading–unloading curves are drawn
using the above theoretical formula, and the comparison with the experimental results are
drawn in Figure 6b,c and Figure 7b,c, respectively. It can be seen from Figures 6b,c and
7b,c that the model is capable of predicting the stress softening behavior of subsequent
loading–unloading cycles by means of the fitting parameters of the first three cycles, which
proves that the hyper-pseudoelastic model can effectively characterize the cyclic loading–
unloading characteristics of rubber composites with residual deformation, and has good
applicability for rubber composites with different filler contents.
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Table 2. The material parameters of strain energy evolution function for 20 phr and 60 phr filled
rubber composites.

20 phr

g A k1 k2 k3 k4
0.466 0.343 −0.011 0.028 −0.085 −0.136

k5 k6 k7 k8 k9
0.468 −0.526 −7.003 2.46 −0.375

60 phr

g A k1 k2 k3 k4
0.34 1.33 −0.08 0.104 −0.173 0.375

k5 k6 k7 k8 k9
0 0.479 −3.688 5.479 8.99

5. Conclusions

In this paper, a hyper-pseudoelastic model is developed to characterize the cyclic
stress-softening effect of rubber composites based on the pseudo-elasticity theory. In
addition, the cyclic stress-softening effects of rubber composites in the presence or absence
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of residual deformation effects are discussed. The specific conclusions are summarized
as follows:

(1) A detailed analysis of the cyclic loading–unloading experimental results of rubber
composites has been carried out. The basic laws of stress-softening effect are sum-
marized to guide the derivation of the hyper-pseudoelastic model. It can be found
that the stress-softening effect and residual deformation of rubber composites corre-
sponding to different loading–unloading orders are different, especially the nominal
stress–stretch curves of initial loading–unloading and subsequent loading–unloading
are significantly different.

(2) The hyper-pseudoelastic model in the cyclic loading–unloading process is proposed,
in which a strain energy evolution function similar to (1-D) in continuum damage
mechanics is introduced to characterize the cyclic stress-softening effect. The specific
expressions of the strain energy evolution function with or without residual defor-
mation effect are given, and the constraints that the strain energy evolution function
needs to satisfy are also obtained based on the basic laws of the stress-softening effect.
The hyper-pseudoelastic model establishes the theoretical relationship between strain
energy and cyclic loading–unloading order directly, which provides great convenience
in deriving the stress response corresponding to arbitrary loading–unloading order.

(3) The influences of the material parameters on the cyclic loading–unloading curve
are discussed. The research results show that g mainly controls the degree of stress
softening of rubber composites, while A mainly plays a role in fine-tuning the stress–
stretch curve. Additionally, the dissipation energy is larger when g is smaller, or A is
larger corresponding to the same loading–unloading order.

(4) Based on the nominal stress–stretch experimental results of cyclic loading–unloading
processes, the calibration method of material parameters and specific expression
of strain energy evolution function with residual deformation effect are obtained.
Further, the hyper-pseudoelastic model is verified by comparing the theoretical results
with experimental results. The proposed model can predict the cyclic stress-softening
effect of rubber composites with different filler contents effectively.
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