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Hugoniostat Transient Evolution 

 In this section, we present the transient Hugoniostat data for all systems (SCPE44, 

SCPE81, CPE) and all shock conditions. These data are heat plots of shear stress (τ), the nematic 

order parameter (p2), and the orientational order parameter (Sz); all heat plots show the selected 

variable as a function of elapsed time since the start of the Hugoniostat simulation and the position 

along the z-axis, along which the compression is applied. The data shown are averages among 

trajectories from the ten different starting configurations, applied in the following procedure: (1) 

the average length of all systems along the z-axis was computed. (2) for each individual system, 

atomic z-coordinates were scaled to relative z coordinates ranging from 0 to 1 along the system 

length. (3) per-UA data from each starting configuration were then binned and averaged into 500 

equally-sized intervals along the scaled z-coordinate. (4) these binned data were further averaged 

among the ten different configurational seeds. (5) the scaled z-coordinates for the averaged data 

were multiplied by the average z-length of all systems to display the data in distance units. This 



procedure was done independently for each timestep of the simulation. After step (1), it was 

verified that the systems did not show large deviations in z-length among the different starting 

configurations. The greatest value observed for the standard deviation of z-lengths divided by the 

mean was 1.5% among all systems, pressures, and time points. 

 Figure S1 shows a heat plot of the shear stress of the systems. The magnitude of the shear 

stress is only significantly greater than zero for the crystalline regions before they reduce their 

volume due to the crystallographic slip + compression mechanism. Figure S2 and Figure S3 show 

heat plots of the nematic and orientational order parameters of the systems, respectively. 



Shear Stress 

Figure S1. Contour plots of shear stress, τ, as a function of time and position along the 

compression axis. 



Nematic Order 

Figure S2. Contour plots of p2 as a function of time and position along the compression axis. 



Orientational Order 

Figure S3. Contour plots of Sz as a function of time and position along the compression axis. 

Evaluation of Clustering Methods by Silhouette Scores 

In this section, mean Silhouette scores [1,2] are used to evaluate the quality of fuzzy c-

means (FCM) clustering [3] applied to united atom (UA) simulation data. A per-UA Silhouette 

score, s, is close to 1 for UAs close to their assigned cluster, 0 for UAs that exist near the boundaries 

between clusters, and –1 for UAs that are very close to a cluster different from its assigned cluster. 

Here, distance is defined in terms of the normed difference of a per-UA datum from the centroid 

of a given cluster, ‖𝑥! − 𝐶"‖. Negative Silhouette scores indicate either an imperfectly converged 

numerical clustering attempt or a scenario where including the UA would shift the centroid of the 



cluster and increase distances from the centroid, also increasing the FCM objective function. The 

Silhouette metric used in this work is the Fuzzy Silhouette (FS) score proposed by Campello and 

Hruschka [2], which extends the original formulation by Rousseeuw [1] to score fuzzy clustering 

data as opposed to only “hard” clustering methods like k-means. The FS metric is also used here 

for k-means clustering results by assigning membership binarily, i.e., fik = 0 or 1 for all i and k. To 

determine which method of clustering was expected to yield the greatest Silhouette scores, the 

scores were averaged among the ten different configurations used for each system and at pressures 

of 0, 0.5, 1, 5, and 10 GPa. Input data for the Silhouette calculation were all three order parameters 

in addition to all four potential energy contributions, ensuring that a high-scoring clustering was 

able to account for more data than were input to the clustering algorithm. 

The FS results are summarized in Figure S4 – Figure S8. First the FCM results are 

discussed, shown in Figure S4 and Figure S5. Of all the single-variable clusterings, p2 dominated—

meaning, it had greater Silhouette scores for all pressures and SCPE systems. Clustering using {p2, 

Sz} dominated clustering using p2 alone by approximately 4–12%, and this increase was found to 

be statistically significant. In contrast, clustering by all three order parameters did not dominate 

clustering by {p2, Sz} despite increasing the complexity and was thus rejected as a clustering 

method. Clustering by either {p2, v} or {v, Sz} did not dominate clustering by p2 alone, so both 

methods were rejected. Clustering by {p2, Sz} using nk = 2 dominated all methods of clustering 

using nk = 3, implying that two clusters were always sufficient to describe the SCPE systems. Thus, 

clustering by {p2, Sz} with nk = 2 dominated all methods of clustering with a fewer or equal number 

of variables while not being dominated by any other clustering method. Based on the previous 

discussion, the two most promising candidates for sets of clustering variables emerged as {p2} and 

{p2, Sz}. However, it was determined that the marginal improvement in FS scores when including 



Sz was not significant enough to warrant the additional complexity it introduced. Consequently, 

for the sake of clarity and efficiency, we chose to use clustering based solely on p2 for the primary 

focus of this study. 

Results using k-means clustering are shown in Figure S6 and Figure S7. Generally, the FS 

scores for FCM and k-means are comparable, but FCM data tend to have smaller uncertainties. 

FCM is also more appropriate for such SCPE systems because UAs near interfaces can be difficult 

to characterize as strictly crystalline or noncrystalline. For these reasons, we only present results 

from FCM clustering in the main part of this work. 

Silhouette scores cannot be calculated for CPE systems when only a single cluster was 

used; instead, probability distributions of the three order parameters were calculated for CPE 

systems and observed to all be unimodal. Unimodality in and of itself is not conclusive evidence 

that only one population represents the data; however, it is unclear what probability distribution 

should be imposed on a single population of the data to test for the presence of multiple 

populations. Therefore, there is no direct answer in the current work of whether or not the CPE 

systems should be represented with multiple clusters. However, it may be verified from Figure S8 

that increasing the number of clusters for nk = 2, 3, and 4 decreases or barely changes the mean 

Silhouette scores in every case. Thus, the most promising options for clustering CPE seem to be 

nk = 1 or 2. 



Figure S4. Mean FS scores for FCM clustering using nk = 2. Different bar colors 

represent clustering based on different subsets of the order parameters. The variables used to 

cluster for each color are shown in the legend. (a) shows the results for SCPE44 while (b) shows 

the results for SCPE81. Error bars are 3 standard errors from averaging over the 

ten different configurational seeds for each system. 



Figure S5. Mean FS scores for FCM clustering using nk = 3. Different bar colors 

represent clustering based on different subsets of the order parameters. The variables used to 

cluster for each color are shown in the legend. (a) shows the results for SCPE44 while (b) shows 

the results for SCPE81. Error bars are 3 standard errors from averaging over the 

ten different configurational seeds for each system. 



Figure S6. Mean FS scores for k-means clustering using nk = 2. Different bar colors 

represent clustering based on different subsets of the order parameters. The variables used to 

cluster for each color are shown in the legend. (a) shows the results for SCPE44 while (b) shows 

the results for SCPE81. Error bars are 3 standard errors from averaging over the 

ten different configurational seeds for each system. 



Figure S7. Mean FS scores for k-means clustering using nk = 3. Different bar colors 

represent clustering based on different subsets of the order parameters. The variables used to 

cluster for each color are shown in the legend. (a) shows the results for SCPE44 while (b) shows 

the results for SCPE81. Error bars are 3 standard errors from averaging over the 

ten different configurational seeds for each system. 



Figure S8. For CPE systems, mean FS scores for FCM clustering using (a) nk = 2, (b) nk = 3, 

and (a) nk = 4. Different bar colors represent clustering based on different subsets of the 

order parameters. The variables used to cluster for each color are shown in the legend. Error 

bars are 3 standard errors from averaging over the ten different starting configurations. 
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