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Abstract: Complete spinal cord injury causes an irreversible disruption in the central nervous system,
leading to motor, sensory, and autonomic function loss, and a secondary injury that constitutes a
physical barrier preventing tissue repair. Tissue engineering scaffolds are presented as a permissive
platform for cell migration and the reconnection of spared tissue. Iodine-doped plasma pyrrole
polymer (pPPy-I), a neuroprotective material, was applied to polylactic acid (PLA) fibers and im-
planted in a rat complete spinal cord transection injury model to evaluate whether the resulting
composite implants provided structural and functional recovery, using magnetic resonance (MR)
imaging, diffusion tensor imaging and tractography, magnetic resonance spectroscopy, locomotion
analysis, histology, and immunofluorescence. In vivo, MR studies evidenced a tissue response to
the implant, demonstrating that the fibrillar composite scaffold moderated the structural effects of
secondary damage by providing mechanical stability to the lesion core, tissue reconstruction, and
significant motor recovery. Histologic analyses demonstrated that the composite scaffold provided
a permissive environment for cell attachment and neural tissue guidance over the fibers, reducing
cyst formation. These results supply evidence that pPPy-I enhanced the properties of PLA fibrillar
scaffolds as a promising treatment for spinal cord injury recovery.

Keywords: spinal cord transection; electrospun scaffolds; plasma synthesis; MRI

1. Introduction

Complete spinal cord injury (SCI) disrupts the neural tissue irreversibly, affecting
motor, sensory, and autonomic functions. The primary injury produces a chain of events at
the injury site called secondary damage, aggravating the injury outcome. This secondary
injury induces the production of free radicals, edema, ischemia, hypoxia, excitotoxicity, and
the formation of a glial scar at chronic stages, constituting a microenvironment that causes
the disconnection of neural circuits and failure of neural tissue regeneration [1,2]. Despite
extensive research on spinal cord injury therapies for the recovery of motor, sensory, and
autonomic functions, currently, there are no effective treatments to completely restore tissue
structure and function [3,4].

Current treatments commence prehospitally, with on-site management, cardiovascular
function monitoring, immobilization, and rapid transferring to a center capable of provid-
ing intensive care, accurate diagnosis using techniques such as computer tomography (CT)
and magnetic resonance (MR) imaging, and surgical interventions such as decompression.
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As a result, aggravation of the primary injury can be avoided in most cases [5]. The use
of pharmacological treatments such as methylprednisolone is controversial, due to the
associated adverse effects and modest improvements [6]. Many therapeutic strategies have
been proposed, including neuroprotection, structural repair, and neural stimulation strate-
gies [5]. Neurorehabilitation is also recommended as early as possible since it enhances
neuroplasticity, neurotrophic factors secretion and promotes regeneration. However, in the
case of complete SCI, no spared pathways can be stimulated, and therefore other strategies
such as restorative scaffolds have been proposed.

Due to the inherent complications of SCI and its heterogeneity, despite the plethora
of therapies proposed [7], limited functional recovery (motor, sensory, and autonomic),
allodynia and chronic neuropathic pain management, bladder and bowel dysfunctions,
secondary complications (respiratory conditions, cardiovascular disease, metabolic disor-
ders, and muscular atrophies), psychological problems such as depression and anxiety, and
the inequality of access to health among individuals of different populations [8] remain as
unmet medical problems in the field of SCI [9–11].

The natural progress of the secondary injury results in the formation of a fluid-filled
cavity surrounded by fibrotic scarring, collapsing the neuronal regenerative impulses [2,12].
It has been proposed that providing a biocompatible platform for spared neural tissue to
attach and reconnect across the injury [13–15], taking advantage of the frequently necessary
surgical intervention after SCI [16,17], could be a potential treatment strategy for acute
injury. Chronic treatment for SCI has also been proposed using the scaffold implant strategy
after surgically removing the fibrotic scar tissue [18–21] to activate regenerative processes
supported by permissive scaffolds.

From a tissue engineering perspective, strategies including biocompatible materials
that provide the basis of secondary injury modulation and act as a bridging platform across
the injury epicenter are presented as attractive potential treatments since they provide
support for endogenous as well as transplanted cellular repairing agents [4,20,22–24].

Biomaterial scaffolds have been extensively applied as a promising strategy for SCI
since, fundamentally, scaffolds provide structural support for cell attachment, migration,
tissue growth, repair, and regeneration [5,24,25]. Nevertheless, considering the complex
structure of the central nervous system and the physiopathology of SCI [26], the clinical
use of biomaterial scaffolds for spinal cord recovery has only been applied in a handful of
patients [13,15,19,27,28]. The optimal design of biomaterials for SCI treatment constitutes a
current research problem.

The plasma-synthesized pyrrole polymer doped with iodine (pPPy-I) is a biocompati-
ble material that has been studied as an implant, in the form of particles in suspension in
contusion spinal cord injury models [29–32], and as tablets in transection models [33–35] in
rat [29–35] and non-human primate [14] models. These studies demonstrated that pPPy-I
supports neurons and growth cones at the injury site, myelination, neuroprotection, cell
adhesion, survival, and differentiation. PPPy-I also moderates inflammatory responses and
the effects of secondary injuries, such as cysts and glial scar formation, and produces motor
recovery [29]. However, multiple studies have highlighted the importance of integrating
various cues, namely, topographical, chemical, and mechanical guidance for functional
recovery strategies for SCI [25,26,36].

Scaffolds for neural tissue engineering have been prepared by techniques such as
3D printing, electrospinning, decellularized tissue, and hydrogel design [25,26], with the
purpose of obtaining a substrate that mimics the extracellular matrix and promotes recovery.
Mechanical compliance, bioactivity, porosity, the surface-to-volume ratio, topography, and
architectural properties determine the tissue response, and in the specific case of SCI,
modifying the cytotoxic milieu associated with injury physiopathology is one of the most
relevant attributes of optimal scaffolds to provide the adequate cues to drive repair and
regeneration processes.

Polylactic acid (PLA) is a biocompatible material that affords attractive physicochemi-
cal, mechanical, and rheological properties [37–40]. Due to its versatile processability, PLA
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has been used in many applications [25,41,42], such as devices fabricated using different
techniques, such as 3D printing or electrospinning [40]. In particular, electrospinning pro-
duces scaffolds that can mimic the extracellular matrix, both its architectural and mechanical
properties, by adequately configuring the process parameters [26,43–45]. Finetuning the
scaffolds’ properties such as porosity, the surface-to-volume ratio, topography, bioactivity,
and mechanical compliance constitutes a continuously updated research field [45]. Never-
theless, due to the limited hydrophilicity of PLA, surface modification is usually applied in
tissue engineering applications [25,44,46].

In this work, a PLA scaffold was coated with pPPy-I (PLA + pPPy-I) and implanted as
a therapeutic strategy in a complete spinal cord injury transection model in adult rats in
order to evaluate if adding a structural component to pPPy-I provided enhanced structural
reconstruction and functional recovery. The model was evaluated by MR imaging, a non-
invasive in vivo technique that enables the investigation of the nervous tissue structure.
Imaging techniques, such as diffusion tensor imaging (DTI) and MR spectra acquisition
(MRS), were used to further investigate tissue constitution in response to injury and
implant, increasing imaging sensitivity and leading to more accurate diagnostics [47].
Finally, histology and immunofluorescence studies were performed. MAP2, a neuronal
marker found in the dendrites of mature neurons [48], and DAPI, which is associated
with the nucleus of cells, were used for immunofluorescence studies. These markers were
applied to assess neural tissue growth through the fibers of the scaffolds.

2. Materials and Methods
2.1. Materials

Polylactic acid (PLA Ingeo 3251D, Minnetonka, MN, USA) amorphous biopolymer,
chloroform (J. T. Baker, Avantor Performance Materials, Inc., Radnor, PA, USA), dimethyl-
formamide (J. T. Baker, Avantor Performance Materials, Inc., Radnor, PA, USA), Pyrrole,
and iodine (Sigma-Aldrich, St. Louis, MO, USA,) were used to prepare the scaffolds. Xy-
lazine (PiSA Agropecuaria S.A. de C.V.), pentobarbital (PiSA), and Zoletil (Virbac, México)
were used as anesthetics. Adult female Wistar rats (230–290 g) from the Metropolitan
Autonomous University (Iztapalapa) Bioterium were used for this study. Buprenorphine
(PiSA) and enrofloxacin (Enroxil, Senosiain) were used for analgesic and antibiotic ther-
apy, respectively. Sodium chloride (NaCl), paraformaldehyde (PFA), phosphate buffer
(PB) and Tris-Buffered Saline (TBS) components, bovine serum albumin (BSA), and Triton
X-100 were purchased from Sigma-Aldrich. For immunofluorescence, Anti-MAP2 (Invitro-
gen, Waltham, MA, USA, PA5-17646) and Alexa Fluor 546 anti-rabbit secondary antibody
(Thermo Fisher Scientific, Waltham, MA, USA, A11035) were used.

2.2. Scaffold Design

PLA fibrillar scaffolds were prepared using electrospinning and coated with pPPy-I,
as previously reported [44]. A 15% v/v PLA solution was pumped through a nozzle
connected to a 20 kV high-voltage electric field source. The fibers were collected on a
grounded plate, generating a porous scaffold, which was folded to form 3 × 3 × 1 mm
rectangular-shaped constructs, as previously reported [49]. The constructs were placed
inside a glass reactor between two electrodes connected to a radiofrequency generator. The
pyrrole (Py) monomer and iodine (I) dopant were introduced through valves to the reactor
chamber, and synthesis was conducted for 30 min at a 1 Torr pressure. A crosslinked,
branched polymer forms the resulting coating (pPPy-I) without any remnant oxidant
compounds, presenting semiconducting properties in the physiological environment [50]
and functional groups with affinity to the cell membrane and extracellular matrix-binding
integrins [51].

2.3. Animals

Adult female Wistar rats weighing 230–290 g were used. Rats were housed in groups
of 4–5 individuals per cage, inside a temperature-controlled room, under a 12-h light/12-h
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dark inverted cycle (light hours during nighttime) [52–54]. Food and water were provided
ad libitum. Sanitary bedding was changed regularly to ensure the rats were dry.

All the experiments complied with the official Mexican specifications NOM-062-
ZOO-1999, the National Research Council Guide for the Care and Use of Laboratory
Animals [55], ICLAS, and ARRIVE guidelines. The animal study protocol was approved
by the Institutional Ethics Commission of the Health and Biological Sciences Division
of the Metropolitan Autonomous University (protocol code CECBS22-05 approved on
18 November 2022).

2.4. Study Design

The complete spinal cord transection (CSCT) addressed the spinal cord injury study
to abolish remaining nerve tracts that could produce plasticity processes and cloud the
therapeutic effects of the scaffold treatment.

Male rats were not considered to avoid complications due to hind-body dragging
and neurogenic bladders. Exclusion criteria were animals with motor recovery within
the first five days after injury, evidence of remaining nerve tracts by magnetic resonance
(MR) imaging, and muscular atrophy due to hindlimbs biting. MR studies that presented
movement artifacts and MR spectra with low signals, which could not be adjusted to
selected peaks, were not considered.

We used a total of 68 female adult Wistar rats. The animals were randomly assigned
to one of four experimental groups, namely, intact animals without injury (n = 7), complete
transection only (Control, n = 19), PLA (n = 20), and PLA + pPPy-I (n = 22) implants,
and studied for eight weeks, which is the typical period of rat recovery [56]. Magnetic
resonance, histology, and immunofluorescence studies were run in independent studies.

2.5. Spinal Cord Transection

The animals were anesthetized intramuscularly with Xylazine (10 mg/kg) and Zoletil
(10 mg/kg) [57,58]. Once deep anesthesia was confirmed by toe pinching, the back of the
animal was shaved, and povidone-iodine was applied to the incision area. A laminectomy
was performed on the 9th thoracic vertebra using sterile materials to expose the meninges.
An approximately 3mm incision was made in the meninges to expose the spinal cord. The
spinal cord was transected using micro scissors, and the complete transection model was
verified by inserting a fine tip into the entire cut area [34,59]. The implant was inserted
between the spinal cord stumps, and the control group received no implant. Then, a
fabricated patch made of a 5 × 3 mm single mesh of PLA + pPPy-I was placed over the
incision of the meninges of all the animals. Muscle and skin were layered closed using
absorbable polyglycolic acid (PGA) and nylon sutures, respectively. The animals were left
to recover next to a heat source until fully awake. Analgesic (0.05 mg/kg Buprenorphine)
and antibiotic (5 mg/kg enrofloxacin) therapy was conducted for three days, and the
bladder was manually voided twice daily [60].

The animals were monitored daily, taking care of any signs of excessive pain or
disease [61]. Antibiotics, analgesics, wound cleaning, or euthanasia were applied when
necessary to ensure the animals’ comfort. The mortality rate due to CSCT was 24%. Body
weight was also monitored as a measure of general animal health, and the loss of >20% of
the body weight criterion was considered the humane endpoint [60,62].

2.6. Magnetic Resonance Imaging (MRI) Acquisition

MRI studies were performed during the first, fourth, and eighth weeks of treat-
ment in a 3T Philips Achieva Medical System coupled to a 16-channel neurovascular
coil. T1-weighted (T1W) and T2-weighted (T2W) sequences were acquired for anatom-
ical analysis. T1W 3D was acquired using a Turbo field echo (TFE) Gradient Recalled
sequence with TE = 4.6 ms (echo time), TR = 9.9 ms (repetition time), 384 × 384 matrix,
0.8 × 1.08 × 0.8 mm voxel size, field of view (FOV) of 246 × 246 mm, 140 slices 0.8 mm
thick, −0.4 Gap, and a number of signal averages (NSA) of 7. The T2W Spin Echo sequence
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was acquired sagittally, TE = 80 ms (echo time), TR = 3000 ms (repetition time), 512 × 512
matrix, FOV = 230 × 230 mm, 0.6 × 0.62 × 2 mm voxel size, 24 slices 2 mm thick, no gap,
NSA 4.

A Diffusion tensor imaging (DTI) scheme was used to acquire the diffusion images
transversally, at the injury region, in 33 diffusion sampling directions, with a b-value of
800 s/mm2. TE = 84 ms (echo time), TR = 2521 ms (repetition time), 1.51 × 1.54 × 1.5 mm
voxel size, FOV = 224 × 224 mm, 160 × 160 matrix, 20 slices, no gap, NSA 9. In-plane
resolution and slice thickness were 1.4 mm and 1.5 mm, respectively. DSI Studio software
(Dec 19, 2019 build, https://dsi-studio.labsolver.org/, accessed on 15 April 2024) was
used to process the DTI data. The diffusion tensor was calculated, and a deterministic
fiber tracking algorithm [63] was used. A region of interest (ROI) was placed at the spinal
cord with a volume size of 327 ± 64 mm3. A seeding region was placed in the whole ROI.
The anisotropy threshold was 0.2. The angular threshold was 40 degrees. The step size
was 0.2 mm. The fiber trajectories were smoothed by averaging the propagation direction
with 50% of the previous direction. Tracts with lengths between 1 and 300 mm were kept.
Topology-informed pruning [64] was applied to the tractography with 2 iteration(s) to
remove false connections.

Magnetic resonance (MR) spectra were obtained at the injury site with a PRESS
(point-resolved spectroscopy) sequence with water suppression, TE = 144 ms (echo time),
TR = 2000 ms (repetition time), 5 × 1 × 5 mm multivoxel, NSA 32. Spectra were fitted to a
seven-term baseline to the selected peaks Cho (choline), Cr (creatine), and NAA (N-acetyl-
aspartate) metabolites using the MR acquisition software (version R5.1). The metabolite
concentration was normalized between subjects using the creatine concentration since it is
relatively constant [65].

2.7. Locomotion Analysis

Locomotion analysis was conducted one week after injury and weekly until the eighth
week by placing the animal on a plexiglass runway to record the inferior and lateral
aspects of gait and in a plexiglass cylindrical arena to record open-field free movement [66].
The Basso Beattie Bresnahan (BBB) locomotor rating scale for rats was used to evaluate
functional recovery [67]. The BBB scale consists of 22 points, where 0 corresponds to
the total absence of movement and 21 to normal locomotion. Regarding the spinal cord
transection model, critical levels of recovery are 4 (slight movement of the three joints
of the hindlimb: hip, knee, and ankle), 7 (extensive movement of the three joints), and 9
(introduction of weight-supported steps).

2.8. Histology, Immunofluorescence, and Confocal Microscopy

After the eight weeks of study, rats were anesthetized with 100 mg/kg of pentobarbital.
Using a peristaltic pump at 18 mL/min, the rats were transcardially perfused with 250 mL
of ice-cold 0.9% NaCl followed by 250 mL of ice-cold 4% PFA in PB. The spinal cord was
extracted, and 1 cm rostral and 1 cm caudal to the injury was post-fixed in 4% PFA for 24 h
at 4 ◦C. Samples were then transferred to 30% sucrose in PB and stored at 4 ◦C [68].

For immunofluorescence analysis, spinal cord sections were cut into 40-µm-thick
longitudinal sections with a cryostat. Slices were blocked with 5% BSA in TBS with 0.5%
(v/v) Triton X-100 and incubated with anti-MAP2 (1:200; Invitrogen, Waltham, MA, USA,
PA5-17646) for 24 h. Slices were then washed three times with TBS followed by 2 h of
incubation at room temperature with Alexa Fluor 546 anti-rabbit secondary antibody (1:300,
ThermoFisher Scientific, Waltham, MA, USA, A11035) in TBS. Images were obtained using
confocal microscopy (Zeiss LSM 800, Jena, Germany) [68]. An average of 32 optical slices
were obtained every 1 µm for each Z-stack.

Quantification and image analysis were performed with the image processing package
Fiji for ImageJ 1.54f (NIH) and CellProfiler 4.2.5 software (Broad Institute, Inc., Cambridge,
MA, USA).

https://dsi-studio.labsolver.org/
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Z-stacks analysis was performed in AMIRA software (FEI, Houston, TX, USA, version
5.4.5) for immunofluorescence mark identification and 3D reconstruction.

2.9. Statistical Analysis

GraphPad Prism 9.0.2 software was used to perform data analysis. Data normality
was evaluated with the Shapiro–Wilk test. An analysis of variance (ANOVA) was used for
parametric data analysis, followed by Tukey’s multiple comparisons post-hoc test, whereas
the Kruskal–Wallis test was used for non-parametric data, followed by Dunn’s post hoc test
for group comparisons. A two-way ANOVA was used to evaluate interaction effects in vivo
by treatment and time factors. Differences were considered significant if p < 0.05. Data
are presented as mean ± SEM. Significant differences are depicted as * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

3. Results
3.1. Scaffold Design and Rapid Tissue Response to Plasma-Modified Scaffolds

Engineered polylactic acid (PLA) scaffold implants consist of a four-layer randomly ori-
ented fibers scaffold coated with a plasma pyrrole polymer doped with iodine (PLA + pPPy-I)
(Figure 1A,B). The PLA + pPPy-I scaffolds present a more robust plasma polymer depo-
sition at the exterior, while the inner layers are coated with a finer film (Figure 1B). Over
50% of the composite implant constitutes the plasma polymer (Figure 1D). A single layer
of PLA was coated with pPPy-I (pPLA + pPPy-I), designed to function as a meninges re-
pair patch (Figure 1C). The pPLA + pPPy-I was rapidly integrated into the meninges tissue,
demonstrating the hydrophilicity of the pPPy-I (Figure 1E,F).
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Figure 1. Representative images of the implants’ physical form: (A) PLA scaffold. (B) PLA + pPPy-I
(top: exterior, bottom: inner layers). (C) PLA + pPPy-I patch (pPLA + pPPy-I). (D) Average weight
(n = 4) of the constructs; * p < 0.05, ** p < 0.01. (E) Implant insertion between the spinal cord stumps.
(F) Application of pPLA + pPPy-I. PLA (polylactic acid), PLA + pPPy-I (polylactic acid scaffold coated
with plasma pyrrole polymer doped with iodine), pPLA + pPPy-I (a single layer of PLA scaffold
coated with pPPy-I).

3.2. Implanted Animals Showed Improved Motor Recovery

Despite the complete transection spinal cord injury, rats presented a functional motor
response over time. Control animals presented a spontaneous response, which is common
in this animal model [69]. PLA + pPPy-I-implanted animals presented a significantly
superior functional response to control animals since week three of treatment (Figure 2,
Video S2). Analysis within groups comparing the functional response over time showed
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no statistically significant differences in the Control or PLA groups. The performance of
PLA-implanted and control animals remained similar from week 1 to week 8 in general
(Video S1). In contrast, a significant difference was detected in the PLA + pPPy-I group
from week 3 compared to week 1 (Video S1), suggesting that functional recovery was more
efficient in the composite group, presenting significant functional results after three weeks
of treatment.
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Figure 2. Functional motor recovery. (A) BBB locomotor scores throughout the eight weeks of study,
data are presented as mean ± SEM, n = 10. A significant difference was found (* p < 0.05, ** p < 0.01)
between Control and PLA + pPPy-I by the 2-way ANOVA test (week and treatment). Representative
images of a PLA + pPPy-I-implanted rat one week after injury in (B,D), which moves to drag its
hindlimbs without body weight support (red arrow); (C,E) the same rat in week 8, depicting plantar
placement of the paw before raising the leg to take the step (red circle) with the support of body
weight (red arrow). (B,C) Right-side view, (D,E) inferior view. SEM (standard error of the mean),
ANOVA (analysis of variance), PLA (polylactic acid scaffold), PLA + pPPy-I (polylactic acid scaffold
coated with plasma pyrrole polymer doped with iodine).

A comparison with Intact animals after a spinal cord transection, one of the most
severe models of SCI, was not performed as both sensory and motor tract continuity is
eliminated [70].

3.3. Scaffolds Promoted Tissue Growth at the Injury Site

In the first week after injury, anatomical images showed T1 and T2 hypointensity con-
trast at the injury site in general, with some cases of T2 hyperintensity in the control group,
which is associated with liquid tissue, such as cerebrospinal fluid leak, hemorrhage, edema,
or cystic cavitation [12] (Figure 3). In the implanted animals, injury site hypointensity is as-
sociated with the presence of the implant, which emits no magnetic resonance (MR) signal.
The evident gap between the spinal cord stumps confirmed the transection. By the fourth
week after injury, PLA + pPPy-I-implanted animals showed T1 and T2 intensity associated
with tissue covering the implant. In contrast, control and PLA-implanted animals showed
evidence of secondary damage by T1 hypointensity colocalized with T2 hyperintensity,
which sometimes extended to the spinal cord’s caudal portion.

Diffusion tensor imaging (DTI) enhances the sensitivity of magnetic resonance imaging
(MRI), clearly showing the extent of spinal cord injury [71]. Tractography estimation of
the injury site was performed using DTI data, which confirmed the complete transection
of the spinal cord in week 1 of the study. In week 4, control and PLA-implanted animals
still present a separation between spinal cord stumps. In contrast, PLA + pPPy-I animals
present nerve tracts across stumps.
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Figure 3. Representative images of Control and PLA + pPPy-I in the first and fourth weeks post-injury.
PLA group images were similar to the composite group. Control animal showing hypointense T1W
and hyperintense T2W signals at the injury site suggests hemorrhage or cerebrospinal fluid leak,
which is dynamic over time. In the fourth week, the Control animal still presents pathological T1
hypointensity and T2 hyperintensity at the injury site. Hypointense T1 and T2 in the first week in
the implanted animal depict the presence of the implant between the wholly transected spinal cord
stumps. T1 and T2 intensity in the fourth week depicts tissue growth over the implant. Tractography
confirms the information yielded by T1 and T2 images, increasing the resolution and showing tract
microstructure. Bar = 10 mm. PLA + pPPy-I (polylactic acid scaffold coated with plasma pyrrole
polymer doped with iodine), PLA (polylactic acid scaffold), T1W (T1-weighted), T1 (longitudinal
relaxation time), T2W (T2-weighted), T2 (transverse relaxation time).

3.4. Recovery of Structural Damage by the Fibrillar Scaffolds

Using diffusion tensor imaging (DTI) data, we studied the impact of reconstructed
tract volume over time between study groups (Figure 4). A significant decrease in tract
volume in PLA + pPPy-I in week one is related to the complete transection and the lack
of signal of the scaffold. In week 4, tract volume was recovered in PLA + pPPy-I, while
a significant decrease in tract volume in control and PLA groups reflected the effects of
secondary injury. In week 8, the tract volume of control animals decreased significantly
concerning intact and scaffold-implanted groups. In contrast, implanted animals showed
no statistical differences compared to the intact group, suggesting the implants provided a
substrate for cell adhesion and neural tissue support.
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Figure 4. Tract volume (mm3) 1, 4, and 8 weeks post-injury. Statistical differences between groups by
2-way ANOVA, n = 5, * p < 0.05, ** p < 0.01, **** p < 0.0001. PLA + pPPy-I (polylactic acid scaffold
coated with plasma pyrrole polymer doped with iodine), PLA (polylactic acid scaffold).

Since tract volume significantly decreased in week 1 in PLA + pPPy-I, the recovered
volume of tracts in the fourth week and a significant decrease in volume in PLA by week
4 suggest that the plasma-modified fibers promoted tissue growth through the scaffold,
showing an improved performance compared to PLA scaffolds.

3.5. The Recovery of Anisotropy Baseline Values Suggests Neural Pathway Reorganization across
the Scaffolds

The diffusion tensor imaging (DTI) information further complements magnetic res-
onance (MR) images since DTI yields water diffusion direction and DTI indices present
quantitative measures of tissue microstructure. Diffusion indices were altered at the injury
epicenter (EC) in week 1, depicting a general decrease in fractional anisotropy (FA). Mean
diffusivity (MD) increased non-significantly in control and PLA + pPPy-I-implanted ani-
mals due to an increase in both axial and radial diffusivity (Figure 5). FA and MD values
recovered by week 8, with the remaining MD significantly different to intact in PLA group
1.5 mm rostral to the injury epicenter, suggesting axonal damage in this region.

The diffusion of water molecules yields indirect information about the tissue struc-
ture [71]. Fractional anisotropy (FA) increases linearly, such as in white matter tracts in
the intact spinal cord. Due to spinal cord injury and physiopathologic processes, an FA
decrease is expected. However, FA and mean diffusivity (MD) values may be modified.
MD values remained similar to intact at the injury epicenter, suggesting water molecules
remained restricted due to fibrotic scar formation in Control animals and tissue growth at
the scaffolds in implanted animals.
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Figure 5. Diffusion tensor imaging indices FA (fractional anisotropy) and MD (mean diffusivity) at
a 15 mm region of interest of the spinal cord, 0 = EC (the injury epicenter), 1, 4, and 8 weeks after
injury. The 2-way ANOVA test found statistical differences, n = 5, * p < 0.05. FA (week 1): p = 0.049
PLA + pPPy-I vs. Intact 1.5mm caudal to EC; p = 0.0076 Control vs. Intact, p = 0.025 PLA + pPPy-I
vs. Intact, p = 0.0167 Intact vs. PLA at EC. FA (week 4): p = 0.034 Intact vs. PLA at EC. MD (week 4):
p = 0.045 Intact vs. PLA at the rostral side. MD (week 8): p = 0.029 1.5mm rostral to EC between Intact
and PLA. PLA (polylactic acid scaffold), PLA + pPPy-I (polylactic acid scaffold coated with plasma
pyrrole polymer doped with iodine).

3.6. The Fibrillar Scaffolds Promoted Metabolic Changes in Response to Injury

Magnetic resonance (MR) spectra acquisition provides details of tissue constitution,
increasing imaging sensitivity and conducing to more accurate diagnostics [47]. MR spec-
troscopy (MRS) provides information about molecular composition in tissue in vivo [72],
which is especially valuable in longitudinal studies on the central nervous system as neu-
ral and axon integrity may be evaluated [73]. Metabolite concentrations were obtained
from the MR spectra, and the relevant ratios of NAA/Cr, Cho/Cr, and NAA/Cho were
calculated (Figure 6).
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Figure 6. Representative spectra at the injury site and average ratios of NAA/Cr, Cho/Cr, and
NAA/Cho of the Intact (•), Control (×), PLA-implanted (▲), PLA + pPPy-I-implanted (■) animals
1, 4, and 8 weeks after injury (n = 3). N-acetyl-aspartate (NAA) appears at 2.01 ppm, Creatine (Cr)
at 3.0 ppm, and Choline (Cho) at 3.2 ppm. Although no significant differences were found between
groups, Cho/Cr ratio tended to increase in Control animals in week eight due to the secondary
damage. PLA (polylactic acid scaffold), PLA + pPPy-I (polylactic acid scaffold coated with plasma
pyrrole polymer doped with iodine).

Creatine (Cr) is a compound involved in energy metabolism. Cr is considered rela-
tively constant and is therefore used as an internal concentration reference [65]. Although
recent studies have found altered Cr levels in pathologic processes [72], it is used as a stan-
dard reference metabolite as growing evidence suggests metabolite/Cr ratios as potential
markers of tissue physiopathology [47].

N-acetyl-aspartate (NAA) is a healthy neural tissue marker in healthy neurons, oligo-
dendrocytes, and myelin. A decrease in NAA/Cr is associated with neuronal loss. NAA
levels were still high one week after the injury. According to the literature, NAA molecules
may remain trapped in neuronal debris in the acute phase and decrease in the subacute
phase [73]. However, NAA values tend to normalize [73,74].

Choline (Cho) is a biomarker of cell membrane metabolism, reflecting cellular density
and the rate of cellular membrane turnover. It is a marker in the synthesis and breakdown
of cell membranes [73]. No significant differences were found between groups; however,
Cho tends to increase in Control animals in week eight, which is expected due to secondary
damage, suggesting demyelination in the chronic phase of SCI [73,74].
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The NAA/Cho ratio has been proposed as a predictor of motor development in
children by studying magnetic resonance (MR) spectra in the brain [75]. NAA/Cho has
also been found to correlate to fractional anisotropy (FA). As NAA reflects healthy neural
tissue and Cho is related to cell membrane metabolism, therefore the NAA/Cho ratio
may suggest neural cell presence concerning gliosis as the inverse Cho/NAA has been
associated with the extension of gliomas over healthy neural tissue [76,77]. Though not
statistically significant, there was a marked decrease in NAA/Cho in week 1 in implanted
animals, reflecting the signal decrease due to the implants. In week 4, NAA/Cho tended to
increase in composite-implanted animals, likely due to an NAA increase and Cho decrease
as a result of pPPy-I’s neuroprotective properties [78]. This plasma polymer might be
acting as a free radical scavenger [79,80], moderating the secondary damage and reflecting
a decrease in Cho. However, this hypothesis is currently under study.

3.7. The Plasma Modification of the Fibers Mitigated Tissue Degeneration

After eight weeks, spinal cord tissue was examined using different staining techniques
to characterize the injury epicenter (Figure 7). Control images showed that transection
only resulted in large cysts and deteriorated tissue in general. Significantly fewer cells
and a significantly lower amount of basal lamina were found at the epicenter, as shown by
the PAS-positive area (Figure 7B), compared to PLA + pPPy-I. Implants were covered by
tissue in general, as depicted by H&E. However, control animals presented significantly
higher cystic areas of degenerated tissue than scaffold-implanted animals. PLA implants
showed large portions devoid of tissue, as shown by the PAS stain. However, all groups
presented blood vessels at the epicenter and inside the implants. Masson’s trichrome stain
showed that collagen type I was present in the scaffolds and the injury epicenter, likely due
to fibroblast infiltration. PLA- and PLA + pPPy-I-implanted animals show significantly
larger areas covered by neural tissue than the control, as depicted by the Cresyl Violet stain.

Images of one animal from each group were compared eight weeks after injury
(Figure 8). The techniques used in the present study reflect the structure of the spinal
cord, further validating magnetic resonance (MR) studies from previous time points. As
illustrated by the histologic sections, caudal tissue degeneration is extensive in control and
PLA-implanted animals, depicted by large cysts and neural tissue deterioration, and thus
DTI tractography presents a lack of tracts at the caudal side, as well as T2 hyperintensity
and T1 hypointensity. In contrast, the PLA + pPPy-I-implanted animal shows smaller cysts
surrounding the implant and T1 and T2 tissue-related intensity through the injury site and
tract continuity, suggesting that the implant provided neuroprotection and prevented fur-
ther tissue damage. Furthermore, the metabolite concentration was higher in the composite
animal, which suggests a stronger signal of functional neural tissue in this case.

Whereas differences in cyst percentage were significant between PLA and PLA +
pPPy-I, no significant differences were found with the control, where cyst quantification
was affected by tissue destruction in control samples, as depicted by histologic analysis.

3.8. Evidence of Neuronal Marker MAP2 over the Fibers Demonstrated Fibrillar Scaffolds Are
Potential Substrates for Nerve Repair

MAP2 is a neuronal marker in the dendrites of mature neurons [48], and DAPI is
associated with the nucleus of cells. Figure 9 shows MAP2/DAPI expression in intact
and PLA and PLA + pPPy-I-implanted animals. Intact spinal cord tissue depicts gray
matter motoneurons and part of the ependymal canal, closely adjacent to the supporting
glial cells (Figure 9A–D). MAP2 in intact spinal cords is expressed as a fiber mesh, whose
density depends on its location, which is more densely expressed at the grey-matter region
(Figure 9C).
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cysts area (n = 9 frames per group), Cresyl violet (n = 9), and PAS-positive area (n = 3), ** p < 0.01, *** 
p < 0.001 by ANOVA and Tukey’s test; percent of the collagen-positive area (n = 6), without 
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Figure 7. Representative histological images of the injury site in Control animals and PLA- and
PLA + pPPy-I-implanted animals at the injury epicenter in (A), bar = 50 µm, 40× magnification,
closed arrows: capillary, open arrows: fibers. Statistical analysis of histologic images at the epicenter
and implants in (B). Percent of pathophysiologic biomarkers in the injury epicenter of 3 rats per
group: cysts area (n = 9 frames per group), Cresyl violet (n = 9), and PAS-positive area (n = 3),
** p < 0.01, *** p < 0.001 by ANOVA and Tukey’s test; percent of the collagen-positive area (n = 6),
without significant differences using Kruskal–Wallis and Dunn’s tests. PLA (polylactic acid scaffold),
PLA + pPPy-I (polylactic acid scaffold coated with plasma pyrrole polymer doped with iodine), H&E
(hematoxylin and eosin stain), PAS (Periodic acid–Schiff stain).
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Figure 8. Representative images at eight weeks post-injury (A), comparing T1W, T2W, tractography, 
FA (of transversal regions from the caudal = 0 to the rostral = 20 side), Masson’s trichrome, and 

Figure 8. Representative images at eight weeks post-injury (A), comparing T1W, T2W, tractography,
FA (of transversal regions from the caudal = 0 to the rostral = 20 side), Masson’s trichrome, and
spectra of a control, PLA-, and PLA + pPPy-I-implanted rat. Green lines point to the injury epicenter.
(B) Statistical analysis of whole histologic samples: percent of cysts (n = 3 frames/group), * p < 0.05
using Kruskal–Wallis and Dunn’s tests. Collagen area, n = 4 frames/group, no significant differences
were found between groups by ANOVA. T1W (T1-weighted images), T2W (T2-weighted images),
FA (fractional anisotropy), PLA (polylactic acid scaffold), PLA + pPPy-I (PLA coated with plasma
pyrrole polymer doped with iodine).
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in (F). Implant and adjacent tissue in (J,N). Detail of MAP2 mark in (D) intact, (H) Control, (L) PLA, 
(P) PLA + pPPy-I. (D,H,L,P) bar = 50 µm, 40× magnification. MAP2 (neuronal microtubules), DAPI 
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To identify the immunofluorescence mark of MAP2 and DAPI, confocal stack images 
were separated by channels and a division operator was applied between optical slices to 
remove the pPPy-I fluorescence mark (Figure 10).  

Figure 9. Representative images of MAP2/DAPI-labeled sections of the intact spinal cord, Control,
PLA, and PLA + pPPy-I implants. (A,E,I,M) Bar = 1 mm. Close-up views of intact tissue in (B,C), con-
trol in (F,G), PLA implant in (J,K), PLA + pPPy-I implant in (N,O). (B,C,F,G,J,K,N,O) bar = 100 µm,
20× magnification, arrowheads = microtubules. Transition zone between spared and scar tissue in
(F). Implant and adjacent tissue in (J,N). Detail of MAP2 mark in (D) intact, (H) Control, (L) PLA,
(P) PLA + pPPy-I. (D,H,L,P) bar = 50 µm, 40× magnification. MAP2 (neuronal microtubules), DAPI
(cells’ nuclei), PLA (polylactic acid scaffold), PLA + pPPy-I (PLA coated with plasma pyrrole polymer
doped with iodine).

Upon spinal cord transection, a complete disruption of tissue organization and conti-
nuity was evidenced by the MAP2 mark (Figure 9E). As expected, some degree of neural
regeneration is attempted from the rostral side of the injury [69], and disorganized mi-
crotubules extend over the fibrotic scar (Figure 9G, H), likely using the collagen fibers
generated by fibroblast encroachment [81] as a substrate. However, large cysts were found
on the caudal side of the injury (Figure 9E, left), forming a barrier and impeding neural
tissue reconnection (Figure 9F).

The DAPI mark evidenced cell infiltration across the scaffolds. MAP2 expression inside
and adjacent to the implants was also detected. In PLA samples, microtubules showed
a disorganized structure over the randomly oriented fibers of the scaffold (Figure 9J, L).
Adjacent to the scaffold, linearly organized MAP2 fibers were detected (Figure 9K). This
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mark suggests neurite extension was supported by the fibrillar scaffold over its periphery
and through the scaffold.

PLA + pPPy-I presents fluorescence (Figure 9I–K), which emits a signal in both
DAPI and MAP2 channels. Thus, the immunofluorescence mark is not quantifiable in
PLA + pPPy-I samples. However, MAP2/DAPI expression was evidenced across the im-
plant over the coated fibers (Figure 9P).

To identify the immunofluorescence mark of MAP2 and DAPI, confocal stack images
were separated by channels and a division operator was applied between optical slices to
remove the pPPy-I fluorescence mark (Figure 10).
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Figure 10. Immunofluorescence image processing. Confocal stacks (20× magnification) were
separated by channels and the division operator was applied by optical slices. As a result, the
PLA + pPPy-I fluorescence mark is removed from the images and the MAP2 and DAPI marks are
identified. MAP2 (neuronal microtubules), DAPI (cells’ nuclei), PLA + pPPy-I (polylactic acid fibers
coated with plasma pyrrole polymer doped with iodine).

Despite the potential loss of MAP2 and DAPI signals colocalized with the pPPy-I-
coated fibers by this processing, it affords the actual presence of cells’ nuclei and neuronal
microtubules adjacent to and within the PLA + pPPy-I implants, as shown in Figure 11.
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neurite projections (arrowheads). Bar = 100 µm, 20× magnification. MAP2 (neuronal microtubules), 
DAPI (cells’ nuclei), pPPy-I (plasma pyrrole polymer doped with iodine). 

Three-dimensional (3D) analysis of confocal images was performed to reconstruct the 
region-of-interest volume. Optical slices 1 µm thick were separated by channels. The PLA 
+ pPPy-I portion was identified using set theory as the signal present at the three channels 
by the intersection operation between the three sets of signals. Once the pPPy-I signal was 
identified and assigned to a 3D reconstructed volume, the MAP2 and DAPI independent 
signals were assigned as the sets of signals remaining once the pPPy-I mark was removed. 
Figure 12 shows reconstructed volumes of processed slides. 

Figure 11. MAP2 and DAPI marks isolated from the pPPy-I fluorescence superposition. Repre-
sentative images of the implant core and periphery regions showing neuronal microtubules and
supporting cells. Intact region is presented for comparison of a neuron soma (block arrows) and
neurite projections (arrowheads). Bar = 100 µm, 20× magnification. MAP2 (neuronal microtubules),
DAPI (cells’ nuclei), pPPy-I (plasma pyrrole polymer doped with iodine).

Three-dimensional (3D) analysis of confocal images was performed to reconstruct the
region-of-interest volume. Optical slices 1 µm thick were separated by channels. The PLA
+ pPPy-I portion was identified using set theory as the signal present at the three channels
by the intersection operation between the three sets of signals. Once the pPPy-I signal was
identified and assigned to a 3D reconstructed volume, the MAP2 and DAPI independent
signals were assigned as the sets of signals remaining once the pPPy-I mark was removed.
Figure 12 shows reconstructed volumes of processed slides.

3D reconstruction of MAP2 mark over the PLA + pPPy-I fibers evidences neural tissue
growth through the composite scaffolds and reaching the rostral and caudal sides of the
implant. Using the image analysis pipeline proposed in this work, the MAP2 mark was
identified from composite immunofluorescence images where the fluorescence of pPPy-I
masks the neuronal-specific biomarker, which was found to cover the scaffold fibers. These
results suggest that functional recovery was possible due to neurite extension over the
PLA + pPPy-I scaffolds reconnecting neural spared tissue of the transected spinal cord.
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+ pPPy-I fibers. (B) The PLA + pPPy-I portion is displayed. MAP2 volume portion is depicted in (C). 
Close-up views (dashed frames) of the same frame are shown in (D–G), focusing on the MAP2-PLA 
+ pPPy-I interfaces. MAP2 (neuronal microtubules), DAPI (cells’ nuclei), PLA + pPPy-I (polylactic 
acid scaffold coated with plasma pyrrole polymer doped with iodine). 

Figure 12. 3D volumes of immunofluorescence MAP2 (neuronal microtubules) mark over the
PLA + pPPy-I implant. (A) The implant core displays MAP2 and DAPI (nuclei) biomarkers over the
PLA + pPPy-I fibers. (B) The PLA + pPPy-I portion is displayed. MAP2 volume portion is depicted
in (C). Close-up views (dashed frames) of the same frame are shown in (D–G), focusing on the
MAP2-PLA + pPPy-I interfaces. MAP2 (neuronal microtubules), DAPI (cells’ nuclei), PLA + pPPy-I
(polylactic acid scaffold coated with plasma pyrrole polymer doped with iodine).
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4. Discussion

Spinal cord injury (SCI) constitutes a disruption in neural tissue integrity, cell death, ax-
onal destruction, reactive astrocyte proliferation, failure of oligodendrocyte differentiation,
and hence, demyelination, and results in autonomic and sensorimotor impairment [82,83].
Functional recovery from SCI, especially complete injuries, is currently an unmet medical
problem. Approved therapies and clinical protocols have managed to reduce the incidence
of complete SCI; however, efficient recovery for acute and chronic patients has not been
accomplished [5].

Complete transection injuries are uncommon in humans; however, experimentally,
they constitute a reliable model to investigate tissue regeneration. Complete transection
models of spinal cord injury imply the complete disruption of neural tissue, thus preventing
the transmission of any bioelectrical and biochemical signals, leading to motor and sensory
loss. Incomplete injury models afford better prognosis since the remaining tracts promote
circuit reorganization and favor sensory-motor recovery. Nevertheless, protecting spared
tissue from the effects of secondary injury is crucial for plasticity processes to take place [20].

Spinal cord transection at the thoracic level produces paraplegia and sensory loss
below the injury site. In the first week of the study, the animals had paralyzed hindlimbs,
and motor recovery was observed over time. Rat SCI models are expected to present some
level of spontaneous recovery [69], which was evidenced by the MAP2 mark over the
fibrotic scar. Despite the MAP2 mark found at the injury epicenter in the control group,
motor recovery was significantly impaired.

Neural regeneration in the adult central nervous system is extremely difficult due to
inhibitory signals [84], ineffective necrotic tissue debridement, chronic inflammation, and
the formation of fluid-filled cavities that constitute a poor substrate for cell migration and
neural tissue reconnection [1], which cause failure of regenerative impulses [85]. However,
significant motor recovery was found in the PLA + pPPy-I group compared to the control
group without treatment. After three weeks of treatment, the effects of the plasma polymer
are reflected in significant functional motor recovery compared to the control without
treatment, which is a relevant result since patients suffering from an SCI today have limited
therapeutical options affording efficient results [20,24,86].

Fibrillar scaffolds provide a porous, permissive structure for tissue growth and have
been proposed as a tissue engineering strategy for SCI in acute and chronic stages as they
constitute a mechanically stable substrate for regeneration support [87]. However, the
pursuit of an efficient composition and structure is a current research field. In the present
work, we used a fibrillar, randomly aligned PLA scaffold coated with plasma pyrrole
polymer doped with iodine, which has demonstrated neuroprotection and modulation of
the secondary injury effects in complete transection and contusion SCI. Recently, gene ex-
pression promoted by the application of pPPy-I in SCI was characterized. Genes associated
with neuron development, neurogenesis, neuronal differentiation, axonal growth, synapses,
and synaptic vesicle transport were upregulated. They also found that pPPy-I promotes
a decrease in apoptotic stimuli, which might shift the injury site microenvironment and
promote neural growth factor expression [88].

The level of motor recovery achieved with the coated fibrillar scaffolds (PLA + pPPy-I)
in complete transection injury models exceeds 3 points on average on the BBB locomotion
rating scale compared to the pPPy-I tablet reported in previous studies [34,35]. This
suggests that the fibrillar structure combined with the pPPy-I surface may enhance the
functional effect due to the greater availability of pPPy-I to the cells, in conjunction with
the structurally more stable substrate provided by the scaffold.

In the present study, we evaluated the performance of an implant without any biologi-
cal components such as neural growth factors or cells or stimulating therapies (magnetic
or electrical) and observed significant motor recovery compared to control animals. The
design of the scaffold implant proposed affords versatility to these therapies to enhance
the functional response, as the topography allows the addition or seeding of biological
stimulators [7,32].
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Magnetic resonance (MR) anatomical images revealed that by the fourth week of treat-
ment, the PLA + pPPy-I implant was covered by tissue. The tractography analysis further
verified this, where the projection of tracts through the implant site was evidenced. Diffu-
sion tensor imaging information and tractography further complement MR images [89],
affording structural organization by the water diffusion within the tissue. Despite no signif-
icant changes between weeks 4 and 8 by MR anatomical images, microstructural changes
were evidenced by fractional anisotropy recovery. Additionally, while control animals
presented a significant decrease in tract volume, implanted animals showed microstructural
improvement, particularly in PLA + pPPy-I, suggesting sustained tissue growth at the
implant, which may explain the significant functional recovery of the animals.

In vivo analysis of pathophysiologic metabolites revealed NAA/Cr levels tend to
recover, suggesting the presence of functional neural tissue [74,90]. Increased choline (Cho)
is associated with cell membrane metabolism, gliosis, and demyelination. Since reactive
astrocyte proliferation is part of the spinal cord response to injury in an attempt to control
damage propagation, among other effects [91,92], increased levels of Cho are expected after
an SCI. However, the Cho/Cr biomarker is expected to normalize. In this case, the control
group shows a Cho/Cr tendency to increase, which is associated with demyelination at the
chronic phase [73]. As NAA (N-acetyl aspartate) is the healthy neuronal tissue marker, the
NAA/Cho ratio value reflects a balance of neurons and supporting glia, which is essential
for nervous tissue functionality. Despite no statistical differences being found in this
case, the MR protocol presented in this work aims for translational medicine applications
since MR studies are among the most relevant in vivo diagnostics and prognostics tools,
affording detailed tissue structure information [47].

Neural tissue reorganization is acutely activated after injury but persists over time.
The implant provided a supporting substrate, as shown by the histology and immunofluo-
rescence images. The implants were infiltrated by different types of cells and formed basal
lamina, which likely promoted tissue adaptation and stimulated the regenerative capacity
of the nervous tissue since the scaffolds provide a supportive matrix for glial cell adhesion
and migration as well as neurite extension [93,94]. Further analysis using other techniques
will be considered in future studies to demonstrate this hypothesis.

The cystic cavities in control and PLA-implanted animals were significantly larger
than in PLA + pPPy-I animals. Neuronal microtubules were evident in the PLA implant pe-
riphery, whereas the fluorescence in PLA + pPPy-I implants masked the immunofluorescent
MAP2 mark. The image processing protocol presented in this work aimed to demonstrate
the presence of neuronal microtubules since the number of fluorophores outside the pPPy-I
fluorescence spectrum (350–600 nm) [95,96] is strikingly reduced. The fibrillar scaffold
structure supported neurite extension between the spinal cord stumps, as shown by the
MAP2 mark present over the fibers (Figures 11 and 12, Video S3). Despite the fact that the
MAP2 mark was also found in the injury epicenter of control animals, efficient functional
recovery was not achieved. After three weeks of treatment, significant motor recovery
was shown in the composite scaffold group. In vivo evaluation of the injury and recovery
progression was achieved using MRI biomarkers, such as tract volume and DTI indices,
which demonstrated that structural support was provided for functional neural tissue
extension, as one of the possible recovery mechanisms.

Free radicals are part of the hostile setting established by secondary damage, con-
tributing to a pro-inflammatory environment in the injury epicenter, which collapses the
nervous tissue’s attempts at recovery [1,22]. Conductive polymers such as polypyrrole and
polyaniline have antioxidant properties due to the presence of amine (NH) groups in the
polymer chains, which promotes the scavenging effect of free radicals, as well as slight
changes in the polymer chains such as crosslinking [79,80]. Surface area is an important
factor in the free radical scavenging effect. In the scaffolds presented in this work, the
pyrrole polymer is available on a large surface area because it coats the surface of the
fibers; hence, the effect in the tissue environment may be amplified [92]. A more detailed
characterization of the scaffolds is reported elsewhere [44].
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Substrate topography and electrical stimulation have been studied as cues for stem
cell differentiation towards neuronal lineage, which express MAP2 and Tuj1 neuronal
markers [48,97]. Since the spinal cord has stem cell niches [98,99], stimulation of inactive
endogenous stem cells is a potential strategy for SCI recovery [100]. In this study, MAP2
expression was found over the fibers of the implant, suggesting neural extension through
the scaffolds, which might contribute to spared tissue reconnection between the transected
spinal cord stumps. As pPPy-I affords electroconductive properties in the physiological
environment [50,101], bioelectrical cues might propagate through the scaffold coating,
promoting the differentiation of endogenous stem cells. However, the elucidation of
the effects of PLA + pPPy-I implants on endogenous stem cell differentiation and free
radical scavenging properties is still under study, and the application of PCR or additional
immunostaining analysis to demonstrate such recovery mechanisms will be considered in
future work. Future work regarding such potential means of SCI recovery might further
elucidate PLA + pPPy-I composite fibrillar scaffolds’ therapeutic efficacy.

Upon SCI, a large mass of neural tissue is lost due to necrosis, apoptosis, ischemia,
chemical imbalance, and excitotoxicity. Among the most valuable clinical treatment strate-
gies is surgical decompression within the first 24–48 h [5,17]. The primary injury evolves
into the cascade of events of secondary injury, which culminates in the formation of a
fibrotic scar, which constitutes a physical barrier that prevents regeneration attempts [1,2].
In this chronic scenario, surgical removal of this inhibitory tissue has been proposed [28]. In
both the acute and the chronic phases of SCI, surgical removal of necrotic products has been
proposed as a promising strategy when combined with the application of a scaffold with
optimal properties to drive spinal cord recovery [18]. The results presented in this work
show that PLA coated with pPPy-I affords rapid interaction with the host tissue, enhances
hydrophilicity compared to PLA alone, promotes significant motor recovery compared to
the control group receiving no implant, stimulates structural reorganization, constitutes
a permissive substrate for neural tracts between the spinal stumps, and displays tissue
volume comparable to intact animals, secondary injury moderation, and neural tissue
infiltration to the scaffold.

5. Conclusions

Complete spinal cord injury produces a disconnection of neural tracts, hemorrhage,
and inflammation and develops a secondary injury in control animals without treatment.
The implantation of fibrillar scaffolds provided a substrate for cell attachment and cell
infiltration through the pores of the scaffold. However, a significant reduction in cystic
cavities was demonstrated by the pPPy-l coating while providing a permissive environment
for neural tissue growth through the coated scaffold. In vivo analysis showed that improved
microstructural recovery was facilitated after three weeks of treatment with the composite
scaffold, accompanied by significant locomotor recovery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16081133/s1, Video S1: PLA + pPPy-I-implanted animal in
week 1. Representative locomotion performance of the animals in week 1; regardless of the treatment,
all the animals move dragging their hindlimbs without any bodyweight support from the thoracic
spinal cord. Video S2: PLA + pPPy-I-implanted animal in week 8. In contrast to control animals,
PLA + pPPy-I-implanted animals show significant motor recovery. Video S3: Representative confocal
image processing showing fiber guidance on neural tissue extension across the PLA + pPPy-I implant.
Magnetic resonance (MR) imaging analysis was performed in the experimental animals to assess
the treatment response in vivo. Anatomical sequences are implemented to study the whole animal,
whereas diffusion tensor imaging (DTI), MR Spectroscopy, and histologic and immunofluorescence
analyses were focused on the injury epicenter. Immunofluorescence analysis demonstrated neuronal
microtubules over the PLA + pPPy-I fibers, which, according to motor recovery, might explain the
functional recovery mechanism of the fibrillar scaffold implant.

https://www.mdpi.com/article/10.3390/polym16081133/s1
https://www.mdpi.com/article/10.3390/polym16081133/s1
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