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Abstract: Non-isocyanate polyurethane synthesis by non-Sn catalysis is an essential challenge toward
green polyurethane synthesis. Bismuth compounds are attractive candidates due to their low cost,
low toxicity, and availability to urethane chemistry. This work applied various Bi catalysts to the
self-polycondensation of a bishydroxyurethane monomer and found BiCl3 to be an excellent catalyst
through optimization. The catalytic activity and price of BiCl3 are comparable to those of Bu2SnO,
while its toxicity is significantly low. BiCl3 is, therefore, a promising alternative to Sn-based catalysts
in non-isocyanate polyurethane synthesis.
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1. Introduction

Polyurethanes are applied to a wide range of products because of their widely con-
trollable properties and excellent characteristics, such as foaming ability, biocompatibil-
ity, mechanical strength, and abrasion resistance. The industrial fabrication method for
polyurethane is the polyaddition of multifunctional isocyanates and diols, developed by
Bayer et al. [1–3], and is still used nowadays. Because isocyanates are highly reactive, the
reaction proceeds quickly and quantitatively yields polyurethanes. However, isocyanates
are not only unstable and highly toxic, but their raw materials, phosgene derivatives, are
even more poisonous and corrosive. In addition, the reaction of amines with phosgenes
generates corrosive hydrogen chloride as a byproduct, which requires the plant facilities to
be heavily corrosion-resistant. As a substantial solution to these problems, various green
polyurethane syntheses have been developed to prevent the use of phosgenes and/or
isocyanates [4–21].

Polyaddition of bifunctional five-membered cyclic carbonates obtained by the reaction
of diepoxides with carbon dioxide [14,15,22–25] and diamines is a well explored alternative
method [4–8,18–21]. The resulting polyurethane derivatives bearing hydroxy side chains
are called polyhydroxyurethanes, and many studies have been conducted since the patent
by Whelan Jr. et al. [4]. However, this method cannot synthesize polyurethanes with the
same structure as industrial polyurethanes. Alternatively, polycondensation of dialky-
lurethanes and bishydroxyurethanes can give such polyurethanes from five-membered
cyclic carbonates or linear carbonates and amines without using phosgenes and isocyanates.

Polycondensation of dialkyl urethanes with diols reported by Deepa et al. gives
polyurethanes at good yields of 80–90% under solvent-free melting conditions in the pres-
ence of titanium-based catalysts, such as Ti(OBu)4 [9]. Higher molecular weights are
achieved by continuous removal of low-boiling alcohols such as methanol from the poly-
merization medium under nitrogen purge and subsequent high vacuum. The molecular
weight of the resulting polyurethanes ranges from 3000 to 20,000.

CO2-based polyurethanes can be obtained by self-polycondensation or transurethane
polycondensation with diols of bishydroxyurethanes obtained by the addition reaction
of ethylene carbonate (EC) and diamines as monomers, as first reported by Rokicki et al.
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in 2002 [10]. However, toxic Sn-based catalysts are mainly used because of their high
catalytic activities. In addition, efficient removal of ethylene glycol produced as a byproduct
requires long reaction times with reduced pressure to synthesize high-molecular-weight
polymers [10–13]. A safer system has been established for similar polymerization under
reduced pressure using less toxic BaO [17], titanium alkoxides [13,18], and zinc acetate [13]
as catalysts. Various systems have been explored for these non-isocyanate polyurethane
syntheses, and polyurethane with higher molecular weight has been developed [15].

For an exploration of new catalysts, we focused on compounds of bismuth, which is
an inexpensive and safe heavy element [26–29]. Many organic and inorganic bismuth com-
pounds have very low toxicity, and some bismuth salts are applied as stomach medicines.
Bismuth(III) tricarboxylates, such as bismuth 2-ethylhexanoate and bismuth neo-decanoate,
have been developed to replace Sn catalysts for isocyanate-based polyurethane synthe-
sis [30]. The application of BiPh3 as a co-catalyst for a Sn catalyst has also been reported [31].
As related applications, bismuth catalysis has been applied for the depolymerization of
polyurethanes catalyzed by bismuth neodecanoate [32], transurethanization with alcohols
catalyzed by bismuth triflate [33] and reprocessing of cross-linked polyurethane through
transurethanization catalyzed by bismuth neodecanoate [34]. Based on these bismuth-
catalyzed urethane chemistries, bismuth catalysts were investigated as new catalysts for
trans-urethane polymerization. This paper demonstrates that safe BiCl3 effectively cat-
alyzes the self-polycondensation of a bishydroxyurethane with an activity comparable to
Bu2SnO and higher selectivity.

2. Materials and Methods
2.1. Materials

All the reagents were used as received. EC (>98%), dimethyl sulfoxide (DMSO) su-
per dehydrated (>99.0%, water content < 0.02%), bismuth subsalicylate (Bi composition
= 55.6–59.2%), bismuth oxide (>98%), and Bu2SnO (>85%) were purchased from Wako
Pure Chemical (Osaka, Japan). Dehydrated xylene (>80%, water content < 0.003%), N,N-
dimethylformamide (DMF) super dehydrated (>99.5%, water content < 0.001%), N-methyl-
2-pyrolidinone (NMP) (>99.0%), and bismuth hydroxide nitrate (residue on ignition as
Bi2O3 = 79.0–82.0%) were purchased from Kanto Chemical (Tokyo, Japan). BiCl3 (>97.0%),
BiPh3 (>98.0%), 1,6-hexanediamine (>99.0%) were purchased from Tokyo Chemical Indus-
try (Tokyo, Japan). BiF3 (>99.99%), BiBr3 (>98%), Bi(OCOCH3)3 (>99%), and Bi2(SO4)3
(>90.0%) were purchased from Sigma Aldrich (St. Louis, MO, USA). Bi(OH)3 (>90.0%)
was purchased from Nakarai Tesque (Kyoto, Japan). The bishydroxyurethane monomer,
bis(2-hydroxyethyl)hexane-1,6-diyldicarbamate (BHU6), was prepared as reported from
EC and 1,6-hexanediamine (Figure S1) [10,11].

2.2. Measurements
1H NMR spectra were measured on a JEOL (Tokyo, Japan) ECX-400 (400 MHz) spec-

trometer using tetramethylsilane as an internal standard. The 13C NMR spectrum was
measured on a JEOL (Tokyo, Japan) ECX-500 (125 MHz) spectrometer using d6-DMSO as
an internal standard. d6-DMSO (Kanto Chemical) was used as the solvent. Fourier-transfer
infrared (IR) spectra were measured on a Shimadzu (Kyoto, Japan) IRSpirit spectrometer
equipped with a Shimadzu QATR-S attenuated total reflection accessory with a diamond
disk with a step of 1 cm–1. Differential scanning calorimetry (DSC) measurements were
performed on a Seiko (Tokyo, Japan) DSC-220 instrument under a nitrogen atmosphere
(10 ◦C min−1, N2, second heating scan).

2.3. Polycondensation of BHU6 (Typical Procedure)

BHU6 (292 mg, 1.00 mmol) and BiCl3 (34 mg, 0.11 mmol, 11 mol%) were added to
a round-bottomed flask equipped with a side-arm distilling adapter, a Liebig condenser,
and a receiver. Then, the apparatus was degassed and purged with nitrogen. Dehydrated
xylene (5.0 mL) was added. The mixture was stirred at 150 ◦C for 5 h under a nitrogen
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atmosphere. The solid produced in the flask was dissolved in NMP at 100 ◦C, and the
insoluble substance (9.2 mg after drying) was removed by centrifugation at 4100–4200 rpm.
The supernatant was poured into a mixed solution of acetone (100 mL) and 1 M HCl aq.
(0.1 mL). The resulting [6,2]-polyurethane was collected by filtration and drying under
reduced pressure at 60 ◦C (219 g, yield = 95.1%, MnNMR = 5400).

3. Results
3.1. Effect of Catalyst

Bismuth catalysts (10 mol% to BHU6) were screened for the self-polycondensation of
a bishydroxyurethane obtained from the reaction of 1,6-hexanediamine with EC (BHU6)
using xylene as a solvent at 145 ◦C for 3 h under a nitrogen atmosphere (Scheme 1, Table 1).
The results were compared with a previously reported reaction using Bu2SnO as a cata-
lyst [10,11]. The concentration of catalysts was determined according to previous studies
that used 5 or 10 mol% of Sn catalysts [10,11]. The molecular weights of the resulting [6,2]-
polyurethane were evaluated by 1H NMR spectroscopic analysis since [6,2]-polyurethane
is insoluble in typical solvents for size exclusion chromatography (SEC) at ambient tem-
peratures. The molecular weights were estimated from the integral ratios of the peaks of
the terminal oxyethylene unit and methylene protons adjacent to the nitrogen atom in the
repeating unit. Some examples are indicated in the Supplementary Materials. However,
this calculation may overestimate the molecular weights in the later stages, where cyclic
polymers/oligomers with different structures are produced, as described later.
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Table 1. Effect of catalyst in self-polycondensation of BHU6.

Entry Catalyst Yield (%) a MnNMR
b Urethane/Urea b

1 BiCl3 59 1600 97/3
2 BiBr3 74 2100 95/5
3 Bismuth subsalicylate 66 2000 87/13
4 Bi(OH)3 51 1400 92/8
5 BiF3 45 1400 88/12
6 Bi2O3 23 1400 91/9
7 Bi(OCOCH3)3 25 1300 88/12
8 Bi2(SO4)3 20 1300 99/1
9 Bismuth hydroxide nitrate 16 1300 97/3
10 BiPh3 1 860 39/61
c.f. Bu2SnO 82 2400 86/14

Conditions: BHU6, 1 mmol; catalyst, 10 mol%; xylene, 5 mL; 145 ◦C; 3 h; N2. a Isolated yield after precipitation
into acetone. b Determined by 1H NMR spectroscopy (400 MHz, d6-DMSO).

BiCl3 gave polyurethane with lower yield and molecular weight than Bu2SnO, while
resulting in the highest urethane selectivity among the examined catalysts (Entry 1). BiBr3
gave polyurethane with the highest yield and molecular weight among the examined bis-
muth catalysts (Entry 2). The urethane selectivity was also high. Bismuth subsalicylate was
comparable to BiCl3 and BiBr3 in yield and molecular weight but had a poorer selectivity
(Entry 3). Other bismuth compounds resulted in significantly lower yields and selectivity
(Entry 4–10). This screening suggests that BiBr3 and BiCl3 are the superior catalysts among
the bismuth catalysts investigated. BiBr3 gave polyurethane with the highest molecular
weight in the highest yield. BiCl3 resulted in the highest selectivity, and its price is approxi-
mately 1/5 lower than BiBr3. Further optimization studies used BiCl3 because of its better
performance under the optimized conditions, as described later. Another advantage of
BiCl3 is its low toxicity. The oral 50% lethal dose (LD50) of BiCl3 for rats is 3334 mg/kg [35],
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which is lower than those of Bu2SnO (500 mg/kg) [36] BaO (418 mg/kg) [37], zinc acetate
(664 mg/kg) [38], and even NaCl (3000 mg/kg) [39], Ti(OBu)4 (3122 mg/kg) [40] and
Ti(OPri)4 (7236 mg/kg) [41]. In addition, BiCl3 does not exhibit cytotoxicity in human thy-
roid cancer cells and mitigates the cytotoxicity of gallic acid, probably by complexation [28].
To the best of our knowledge, the toxicity of BiBr3 has not been reported.

3.2. Mechanism of Catalysis

The catalytic mechanism of BiCl3 was investigated by IR spectroscopy (Figures 1 and S2).
The IR spectrum of the 2:1 mixture of BHU6 and BiCl3 showed νN-H and νC=O shifts. The
νC=O peak of BHU6 was observed at 1683 cm−1 with a minor shoulder peak at 1651 cm−1.
The major and shoulder peaks are assigned to hydrogen-bonded ordered and disordered
carbonyl groups, respectively [42]. Absorption assignable to free carbonyl groups above
1700 cm–1 was unobservable. The even number chain between the urethane groups and
symmetrical structure is suitable for intermolecular hydrogen bonding. In the spectrum of
the mixture of BHU6 and BiCl3, the νC=O absorption clearly shifted to a lower wavenumber
with a peak top at 1644 cm−1. This shift indicates the strong coordination of the carbonyl
group to BiCl3, which is more Lewis-acidic than active protons in BHU6. Furthermore,
the νN-H peak of BHU6 was observed as a sharp absorption around 3324 cm−1, while
that of the mixture of BHU6 and BiCl3 overlapped with a broad νO-H peak at a higher
wavenumber (3376 cm−1). This fact also indicates that the N-H proton was released from
hydrogen bonding between BHU6 by the interaction between BHU6 and the Lewis acidic
BiCl3. The strong activation of the carbonyl group by BiCl3 is a probable driving force of
the nucleophilic substitution.
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Various Bi(III) compounds have been examined for the development of non-toxic and
inexpensive catalysts [43–47]. For activation of carbonyl groups by BiCl3, the activation of
the aldehyde group for an aldol-type addition of a silyl enol ether [43] and Friedel–Crafts
reaction via activation of acid halides and anhydrides [44,47] were reported. The activation
of the carbonyl group in benzoic anhydride was confirmed by 13C NMR spectroscopic
analysis [47].
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The IR spectrum of a 2:1 mixture of BHU6 and Bu2SnO (Figure 1) differs from that
of BHU6 and BiCl3, implying different mechanisms. In contrast to the BiCl3 catalysis,
the wavenumbers of the absorption of the νN-H (3326 cm−1) and νC=O(ordered H-bonded)
(1684 cm−1) peaks in the spectrum of the mixture were almost identical to those in the
spectrum of BHU6 (3324 and 1683 cm−1, respectively). In addition, the absorption of
the νC=O(disordered H-bonded) remained observable at 1651 cm−1. Thus, Bu2SnO negligibly
interacted with BHU6. Although the catalytic mechanism for Bu2SnO is unclear [48], the
transurethanization mechanisms of the Bi- and Sn- catalysis probably differ despite the
similar reactivity.

3.3. Optimization of Conditions
3.3.1. Effect of Time and Temperature

The polymerization conditions were optimized to attain higher yields and molecular
weights. To optimize the polymerization temperature and time, we performed BiCl3-
catalyzed self-polycondensation of BHU6 at different polymerization temperatures (140,
145, 150, 155, and 160 ◦C) and polymerization times (1, 3, and 5 h). Before discussing the
results of the polycondensation, the aspect of the reaction mixture during the polymeriza-
tion is described. In the initial stage, the mixture was in a liquid–liquid separation state
due to the insolubility of molten BHU6 in xylene at a polymerization temperature higher
than the melting point of BHU6. As the polycondensation progressed, solid polyurethane
precipitated. In the late stages of the reaction, most parts of polyurethane precipitated, but
fewer parts were dissolved in the supernatant.

The polymerization temperature and time were optimized based on yield, conversion,
average molecular weight, and the selectivity of the formation of urethane to urea formed
by a side reaction. The conversion is the rate of conversion of the hydroxyethyl group to the
repeating unit. The time course of conversion was calculated from the integral ratio of the
terminal hydroxyethyl group to the repeating unit in the 1H NMR spectra of the precipitates
before purification, which are the main components of this system. The average molecular
weight and the ratio of urethane to urea groups were calculated from the 1H NMR spectra
of the products obtained by reprecipitation of solutions of both the supernatant and the
precipitate in NMP into acetone. The formation of urea groups has been previously shown
to occur by the nucleophilic substitution of urethane moieties by amines, which is produced
by the tail- and backbiting reaction of the terminal hydroxy group. Figure 2 shows a typical
1H NMR spectrum of [6,2]-polyurethane obtained by polymerization at 150 ◦C for 5 h,
and the assignments agreed well with the previous report [11]. The 13C NMR spectrum
(Figure S3) and the thermal behavior (Tg = 26 ◦C and Tm = 164 ◦C, Figure S4) are also
consistent with [6,2]-polyurethane synthesized by Sn-catalyzed polycondensation and
isocyanate-based polyaddition [10,11], supporting the formation of the identical polymer
with sufficient purity.

The conversion increased with increasing temperature and time up to 150 ◦C (Figure 3).
On the other hand, at temperatures higher than 150 ◦C, the conversion rate at 1 h was
almost the same as that at 150 ◦C, but the conversion rate did not increase as time was
extended, and the conversion rate at 5 h was lower than the rate at 150 ◦C.

As with the conversion, the yield increased with increasing temperature and time up
to 150 ◦C. Above 155 ◦C, the yield at 1 h was comparable to that at 150 ◦C but did not
increase with time, resulting in the highest yield of polyurethane at 150 ◦C for 5 h (Figure 4).

The number-average molecular weights of the polymers obtained at 1 h tended to
increase with temperature (Figure 5). On the other hand, at 3 or 5 h, the molecular weight
became highest at 150 ◦C, and the molecular weights significantly lowered above 155 ◦C.
As a result, the highest molecular weight polyurethane was obtained at 150 ◦C and 5 h.
Yields and molecular weights were correlated with conversions, since the conversion of the
terminal groups grew polyurethane with the increase in molecular weight.
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The ratios of the urea group were suppressed to within 3% at all temperatures at 1 h.
Below 150 ◦C, the urea ratios slightly increased with time but were within 5% (Figure 6).
On the other hand, above 155 ◦C, the urea ratios increased significantly with increasing
time in a similar manner to the previously reported Sn-catalyzed polymerizations [11,49].
As a result of these optimization experiments, polycondensation at 150 ◦C for 5 h gave
the polyurethane with the highest molecular weight and urethane selectivity in the high-
est yield.
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The molecular weights and urea ratios were correlated. In the polymerizations for 1 h,
the molecular weight did not decrease even at 160 ◦C, and the urea ratio stayed lower than
3%. On the other hand, in the polymerizations for 3 and 5 h, molecular weights lowered
above 150 ◦C, and the urea ratios increased significantly from 3–5% at lower temperatures
to 7–18%. This relationship suggests that the formation of urea may inhibit the increase in
molecular weight.

3.3.2. Discussion on the Mechanism

The results described above are discussed based on the mechanism of this polycon-
densation (Figure 7). The primary reaction in this system is transurethanization [45], in
which the terminal hydroxy group of a monomer or polymer nucleophilically attacks the
carbonyl carbon of another monomer or a polymer chain end, and this transurethanization
reaction extends the polymer chain (reaction A). On the other hand, ureation occurs as
a side reaction in later stages and at higher temperatures [10,11,13,18]. This ureation is
initiated by a tail-biting reaction, in which the terminal hydroxy group intramolecularly
attacks the urethane carbonyl group, forming a polymer with an amine terminus that is
more reactive than the hydroxy terminus and EC (reaction B). A nucleophilic attack of the
amine terminus on a urethane group in another polymer chain results in chain extension
(reaction C) or disproportionation (reaction D), accompanied by the formation of polymers
with urea groups. However, since the average molecular weight remains almost identical
after disproportionation, the intermolecular ureation of the amine and urethane hardly
interferes with the increase in molecular weight. On the other hand, if the amine terminus
generated by backbiting of the hydroxy terminus intramolecularly attacks a urethane car-
bonyl group and further backbites, this reaction splits the chain into a cyclic oligomer with
urethane or urea groups and a linear oligomer with terminal amine or terminal alcohol
groups (reaction E). As a result, the polymer chain shortens. Therefore, intramolecular
backbiting accompanied by ureation can be assumed to cause the inhibition of molecular
weight increase.
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Next, the reason why ureation occurred in the later stages of polymerization at
high temperatures is discussed. As mentioned above, the solvent and monomer are
in a liquid–liquid separation state in the initial stage of polymerization. As the polycon-
densation proceeds to form polymers with shorter chains, their polarity becomes lower
than that of the monomer, and their solubility improves. However, as the polymeriza-
tion proceeds to form longer polymers, the polymers become insoluble and precipitate
out due to entropic disadvantages and increased crystallinity. Since the melting point
of the polymer is 150–160 ◦C, the polymerization temperature below 150 ◦C, which is
lower than the melting point, results in precipitation of the crystallized polymers. Both
transurethanization extending polymer chain and ureation shortening polymer chain are
suppressed for the precipitated polymers. This crystallization will be an essential factor in
inhibiting ureation at low temperatures. In contrast, when the polymerization temperature
is above 155 ◦C, the precipitated polymer is in a molten state and, as a result, the extension
of the molecular chain continues. However, in the late stage, the probability of reaction
between mostly consumed hydroxy termini becomes significantly lower, and the hydroxy
termini backbite to produce amine termini, which causes the scission of polymer chains
via ureation. In other words, polycondensation at low temperatures stops the change in
molecular weights by precipitation of polymers with sufficient length for crystallinity. In
contrast, polycondensation at high temperatures causes a decrease in molecular weight
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due to continuous reactions of molten terminal groups, including ureation-induced chain
scission, in a similar manner to reported polycondensations conducted at temperatures
higher than the melting points of polymers [10,11].

The formation of urea is a possible factor in the deactivation at higher temperatures.
Lewis acid catalysts are not active in a polyurea synthesis [50] via ureation of diurethanes,
probably due to the strong coordination of the urea group on the Lewis acids.

3.3.3. Effect of Solvent

The effect of solvents on the self-polycondensation of BHU6 was investigated using
DMF and DMSO, solvents used in isocyanate-based polyurethane synthesis, and anisole,
an aromatic ether with a similar boiling point to xylene (Table 2). Polymerization did not
proceed in DMF or DMSO (Entry 1 and 2) despite the good solubilities of BHU6 and [6,2]-
polyurethane in these polar solvents. A probable reason is the loss of catalytic activity of
these highly polar solvents tightly coordinating with Lewis-acidic BiCl3. Another possible
factor is the high reaction temperature degrading DMF and DMSO to give dimethylamine
and disproportionation products of DMSO, which also coordinate with BiCl3 to deteriorate
its catalytic activity.

Table 2. Effect of solvents on self-polycondensation of BHU6 catalyzed by BiCl3.

Entry Solvent Yield (%) a MnNMR
b Urethane/Urea b

1 DMF No polymerization
2 DMSO No polymerization
3 Anisol 48 1800 89/11

c.f. Xylene 95 5400 96/4
Conditions: BHU6, 1 mmol; BiCl3, 10 mol%; solvent, 5 mL; 150 ◦C; 5 h; N2. a Isolated yield after precipitation into
acetone. b Determined by 1H NMR spectroscopy (400 MHz, d6-DMSO).

Polycondensation in anisole proceeded through a liquid–liquid separation state in the
early stages and produced [6,2]-polyurethane as a precipitate in the late stages (Run 3), as
did the polycondensation in xylene. However, the yield, molecular weight, and selectivity
of the resulting polyurethane were lower than those of xylene. The polarity of anisole,
higher than xylene, while not as high as those of DMF and DMSO, probably resulted in
coordination with BiCl3, which competes with the activation of BHU6 with BiCl3. Therefore,
polar solvents are unsuitable for this polycondensation due to the deactivation of BiCl3 by
coordination, and xylene was the best azeotropic solvent among the solvents examined.

The amount of xylene, which proved to be the best azeotropic solvent, was optimized
(Table 3). The appearance of polyurethane obtained at the end of polymerization differed
with the solvent amount. Polyurethane obtained using 3 L/mol of xylene was molten (Entry
5), but those obtained using higher amounts of xylene were solid (Entry 1–4). This difference
was attributed to the lower molecular weight and urethane selectivity of the polyurethane
obtained in Entry 5, which was less crystallizable than the others. This unsuccessful result
may be attributed to the insufficient azeotropic removal of ethylene glycol due to the
insufficient amount of xylene, which inhibited polycondensation despite the advantages in
reaction progression in the molten state. This cessation of transurethanization led to the
ureation, and the highest urea ratio in the polyurethane obtained using 3 L/mol of xylene
was probably responsible for the synergistic reduction of the melting point.

The increase in solvent volume increased yield, molecular weight, and reaction selec-
tivity. This improvement is attributable to the accelerated azeotropic removal of ethylene
glycol, which enhanced the polycondensation. However, further improvement was not
achieved by increasing the amount above 5 L/mol. This limitation may originate from
the precipitation of the product after a certain degree of growth, which inactivate both
the polycondensation and side reactions. This investigation revealed the optimal solvent
volume to be 5 L/mol.
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Table 3. Effect of amount of xylene on self-polycondensation of BHU6 catalyzed by BiCl3.

Entry Xylene/BHU6 (L/mol) Yield (%) a MnNMR
b Urethane/Urea b

1 15 91 4700 97/3
2 10 91 4600 90/10
3 8 89 3400 93/7
4 5 95 5400 96/4
5 3 67 2300 87/13

Conditions: BHU6, 1 mmol; BiCl3, 10 mol%; 150 ◦C; 5 h; N2. a Isolated yield after precipitation into acetone.
b Determined by 1H NMR spectroscopy (400 MHz, d6-DMSO).

3.3.4. Effect of Catalyst Amount

Finally, the amount of catalyst was optimized (Table 4 and Figures S5–S7). Increasing
the catalyst amount from 5 mol% to 10 mol% improved yield and molecular weight without
deteriorating the selectivity. However, a further increase in catalyst amount to 15 mol%
resulted in a slight decrease in yield and molecular weight. This lowered molecular weight
is consistent with the higher composition of the urea group, correlating with the scission of
the polymer chains.

Table 4. Effect of amount of BiCl3 on self-polycondensation of BHU6 catalyzed by BiCl3.

Entry BiCl3 (mol%) Yield (%) a MnNMR
b Urethane/Urea b

1 5 91 3700 96/4
2 10 95 5400 96/4
3 15 90 5100 94/6

Conditions: BHU6, 1 mmol; xylene, 5 mL; 150 ◦C; 5 h; N2. a Isolated yield after precipitation into acetone.
b Determined by 1H NMR spectroscopy (400 MHz, d6-DMSO).

3.3.5. Polycondensation under Optimized Conditions Using BiCl3, BiBr3, and Bu2SnO

We performed polycondensation of BHU6 under conditions optimized for the BiCl3
catalyst system using BiBr3 and Bu2SnO (Table 5), which gave good results in the catalyst
screening described above (Table 1). BiBr3 resulted in a lower urethane selectivity than BiCl3,
as per the conditions mentioned above (Entry 1). The formation of the urea group probably
reduced the yield and molecular weight. Bu2SnO also had a lower urethane selectivity
(Entry 2), although the molecular weight and yield of the polymer were almost comparable
to those of BiCl3. These number-average molecular weights are higher than those of [6,2]-
polyurethane obtained by using zinc acetate (Mn = 2591) and titanium tetraisopropoxide
(Mn = 863) measured by SEC eluted with hexafluoro-isopropanol [13]. A plausible factor
is the higher selectivity of the BiCl3 catalysis than the Zn- and Ti-catalysis, which results
in higher urea contents (11%) [13]. Since the upper limit of molecular weight attainable in
this polycondensation is the molecular weight at which sufficient crystallization occurs,
catalysts with adequate activity and selectivity will give comparable results. Thus, BiCl3, a
Bi catalyst with high selectivity and activity, showed comparable ability to the previously
reported Bu2SnO.

Table 5. Effect of catalyst on self-polycondensation of BHU6 catalyzed by BiCl3 under conditions
optimized for BiCl3.

Entry Catalyst Yield (%) a MnNMR
b Urethane/Urea b

1 BiBr3 90 4000 93/7
2 Bu2SnO 95 4900 91/9

c.f. BiCl3 95 5400 96/4
Conditions: BHU6, 1 mmol; catalyst, 10 mol%; xylene, 5 mL; 150 ◦C; 5 h; N2. a Isolated yield after precipitation
into acetone. b Determined by 1H NMR spectroscopy (400 MHz, d6-DMSO).
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4. Conclusions

This work demonstrated the excellent catalytic activity of BiCl3 for the self-polycon-
densation of BHU6 through the screening of various Bi catalysts and optimization of the
conditions. The catalytic activity and price of BiCl3 are comparable to those of Bu2SnO
with high activity among authentic catalysts. Its toxicity is significantly lower than Sn, Zn,
and Ba catalysts. The high selectivity and low cost are also advantages. BiCl3 is, therefore,
a promising green alternative to Sn-based catalysts. The effectiveness of the BiCl3 catalyst
will contribute to the development of green non-isocyanate polyurethane synthesis by
expansion to polycondensation with other hydroxyurethanes and diols.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym16081136/s1, Figure S1: 1H NMR spectrum of BHU6; Figure S2: Full
range FTIR spectra of BHU6, catalysts, and their mixtures; Figure S3: 13C NMR spectrum of [6,2]-
polyurethane; Figure S4: DSC curve of [6,2]-polyurethane; Figure S5. 1H NMR spectrum of [6,2]-
polyurethane obtained in Entry 1 in Table 4; Figure S6. 1H NMR spectrum of [6,2]-polyurethane
obtained in Entry 2 in Table 4; Figure S7. 1H NMR spectrum of [6,2]-polyurethane obtained in Entry
3 in Table 4.
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