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Abstract: Self-consistent field (SCF) theory serves as a robust tool for unraveling the intricate behavior
exhibited by soft polymeric materials. However, the accuracy and efficiency of SCF calculations are
crucially dependent on the numerical methods employed for system discretization and equation-
solving. Here, we introduce a simple three dimensional SCF algorithm that uses real-space methods
and adaptive discretization, offering improved accuracy and efficiency for simulating polymeric
systems at surfaces. Our algorithm’s efficacy is demonstrated through simulations of two distinct
polymeric systems, namely, block copolymer (BCP) films and polymer brushes. By enhancing spatial
resolution in regions influenced by external forces and employing finer contour discretization at
grafting chain ends, we achieve significantly more accurate results at very little additional cost,
enabling the study of 3D polymeric systems that were previously computationally challenging. To
facilitate the widespread use of the algorithm, we have made our 1D-3D SCF code publicly available.

Keywords: SCF; BCP; brush; adaptive; film; polymer

1. Introduction

Self-assembled copolymer materials have diverse applications in both industry and
daily life due to the wide and complex spectrum of possible morphological patterns into
which the copolymer molecules may assemble spontaneously. Self-consistent field (SCF)
theory, which employs a simplified chain representation and a mean-field approximation
to predict the spatial distribution of polymer segments, has proven to be a reliable and
powerful tool for predicting the equilibrium morphology of many polymeric systems [1–3].

The SCF calculation iteratively computes space-dependent polymer density and asso-
ciated potential fields from chain statistics propagators until the self-consistent condition is
satisfied [4]. The chain propagators satisfy nonlinear modified diffusion equations in the
variables space and chain contour (“time”), which have to be numerically solved using
spectral or real-space methods. Pure spectral methods based on, e.g., Fourier series-based
spectral solutions, have the advantage that they do not require a discretization of the chain
contour. Matsen and coworkers have demonstrated their capability in accurately construct-
ing morphology phase diagrams for periodic block-copolymer melts [3,5–7]. However,
they demand prior knowledge of morphology, assuming symmetry in the considered
phase, which limits their applicability for discovering new phases [8–11]. To address these
limitations, the pseudo-spectral method was introduced, which does rely on a discretiza-
tion of the contour and switches between Fourier and real-space representations of the
system, utilizing the Fourier representation for the evaluation of gradient terms and the
real-space representation for the evaluation of nonlinear self-consistent fields [10,12]. In
contrast, pure real-space methods discretize the diffusion equation within a simulation
box and solve for the solution using finite difference schemes [8,13–16]. This approach
is particularly advantageous for complex polymer systems characterized by symmetry
breaking or non-periodic boundary conditions, but can be computational expensive in
three dimensions. A comprehensive exploration of the advantages and disadvantages of
these methods can be found in Ceniceros and Frederickson’s detailed review [11].
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Our primary objective in this paper is to enhance the efficiency and accuracy of real-
space methods, which heavily rely on the discretization of space/chain contours. The
solution of modified diffusion equations in the SCF context typically employs lower-order
finite difference; however, unless the discretization is very fine, the accuracy and stability of
SCF calculations can suffer, especially when dealing with polymer systems containing sharp
interfaces [17,18]. For instance, in simulating polymer films, in which the substrate/air
interface is often represented by a Dirichlet boundary condition and surface interactions
with the polymer are introduced artificially through an external potential field, numerical
inaccuracies can significantly affect the calculated free energy of the film [19]. Similarly,
in the context of polymer brushes [14,20], ensuring proper attachment of the grafting end
to the substrate involves fixing an end segment on one space grid using a Dirac delta
function as the initial condition for the modified diffusion equations [2,14,21]. Achieving
convergence to an accurate SCF solution necessitates much finer contour discretization
compared to free chains, demanding additional computational effort.

The trade-off between spatial discretization and computational efficiency presents a
critical challenge, especially for systems requiring higher-dimensional calculations such
as cylinders and spheres in thin copolymer films [19,22,23] or particle-grafted chain poly-
mer brushes with angular or radial-dependent morphologies [21,24,25]. To address this
challenge, our paper introduces a simple scheme that adaptively increases discretization
in the spatial domain where external forces are present and refines the discretization in
the contour domain at the grafting point. This approach is similar in spirit to other more
sophisticated adaptive methods that have recently been proposed in the literature, such
as the use of Oc-Tree data structures [26], polygonal meshes [27], and finite element meth-
ods [16,28]. By optimizing the spatial resolution according to the system’s composition,
our approach achieves very high accuracy while keeping computational resources low
compared to uniform finite-difference grid methods. In the following sections, we evaluate
and demonstrate the effectiveness of our adaptive scheme with two test cases of polymeric
systems, namely, block copolymer (BCP) films and polymer brushes.

2. Background: SCF Equations for Two Test Cases

We use the SCF theory for inhomogeneous systems of Gaussian polymers [29]. In the
following, we list only the most important equations relevant for our test systems; readers
may refer to the literature for the details of the derivations [30].

2.1. Test Case 1: Diblock Copolymer Film

We consider an incompressible melt of asymmetric AB diblock copolymer molecules
with a degree of polymerization N, which is confined between two flat surfaces. We assume
that the majority block A occupies a volume fraction f of each diblock copolymer chain
and that both blocks share the same statistical segment length b. In the grand canonical
ensemble, the free energy takes the following form [19]:

F
kbT

“ ´ eµQ ` ρc

ż

dr
„

χNϕAprqϕBprq `
1
2

κNpϕAprq ` ϕBprq ´ 1q
2
ȷ

´ ρc

ż

drrωAprqϕAprq ` ωBprqϕBprqs

` ρc

ż

drHprqNrΛAϕAprq ` ΛBϕBprqs (1)

where µ “ µ0 ` ln G is the chemical potential, G “ ρcR3
g is the rescaled dimensionless

copolymer density in the bulk, ρc “ n{V is the average molecular number density (with
n being the total number of copolymer molecules and V the volume of the film), Rg “
a

Nb2{6 is the radius of gyration of the noninteracting copolymer chain, and serves as the
spatial length unit throughout the paper, Q is the partition function of a single copolymer
chain in the mean field of the other chains, ϕAprq and ϕBprq are the local concentrations of
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the A and B segments at a given point r, and χ is the Flory–Huggins parameter specifying
the incompatibility of the two segments. The incompressibility of the BCP melt is ensured
by the inverse of the isothermal compressibility parameter κ. The last term on the right-
hand side of Equation (1) describes the interaction energy with the substrate/interface,
with ΛA,BHprq being the surface field. We assume symmetric boundary wetting conditions;
the surface interaction energies with A and B segments are ΛA and ΛB, respectively. The
surface field

Hprq “

$

’

&

’

%

p1 ` cospπz{ϵqq 0 ď z ď ϵ

0 ϵ ď z ď h ´ ϵ

p1 ` cospπph ´ zq{ϵqq h ´ ϵ ď z ď h

(2)

is applied within a depth of ϵ from the two surfaces, where h is the distance between the
two surfaces. By finding the extremum of the free energy in Equation (1) with respect to
ϕA,Bprq, we obtain the fields experienced by the A and B segments:

ωAprq

N
“ χϕBprq ` κrϕAprq ` ϕBprq ´ 1s ` ΛA Hprq, (3)

ωBprq

N
“ χϕAprq ` κrϕAprq ` ϕBprq ´ 1s ` ΛBHprq. (4)

The partition function for a single chain is simply Q “
ş

dr qpr, sqq:pr, 1 ´ sq, with
qpr, 1 ´ sq and q:pr, sq being the partial partition functions for the first Ns and last Np1 ´ sq

segments. Note that Q does not depend on the specific choice of s. The propagators qpr, sq

and q:pr, 1 ´ sq obey the modified diffusion equation

Bqpr, sq

Bs
“ ∆qpr, sq ´ ωprqqpr, sq (5)

with initial conditions qpr, 0q “ 1 and q:pr, 1q “ 1. Here, ∆ represents the Laplacian, r
denotes the spatial coordinate in units of Rg and 0 ď s ď 1 represents the chain coordinate
of the coarse-grained chain segment in the units of the chain contour length Lc. The field
ωprq ” ωAprq for 0 ď s ď f and ωprq ” ωBprq for f ă s ď 1. The local concentrations of the
A and B segments are simply

ϕAprq “
1
ρc

eµ
ż f

0
dsqpr, sqq:pr, 1 ´ sq, (6)

ϕBprq “
1
ρc

eµ
ż 1

f
dsqpr, sqq:pr, 1 ´ sq. (7)

Starting with an initial guess of the field in Equation (5), we first solve the prop-
agator qpr, sq and q:pr, 1 ´ sq. Next, the new local concentrations ϕAprq and ϕBprq are
obtained from Equations (6) and (7), respectively. Finally, these concentrations are used
in Equations (3) and (4) to solve for the new fields and the old and new fields are mixed
according to a prescription of choice [31]. This is repeated until convergence to either a
metastable or an equilibrium state.

2.2. Test Case 2: Homopolymer Brush

We consider a monodisperse brush solution in which n linear homopolymer chains
with a degree of polymerization N are grafted onto a flat substrate at one end. In the
canonical ensemble, the free energy of such a system is provided by

F{kBT “ ρo

ż

dr
„

1
2

νϕprq2 ` ΛHprqϕprq ´ ϕprqωprq{N
ȷ

´ nplnpρoQ{nq ` 1q, (8)



Polymers 2024, 16, 1228 4 of 11

where ν is the excluded-volume parameter. Similar to the BCP film system, the interactions
between the segments and the substrate where the chains are grafted are imposed by an
external field Hprq, as in Equation (2). The self-consistent equations are determined by the
extremum of the free energy, leading to

ωprq{N “ νϕprq ` ΛHprq, (9)

ϕprq “
nN
Qρo

ż 1

0
ds qpr, sqq:pr, sq, (10)

Q “

ż

dr qpr, 1q. (11)

The initial conditions for such a system are provided by

qpr, 0q “ 1, (12)

q:pr, 0q “ δpz ´ gpq, (13)

where gp is the grafting point and δ is the Dirac delta function.

3. Adaptive Discretization

We solve the diffusion equation using the semi-implicit Crank–Nicolson discretization
scheme combined with the alternating direction implicit method (ADI) [32]. For simplicity,
we illustrate the method for the one-dimensional diffusion equation. Provided that the
discretization points are arranged on a grid, extension of the ADI to three dimensions is
straightforward. In one dimension, the diffusion equation reads

Bqpz, sq

Bs
“

B2

Bz2 qpz, sq ´ ωpz, sqqpz, sq, (14)

which can be discretized in s and z as

qm`1
i ´ qm

i
δsm`1

“ p∆z ´ ωiq
qm

i ` qm`1
i

2
, (15)

where qm
i ” qpzi, smq, with m “ t1, Nu being the contour steps in s with contour step

size δsm “ sm ´ sm´1 and i “ t1, nzu being the spatial steps in z with spatially varying
discretization δzi “ zi ´ zi´1. Taking the second-order approximation for the Laplacian
∆z [33], we have ∆z fi{2 « ai fi´1 ´ bi fi ` ci fi`1, with ai “ 1

δzipδzi`δzi`1q
, bi “ 1

δziδzi`1
, and

ci “ 1
δzi`1pδzi`δzi`1q

. Rearranging Equation (15), we obtain

´ aiδsm`1qm`1
i´1 ` p1 ` biδsm`1 `

ωiδsm`1

2
qqm`1

i ´ ciδsm`1qm`1
i`1

“ aiδsm`1qm
i´1 ` p1 ´ biδsm`1 ´

ωiδsm`1

2
qqm

i ` ciδsm`1qm
i`1. (16)

We can calculate the propagator qm`1
i at step m ` 1 from the propagator qm

i at step m.
The key lies in choosing proper adaptive discretization tailored to the system, which enables
gains in both computational time and accuracy.

In the thin film case, where the loss of accuracy mainly arises from the external
potential added to mimic interactions with the substrate or air interface, we employ finer
discretization only in the z direction where external force is present. We keep a uniform
contour discretization where δs{Lc “ 1{N. Our approach involves adaptive discretization
with a total of nz grids, achieved through either a cosine function [16] or a step function. The
former has a form of δzi “

Lz
2

”

cosp i´1
nz

πq ´ cosp i
nz

πq

ı

for i “ t1, nzu, providing continuous
discretization. The latter uses a finer δzs “ ϵ

αsnz
near the surface (z ď ϵ or Lz ´ ϵ ă z ď Lz)
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and a coarser δzb “
Lz´2ϵ

p1´2αsqnz
for the rest. The latter provides finer discretization; here, αs

represents the fraction of grids allocated to the surface region ϵ. Throughout this work, we
refer to these adaptive schemes as “cos” and “step”, respectively.

For polymer brushes, additional adaptive contour discretization turns out to be
crucial. We utilize δsm “

”

cosp m´1
2N πq ´ cosp m

2N πq

ı

, m “ t1, Nu to discretize the con-
tour. Similar to the approach for thin films, we employ two Dirichlet wall boundaries
in the z direction. The separation Lz is chosen to be greater than the brush height to
ensure that the brush’s free end is maintained. The grafting point of the polymer is
located at a distance of gp “ 0.05 from the substrate. Initially, we employ a uniform
grid spacing of δzg “ 0.001 for z ď 2gp, utilizing ng “ 100 grids to ensure fine dis-
cretization at the grafting site. Subsequently, we gradually increase the discretization by
δzi “ δzg `

Lz´2gp
2

”

cosp i´1
2pnz´ngq

πq ´ cosp i
2pnz´ngq

πq

ı

, i “ t1, nz ´ ngu.

4. Results
4.1. Block Copolymer Film

We first demonstrate the effectiveness of our adaptive discretization scheme in com-
puting the free energy of BCP films, specifically focusing on lamellar-forming BCP films
(with f “ 0.5) as an example. Figure 1a–c illustrates the calculated free energy as a function
of the film thickness using three different discretization schemes.
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Figure 1. (a–c) SCF-calculated free energy F{A versus the thickness of the film Lz{Rg when using
the three different discretization schemes described in the text. The data are generated using f “ 0.5,
µ0 “ 2.55, χN “ 20, κN “ 25, and ΛA “ ΛB “ 60. (d) Energy shift per area (∆F{A) as a func-
tion of the averaged space discretizations δzav for three different strengths of surface interactions
ΛA “ ΛB “ 0, 60 and 120, where ∆F “ Fp∆zq ´ Fp0q, with Fp0q being the extrapolated value for
Nz “ 8. The empty circle (˝) and solid triangle (İ) symbols represent uniform discretization and
adaptive “cos” discretization, respectively, while the red horizontal line indicates ∆F “ 0. (e) En-
ergy shift per area (∆F{A) as a function of contour discretizations δs{Lc with ΛA “ ΛB “ 60. The
empty circle (˝), square (˝), and triangle (▽) indicate uniform, cos-adaptive, and step-adaptive dis-
cretization, respectively. The solid lines of different colors in (d,e) are polynomial fits of ∆F using
f pxq “ ax ` bx2 ` cx3 for different surface interaction strengths and δzav.
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In the case of uniform discretization, the energy curves diverge for varying discretiza-
tions, denoted by different grid numbers. These discrepancies become more pronounced for
larger thicknesses due to the coarser discretization. In contrast, our adaptive scheme con-
sistently generates the same free energy curves regardless of the number of discretization
grids used. Although a minor discrepancy arises for larger thicknesses in the step-adaptive
case, the overall performance remains superior to that of the uniform case.

Figure 1d illustrates the inaccuracies versus discretization, quantified by the shift
in energy from the extrapolated energy at spatial discretization δz Ñ 0. To facilitate
comparison with the uniform case, the energy shift in the adaptive case is plotted versus the
averaged discretization, defined by δzav ” Lz{nz. In the uniform case, the energy shift can
be fitted by a cubic polynomial, which converges to zero with increased discretization. As
expected, the accuracy in the energy deteriorates more rapidly with coarser discretization
when stronger surface interactions are employed. In contrast, the cos-adaptive scheme
consistently produces highly accurate energy values for all tested discretizations, as is
evident in the data points overlapping on the zero-error baseline. While surface interaction
slightly impacts the shift in energy for larger discretizations, it is inconspicuous compared
to the uniform case.

Figure 1e plots the energy shift versus δs{Lc for three different discretization schemes
and various δzav. The fact that all the curves collapse regardless of the discretization scheme
and that δzav indicates that adaptive discretization of the space does not require special
treatment of δs. The numerical error caused by δs converges to zero when δs{Lc ă 10´3 for
all three cases.

Our SCF calculations for lamellar BCP films show a significant improvement in ac-
curacy with adaptive discretization, especially when using the cos-adaptive scheme. This
allows for coarser discretization, making SCF simulations more efficient and enabling the
investigation of multi-layered structures in thicker films.

As a further example, we studied thin films of sphere-forming BCPs. In the bulk,
prior SCF studies revealed tiny free energy differences between Hexagonally Close-Packed
(HCP) and Face-Centered Cubic (FCC) packings, showing that the HCP phase is the true
stable phase [7]. Here, we investigate whether this remains true for thin films. Unlike
in the case of thin films with lamellar or cylindrical order, the study of sphere packings
in thin films requires three-dimensional calculations and large systems, which presents a
substantial computational challenge.

Using the cos-adaptive scheme, it is possible to compute the free energy of films con-
taining three layers of spheres (Figure 1a). The close packings of FCC and HCP correspond
to ABC and ABA stackings of three layers, as illustrated by the inset drawing in Figure 2a
and the SCF-calculated density plot in Figure 1b,c. The free energy curves demonstrate
that the HCP phase remains the stable phase in films, i.e., it has the lower free energy.
Furthermore, they show that the HCP film has a smaller equilibrium thickness (free energy
minimum at h˚ “ 9.57 Rg) than the FCC film (h˚ “ 9.60 Rg).

4.2. Homopolymer Brush

Next, we consider polymer brushes. In this case, inaccuracies in SCF calculations
continue to arise due to spatial discretization errors; in addition, the SCF results turn out
to suffer from contour discretization errors as well. Specifically, implementing the delta
function to graft the chain onto the substrate demands a much smaller δs compared to free
polymer chains. Additionally, as the system approaches the strong stretching limit, which
is characterized by significant chain interactions and brush thicknesses much larger than
the radius of gyration of free chains, Rg, SCF calculations typically face convergence issues
unless a very fine contour discretization is chosen.

Figure 3a plots the energy shift as a function of the averaged spatial discretization
δzav{Rg for both uniform and adaptive spatial discretizations and a fixed contour discretiza-
tion of δs{Lc “ 0.0001. Similar to the previous example of the thin film, the calculations
perform badly in the case of uniform discretization as δz increases. This is particularly
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evident in scenarios with attractive walls, where more segments are attracted to regions
with external potential (the blue curve). Conversely, cos-adaptive δzav consistently yields
much more accurate energy calculations, as illustrated by the fact that all filled symbols
align with the zero-error baseline.

Figure 2. Spherical BCP film consisting of three layers. (a) SCF free energy per area F{A of the film as
a function of film thickness Lz. The data are generated using f “ 0.76, µ0 “ 2.25, χN “ 20, κN “ 25,
ΛA “ 60, and ΛB “ 5. The optimum thickness, which corresponds to the minimum free energy, is
marked by ‹. The inset drawing shows the grid of the FCC (ABC) and HCP (ABA) packing. The
green rectangle shows the selected periodic cell for the SCF calculation. (b,c): Three-dimensional
contour plot of the density of the B-block calculated with the SCF for HCP and FCC packings.

In Figure 3b, we compare the energy shift relative to the average contour discretization
δsav for both uniform and cos-adaptive methods; we consider various wall interactions
while maintaining a small uniform δz{Rg “ 0.002 throughout the analysis. For the case
of uniform δs, the energy shift converges to zero at around δs{Lc “ 10´5, contrasting
with 10´3 in the free chain melt case. Moreover, the SCF calculation fails to converge
beyond δs{Lc Ç 10´3 under uniform conditions. However, the adaptive δs scheme is able
to accommodate larger discretization values while consistently maintaining significantly
higher accuracy for different types of wall interactions, as shown by the empty triangles.

We further extend our calculations to the strong stretching limit. Strong Stretching
Theory (SST) predicts a parabolic density profile for the polymer [34,35]. The normalized
concentration can be written as

ϕsstpzq “
3
2

ϕo

ˆ

1 ´

´ z
L

¯2
˙

Rg

L
, (17)
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where ϕ0 “

?
6N1{2n
bρo A is the renormalization factor for the concentration and L

Rg
“

´

24Nν
π2 ϕ0

¯1{3

is the absolute thickness of the brush.
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Figure 3. (a) SCF-calculated energy shift per polymer as a function of the averaged spatial discretiza-
tion with attractive (Λ “ ´100), repulsive (Λ “ 100), and neutral (Λ “ 0) interactions with the
substrate. Here, ϕ0 “ 2 and Nν “ 1. (b) SCF-calculated free energy per polymer as a function of the
contour discretization. In (a,b), the empty circles correspond to uniform discretization in space (a) and
contour (b), while the filled triangles correspond to their counterparts using adaptive discretization.
The red horizontal line indicates zero error ∆F “ 0. The solid curves in (a,b) are fits to the function
f pxq “ ax ` bx2 ` cx3. (c) Normalized segment density ϕpzqL{ϕ0Rg as a function of z{L (see text for
definitions) at Λ “ 0. The distance is rescaled by the thickness of the brush estimated by the Strong
Stretching Theory (SST).

The SCF-calculated densities are showcased in Figure 3c. In the dilute regime, which
is characterized by small L, the SCF captures both the depletion region near the wall and
the tail at the top of the brush. As the graft density escalates, the monomer density profile
in the brush approaches the prediction of the strong stretching limit. Here, the depletion
width narrows, accompanied by a sharp concentration increase from zero. Despite nearing
the strong stretching limit, our SCF calculations using the adaptive scheme continue to
deliver accurate results. This is evident from the close alignment between the SST theory
and the red dashed curve, particularly notable at L “ 33.9.

5. Conclusions

We have proposed a method for incorporating adaptive discretization schemes in
real-space SCF calculations to improve both their accuracy and computational efficiency.
By implementing finer discretization near surfaces, where strong polymer–substrate inter-
actions occur, the proposed method effectively reduces numerical errors in the calculated
free energy. Notably, our study shows that the cos-adaptive scheme consistently achieves
superior accuracy, even with spatial discretizations larger than δzav ą 0.1, outperforming
the uniform scheme by requiring discretizations that are at least ten times smaller.

To illustrate the potential of our method, we studied the morphologies of sphere-
forming BCP films, focusing on the question of whether HCP or FCC stacking is more
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favorable. Our analysis indicates that HCP stacking is the thermodynamically stable state
in thin films, at least in the example studied by us (confinement between two attractive
surfaces); however, the free energy differences between HCP and FCC stacked films are
very small.

When looking at polymer brushes, we again found that adaptive spatial discretization
significantly enhances the accuracy of SCF calculations. In addition, adaptive discretization
of the contour length parameter turns out to be essential for obtaining accurate results
as well as for obtaining converged SCF solutions to begin with when the total number of
discretization points is low. Choosing finer values of δsav enables more subtle features to
be captured, such as the depletion region near the grafting point, which are easily over-
looked when using uniform discretization schemes, especially if δz is comparable to the
depletion width. Importantly, our adaptive scheme alleviates the computational burden
associated with brush simulations by allowing larger values of the averaged discretization
parameter δsav to be chosen, similar to the case of ungrafted chains in the bulk, without
sacrificing accuracy. This enhancement in efficiency is particularly noteworthy in view of
the fact that the costs of SCF calculations are dominated by the costs of repeatedly solving
modified diffusion equations in order to obtain the propagators q and q:. Furthermore,
our adaptive scheme remains robust in the strong stretching limit, accommodating scenar-
ios where inter-chain interactions exert substantial influence, resulting in brush heights
L " Rg. While polymer brush SCF calculations in one dimension remain feasible with
manageable computational costs even when using uniform discretization schemes, the
integration of adaptive contour discretization and spatial discretization extends the compu-
tational capabilities, facilitating SCFT calculations in two or three dimensions for intricate
morphologies [21,24,25,36,37].

In summary, our study highlights the crucial role of adaptive discretization schemes
in advancing SCF calculations, delivering significant enhancements in accuracy and com-
putational efficiency for various polymeric systems. The versatility of our simple approach
is demonstrated by two illustrative examples showcasing its applicability to problems
involving interfaces and external potentials. In general, the required accuracy of SCF
calculations depends on the specific quantity of interest. In the present paper, we have
mainly focused on the free energy, which helps to identify the true equilibrium phase from
a set of competing candidate structures. In other applications, accurate prediction of the
density profiles of specific chain segments may be more important.

We have introduced two types of adaptive discretization schemes, namely, adaptive
spatial discretization and adaptive contour discretization. Adaptive spatial discretization
is useful in all situations where density or composition profiles vary strongly within the
selected regions in space. On the other hand, adaptive contour discretization is useful
in situations where particularly strong variations of the propagator function qpr, sq are
expected for well-defined values of s as is the case, for instance, with polymer brushes
or copolymers close to junction points that connect different blocks. In general, it would
be desirable to couple spatial discretization and contour discretization. This is because
the basic equation of any SCF iteration scheme, Equation (5), has the form of a modified
diffusion equation. In such cases, the contour step should not be chosen independent of the
spatial discretization [38,39]. In fact, an upper bound for δs should typically scale with δz,
as δs „ δz1`ϵ with ϵ “ 2 [39]. Here, we have chosen a sufficiently small δs, i.e., smaller than
the upper bound. In future work, we will explore possibilities for coupling the spatial and
contour length discretizations such that the contour discretization is adjusted and becomes
finer in those regions of space where the spatial discretization is finer.

It should be noted that the term “adaptive” in the present work refers to situations
in which a specific inhomogeneous discretization scheme is chosen at the beginning of
an SCF calculation and is not changed thereafter. In fact, we would strongly recommend
not proceeding otherwise, as changing the discretization in the middle of an SCF iteration
loop is likely to result in convergence problems. However, in algorithms that involve many
successive SCF calculations, such as dynamic density functional (DDF) simulations, our
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scheme could be used to set up dynamically adaptive grids that adjust to the current state
of the polymer system.

To foster broader adoption and further refinement, we have made our SCF code
publicly available (see below). The code has a modular structure; it provides both adaptive
real-space methods and uniform discretization pseudospectral methods, as well as, in the
latter case, options to perform dynamic density functional (DDF) simulations following the
DDF models used in [40–42]. It can be applied to arbitrary mixtures of linear multiblock
copolymers, and can easily be extended to other polymer architectures as well.
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