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Abstract: The rapid development of 3D printing technology and the emerging applications of shape
memory elastomer have greatly stimulated the research of photocurable polymers. In this work,
glycerol (Gly) was polycondensed with sebacic, dodecanedioic, or tetradecanedioic acids to provide
precursor polyesters with hydroxyl or carboxyl terminal groups, which were further chemically
functionalized by acryloyl chloride to introduce sufficient, photocurable, and unsaturated double
bonds. The chemical structures of the acrylated polyesters were characterized by FT IR and NMR
spectroscopies. The photoinitiated crosslinking behavior of the acrylated polyesters under ultraviolet
irradiation without the addition of any photoinitiator was investigated. The results showed that
the precursor polyesters that had a greater number of terminated hydroxyls and a less branched
structure obtained a relatively high acetylation degree. A longer chain of aliphatic dicarboxylic
acids (ADCAs) and higher ADCA proportion lead to a relatively lower photopolymerization rate
of acrylated polyesters. However, the photocured elastomers with a higher ADCA proportion or
longer-chain ADCAs resulted in better mechanical properties and a lower degradation rate. The glass
transition temperature (Tg) of the elastomer increased with the alkyl chain length of the ADCAs,
and a higher Gly proportion resulted in a lower Tg of the elastomer due to its higher crosslinking
density. Thermal gravimetric analysis (TGA) showed that the chain length of the ADCAs and the
molar ratio of Gly to ADCAs had less of an effect on the thermal stability of the elastomer. As the
physicochemical properties can be adjusted by choosing the alkyl chain length of the ADCAs, as
well as changing the ratio of Gly:ADCA, the photocurable polyesters are expected to be applied in
multiple fields.

Keywords: photocuring; acrylated poly(glycerol-co-tetradecanedioic acid); acetylation modification;
acryloyl chloride; elastomers

1. Introduction

Photocuring refers to a curing process of a monomer, oligomer, or polymeric matrix
under light induction, where it transforms liquid matter into solid polymer network [1].
Compared to traditional thermal curing, photopolymerization technology has the advan-
tages of rapid curing speed, high efficiency, low energy consumption, no/less solvent
emission, and environmental friendliness [2,3], and it is in great demand in many fields
such as coatings [4,5], inks [6], adhesives [7], biomedical engineering [8–11], electron de-
vices [12], as well as in the construction industry, automobile industry, and aerospace
industry [13]. The success of photocuring critically depends on the choice of the pho-
topolymer, photoinitiator, and photoabsorber used [10]. According to reaction mechanisms,
the photocuring system can be divided into photoinitiated free radical polymerizations
and light/radiation-induced cationic polymerizations [2,14]. The former mainly includes
(methyl)acrylates [15,16] and the mercaptan/polyene system [17], while the latter mainly
refers to the epoxide and vinyl ether type. During the photocuring process, the photoinitia-
tors produce free radicals or active cations under light radiation. Then, these free radicals
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or active cations induce a polymerization of the prepolymer (oligomer) or monomer, which
form covalently cross-linked polymer networks by chain reaction [18]. The photoinitiated
free radical polymerization has played a seminal role in a variety of practical industrial
applications, and the acrylate system is one of the most common free radical photocuring
systems, which is usually composed of oligomers or prepolymers containing acrylate func-
tional groups, acrylate monomers, and free radical photoinitiators [3,19]. For example, two
photocrosslinkable polymers, poly(ethylene glycol) dimethacrylate, and poly(ethylene gly-
col) diacrylate have been used as primary materials to prepare the photoreactive solutions
with which the multi-material scaffolds were successfully fabricated [20].

While the field of free radical photocuring is well established, the types of func-
tional monomers/oligomers available for photocuring are not rich enough compared with
the traditional curing technology [1]; thus, it is difficult to prepare high-performance
materials with specific functions for various application areas. And the defective prop-
erties of photopolymers restrict their development and application in both industry and
daily life [21]. As the commonly used photosensitive substances are mostly bifunc-
tional or multi-functional monomers/oligomers [22], the vinyl end-capped modifica-
tion of functional monomers/oligomers is an efficient strategy for obtaining target pho-
tocurable materials [23]. The commonly used photoreactive end groups generally con-
tain unsaturated double bonds, such as (meth)acrylate [24,25], acryloyl [26], and acry-
lamide [27], which enable light-induced chemical crosslinking. As the (meth)acrylate-
containing monomers/oligomers possess an acrylate double bond of high reactivity in rad-
ical polymerization [3], introducing the (meth)acrylate groups to the functional monomers/
oligomers is preferred. By means of the methacrylation of chitosan with methacrylic
anhydride (MA), a photocurable chitosan-based bioink was developed for digital light
processing (DLP) three-dimensional (3D) printing, which provided a promising approach
to obtain customized bolus for radiotherapy application [9]. Si et al. [28] prepared a
methacrylate-functionalized polydimethylsiloxane (MA-PDMS) via modifying the poly-
dimethylsiloxane with photoresponsive groups (methacrylate groups). The UV-induced
curing of the methacrylate-terminated PDMS could complete within 30 s, thereby indicating
that its crosslinking rate was three orders of magnitude larger than that of conventional
thermal crosslinking. Şabani et al. [29] synthesized hyperbranched urethane acrylates
(UA/HB-Pes) by modifying the hydroxyl groups of hyperbranched polyester polyols with
urethane acrylates. It was found that the formulations containing the unsaturated oligomers
UA/HB-PEs, reactive diluents, and photoinitiators could successfully polymerize under
UV irradiation, and the resultant UV-cured films had good adhesion and high gloss prop-
erties. In view of the high reactivity of acryloyl chloride, Liu et al. [30] used acryloyl
chloride to modify the calcium sulfate whiskers and particles that were pre-coated with
chitosan, thereby endowing the particle surfaces with carbon–carbon double bonds. The
modified inorganic fillers enhanced the tensile strength and impact strength of the cured
photosensitive resin. In addition, modification of the functional monomers/oligomers is an
effective way through which to improve the properties of photocrosslinkable materials. For
instance, photocuring inks based on acryloyl-modified polyethylene glycol exhibit not only
high tensile strength and elongation, but also excellent resilience [21].

Recently, with the enhancement of environmental awareness and the increasingly strict
control of organic volatile components, developing various high-performance and multi-
functional photosensitive polymers that meet the requirement of 5E (efficient, enabling,
economical, energy-saving, and environmentally friendly) for photocuring technology
has become a key work in all of the application fields [31]. Polyglycerol dicarboxylic acid
ester is a promising class of thermosetting elastomer that is synthesized via the straightfor-
ward polycondensation of glycerol and aliphatic dicarboxylic acids such as sebacic acid
and dodecanedioic acid [32–35]. Due to its inherent advantages, such as biocompatibility,
biodegradability, non-toxic degradation products, elastomeric mechanical properties, and
shape-memory behavior, the polyglycerol dicarboxylic acid ester has been identified as an
attractive candidate material for tissue engineering scaffolds, medical devices, and drug de-
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livery [32,34,36,37]. Furthermore, the cross-linked network of the polyglycerol dicarboxylic
acid ester can be used as a phase transition material due to its temperature-dependent
light scattering properties. For instance, poly(glycerol-dodecanoate) has been used as a
transparency-tunable and impact-resistant coating material for windows due to its behavior
of being transformed from a translucent state to a transparent state when the temperature
rises above its glass transition temperature (Ttrans) [38]. However, the harsh preparation
conditions (such as high curing temperature and long reaction time) of the polyglycerol
dicarboxylic acid ester limit its potential application range [39]. One convenient strategy
to overcome the limitations of the thermal curing process is endowing the polyglycerol
dicarboxylic acid ester with photoreactivity and photocrosslinking. This works because
the photocurable double bonds can be easily incorporated into its backbone. Yeh et al. [40]
synthesized two photocurable acrylated poly(glycerol sebacate) macromers with varied
molecular weights and viscosity, which were confirmed as promising materials for the
fabrication of elastomeric biomedical scaffolds. Akman et al. [41] developed a UV curable
polymer via the acrylation of poly(glycerol dodecanedioate), which could be used to 3D
print biodegradable shape memory samples and shows promise as a novel material for
biomedical applications. Moreover, the thermal, mechanical, and chemical properties of the
photocured materials can be easily controlled by varying the degree of acrylation [39,41].

Currently, the rapidly growing field of 3D printing technology and the emerging
applications of shape memory polymer networks have greatly stimulated the research of
photocurable polymers [18]. The incorporation of photocurable chemistries into functional
materials is a viable method to ensure the rapid crosslinking of polymer networks while
retaining their intrinsic properties [41]. Although some studies have been conducted on
the vinyl modification of the polyglycerol dicarboxylic acid ester [39–41], the relevant
research is still in its infancy. In particular, how the prepolymer structures such as the
carbon chain lengths of dicarboxylic acids and the ratio of glycerol to dicarboxylic acid
affect the acrylation efficiency of the prepolymer and the photocuring behavior of the
acrylated polymers is still unclear. The present work describes the use of acryloyl chloride
to react with the hydroxyl groups in polyesters that are synthesized via polycondensation
of glycerol (Gly) and aliphatic dicarboxylic acids (ADCAs) for introducing photoreactive
double bonds into the backbone in order to satisfy the rapid photocuring process. The
synthesized polymers were characterized by FT IR, NMR, and GPC. The photocuring
performance of the acrylated polyesters was evaluated, and the effects of the alkyl chain
lengths and the mole ratio of Gly to ADCAs on the curing rate, mechanical properties, and
degradation properties of the photocured networks were investigated.

2. Materials and Methods
2.1. Materials

Glycerol (Gly), sebacic acid (SA), dodecanedioic acid (DA), and tetradecanedioic
acid (TA) were purchased from Sigma-Aldrich (Shanghai, China). Acryloyl chloride (AC)
was purchased from Shanghai Aladdin Bio-chemical Technology Co., Ltd. (Shanghai,
China). Triethylamine (TEA) and ethyl acetate (EA) were purchased from Shanghai Macklin
Biochemical Co., Ltd. (Shanghai, China) All chemicals were used as received without
further purification.

2.2. Synthesis of Polyglycerol Dicarboxylic Acid Esters

The polyesters of glycerol (Gly) and aliphatic dicarboxylic acids (ADCAs), i.e.,
poly(glycerol-co-sebacic acid) (PGS), poly(glycerol-co-dodecanedioic acid) (PGD), and
poly(glycerol-co-tetradecanedioic acid) (PGT) were synthesized according to the reported
method with some modifications [34,42,43]. Briefly, anhydrous Gly and ADCAs with the
molar ratio of 1:1 were added into a 250 mL three-neck flask. The mixture was heated up
to their melting temperature by an oil bath, and then was kept at 120 ◦C for 24 h under a
continuous magnetic stirring and nitrogen environment. In order to remove the by-product
water, nitrogen bubbles were continuously inserted into the reaction mixture to carry away
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the water vapor. The resulting prepolymers (PGS, PGD, and PGT) were transferred to glass
vials for further analysis and use.

2.3. Acetylation of the Polyglycerol Dicarboxylic Acid Esters

The prepolymers (polyglycerol dicarboxylic acid esters) were acrylated with acryloyl
chloride by dissolving the prepolymers in dichloromethane using trimethylamine as the
acid acceptors. Briefly, the PGD prepolymer (5 g, with 0.0388 mmol of hydroxyl groups)
was dissolved in 20 mL of anhydrous dichloromethane containing an equimolar amount
of triethylamine. After the prepolymer was completely dissolved, the reaction solution
was refrigerated to 0 ◦C for 10 min. Then, acryloyl chloride (approximately 1.0 mol/mol of
hydroxyl groups on the PGD prepolymer) was added dropwise using a constant pressure
dropping funnel to the reaction solution. After that, the mixture was warmed up to
reach room temperature and stirred till it reacted for an additional 12 h. The reaction
mixture was evaporated by a rotary evaporator to remove the dichloromethane. The
remaining liquid was dissolved in ethyl acetate, and it was then centrifuged to remove
the salt. After the ethyl acetate was removed using a rotary evaporator, the obtained
viscous liquid (acetylated polyesters) was refrigerated and preserved [39]. The acetylated
polyesters were named PGSA, PGDA, and PGTA according to the precursor polymers,
i.e., poly(glycerol-co-sebacic acid) (PGS), poly(glycerol-co-dodecanedioic acid) (PGD), and
poly(glycerol-co-tetradecanedioic acid) (PGT), respectively.

2.4. Photocuring of the UV-Curable Polymers

A certain amount of acetylated polyester was poured into a rectangular silicone mold
with a size of 10 mm × 30 mm × 5 mm, where the polymerization reaction was initiated
by ultraviolet light (365 nm, ca. 10 mW/cm2, model ZF-1). After the photopolymerization
was carried out for a scheduled time at room temperature, the photocured solid network
(elastomer) was immersed in dichloromethane to remove the uncured molecules. Then, the
undissolved solid was taken out and dried in an oven for 6 h at 45 ◦C. The photocuring
degree was calculated according to the mass differential method. The photocured elastomer
were named pc-PGSA, pc-PGDA, and pc-PGTA according to the acetylated polyesters
PGSA, PGDA, and PGTA, respectively.

2.5. Characterization of the Polymers and Photocured Elastomers
2.5.1. Fourier-Transform Infrared Spectroscopy (FT IR) Analysis

The FT IR spectra of the polymers and photocured elastomers were obtained from
a spectrophotometer (Prestige-21, Shimadzu, Japan) using the KBr-pellet method. Each
spectrum was recorded over 10 scans in the frequency range of 4000 to 500 cm−1 with a
resolution of 2 cm−1. The ratio of primary and secondary hydroxyl groups (p-OH/s-OH)
was obtained by calculating the absorbance ratio between 1048 cm−1 and 1099 cm−1 [43].

2.5.2. NMR Analysis

The NMR analysis of the polymers (where a 60 mg of sample was dissolved in 0.5 mL
of DMSO-d6) was performed at room temperature by an AVANCE II 400 spectrometer
(Bruker, Karlsruhe, Germany) equipped with a 5 mm broadband probe and a gradient
field in the Z-direction. The 1H NMR spectrum was recorded on the spectrometer under
the condition of a minimum of 8 scans, a sweep width of 400 MHz, an acquisition time of
2.0 s, and a relaxation delay time of 3 s, while the 13C NMR spectrum was acquired with a
minimum of 20,000 scans, a sweep width of 400 MHz, an acquisition time of 0.4 s, and a
relaxation delay time of 1.5 s.

2.5.3. GPC Analysis

The average molecular weight (Mw), number of the average molecular weight (Mn),
and polymer distribution index (PDI = Mw/Mn) of the polymers were determined by gel
permeation chromatography (GPC) on an Agilent PL-GPC50 instrument using tetrahydro-
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furan as the eluent. The concentration of the sample was 0.1 mg mL−1, and the injection
volume was 100.0 µL. The polystyrene standards were used for calibration.

2.5.4. Differential Scanning Calorimetry (DSC) and Thermal Gravimetric (TGA) Analysis

The thermal property of the photocured elastomers was characterized using a dif-
ferential scanning calorimeter (DSC Q20, TA Instruments) under a nitrogen atmosphere.
The sample (10 mg) was initially heated from room temperature up to 90 ◦C at a rate of
10 ◦C min−1. After being held at 90 ◦C for 3 min, the sample was cooled from 90 ◦C down
to −50 ◦C, held at −50 ◦C for 3 min, and then re-heated up to 70 ◦C using a cooling/heating
rate of 10 ◦C min−1. During the re-heating scan, the glass transition temperature (Tg) was
determined from the maximum of the endothermic peak [44].

Thermal gravimetric analyses (TGAs) of the elastomers were carried out on a simulta-
neous thermal analyzer (STA 449 F3, Netzsch, Germany) to determine the decomposition
temperature. Approximately 10 mg of the pre-vacuum-dried samples were heated from
ambient temperature up to 600 ◦C at a heating rate of 10 ◦C/min under a nitrogen atmo-
sphere. The high-purity nitrogen (99.999%) was used as a carrier gas with a flow rate of
10 mL/min.

2.5.5. Mechanical Property Analysis

Tensile tests were performed using a texture analyzer (TA.TX PlusC, Stable Micro
Systems, UK) with a 300 N load cell for estimating the tensile properties of the cured
elastomers. The precise width and thickness of the specimen were measured prior to
testing, and the testing speed was 12.0 mm min−1. All of the tensile tests were conducted
at 37 ◦C and were continued until the specimens fractured. The Young’s modulus was
calculated from the initial slope of the tensile stress–strain curve, and the toughness was
calculated from the integral area under the curve. The strain at break was defined as the
highest strain value prior to the fracture of the sample.

2.5.6. Degradation Analysis

The degradation rates of the photocured elastomers were evaluated by the mass
differential after incubation of the samples in phosphate-buffered saline (PBS) (pH = 7.4)
for 7 d, 14 d, 21 d, and 28 d. In brief, the dry samples with a certain mass were cut into
small pieces of approximately the same size and immersed in 10 mL of PBS for certain
scheduled times at 37 ◦C. After being taken out from the PBS, the residual solids were
rinsed thoroughly with deionized water, dried at 45 ◦C for 6 h, and then weighed. The PBS
was changed every 72 h to maintain the degradation pH.

3. Results and Discussion
3.1. Effect of the Mole Ratio and Chain Lengths of ADCAs on the Prepolymers

As shown in Figure 1a, the aliphatic dicarboxylic acids (ADCAs) with the alkyl chain
lengths of 8, 10, and 12, i.e., sebacic acid (SA), dodecanedioic acid (DA), and tetradecane-
dioic acid (TA), respectively, were used to react with glycerol (Gly) to produce precursor
polyesters (prepolymers). As expected, the average molecular weights and polydispersity
indexes (PDI) of the synthesized prepolymers increased with the polycondensation times
(Table 1). As Gly is a trifunctional monomer with two primary hydroxyl groups (–OH) and
one secondary –OH, the polycondensation of Gly and ADCAs results in prepolymers com-
posed of repetitive units, whose structures are similar to mono-, di-, and triglycerides [45].
Compared to the primary –OH in Gly, the secondary –OH with higher steric inhibition
was less reactive [44]; therefore, in the early reaction stage, the synthesized prepolymers
had a predominantly linear structure due to the superior reactivity of primary –OH [43].
With an extension of the reaction time, the secondary –OH might react with the ADCAs,
thereby producing a branched prepolymer with a higher PDI. This could be confirmed by
the increased esterification degree of secondary –OH (ED2), as shown in Table 1. Moreover,
the longer alkyl chain lengths of the ADCA units led to the higher molecular weights of the
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prepolymers. Table 1 also shows that the molecular weights and polydispersity indexes of
the prepolymers increased with the increase in the proportions of the ADCAs. The greater
the number of ADCAs that exist in the reaction system (Gly:ADCA = 1:1.5), the greater
the chance they could have to react with the secondary –OH, which would lead to the
production of more branched molecules and thus a higher PDI of the prepolymer. The
significant increase in ED2 and carbonyl group content of the prepolymers alongside a
decrease in the molar ratio of Gly:ADCA confirmed this hypothesis (Table 1).
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Table 1. The molecular weight and p-OH/s-OH of the prepolymers prepared under the reaction
conditions of 120 ◦C at an N2 atmosphere.

Prepolymers PGS PGD PGT

ADCA Sebacic acid Dodecanedioic acid Tetradecanedioic
acid

Gly:ADCA 1:1 1:0.8 1:1 1:1.5 1:1
Reaction
time (h) 24 48 24 48 24 48 24 48 24 48

Mn (g/mol) 325 410 291 394 346 475 328 505 407 599
Mw(g/mol) 1707 2356 1782 1813 1865 2712 1937 2954 2188 5695

PDI 5.25 5.75 6.12 4.60 5.39 5.71 5.91 5.85 5.38 9.51
p-OH/s-OH 0.92 0.85 1.05 1.02 0.85 0.77 0.73 0.69 0.86 0.70

ED1 0.43 0.45 0.32 0.37 0.39 0.44 0.43 0.47 0.39 0.43
ED2 0.23 0.27 0.16 0.19 0.23 0.26 0.28 0.29 0.22 0.26

–C=O a 1.83 1.41 1.80 2.55 1.77
a The quantification of –C=O (δ 172.0–175.0 ppm) was based on the assumption that the carbon region of Gly
(δ 62.5–72.5 ppm) in the 13C NMR spectra contains 300 carbon atoms. Results are expressed per Gly.

Since the residual hydroxyl groups in the prepolymers are the preferred sites of
acrylation, the acrylated secondary –OHs act as the main crosslinking sites, and the p-OH/s-
OH of the prepolymers were thus evaluated. As shown in Table 1, including longer-chain
ADCAs, as well as prolonging the polycondensation time, resulted in a decrease in the
p-OH/s-OH of the prepolymers. This is because the ADCAs with a longer alkyl chain tend
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to react with the primary –OHs rather than the secondary –OHs of the Gly due to their
greater steric hindrance. In addition, more ADCAs in the reaction system consumed more
of the hydroxyl groups of the Gly, thus leading to a low p-OH/s-OH when the molar ratio
of Gly:ADCA reduced to 1:1.5.

3.2. Acetylation Efficiency of the Prepolymers

As the acrylic double bond can be activated to generate a polymer or a cross-linked
network by ultraviolet irradiation or heating [46], the photocurable polymers with pendant
acrylate groups were synthesized by using acryloyl chloride as the acrylating reagents and
triethylamine as the deacid reagents in mild reaction conditions (Figure 1a). In a view to
obtain as much of an acylation degree (especially the acylation of the secondary –OH) as
possible, the prepolymers that were prepared under 120 ◦C for 24 h were chosen. The FT IR
spectra of the acetylated polyesters were compared with that of the prepolymers, as shown
in Figure 1b. In the spectra of the prepolymers, the characteristic absorption peaks included
hydrogen-bonded hydroxyl groups (3442 cm−1), alkyl C-H stretching vibration (2922 and
2853 cm−1), C=O stretching vibrations of ester bonds (1738 cm−1), carboxylic acid O-H
bends (1388 cm−1), the C-O of ester bonds (1170 cm−1), secondary saturated alcohol groups
(1099 cm−1), and primary saturated alcohol groups (1048 cm−1) [43]. For the acetylated
polyesters, the appearance of the peaks at 1635 cm−1 and 810 cm−1 were attributed to the
stretching vibration of the acryloyl C=C and the out-of-plane bending vibration of acryloyl
=C-H, which demonstrated the successful acetylation of the perpolymers by acryloyl
chloride [46]. Moreover, the near disappearance of the characteristic peaks of hydroxyl
groups at 3442 cm−1 in the spectra of the acetylated polyesters indicated that most of the
active hydroxyl groups in the prepolymer molecules were replaced by the acrylate groups.

The incorporation of acrylate groups to the polyesters was further confirmed by NMR
analysis. The 1H NMR spectra of the polymers (Figure 2a) displayed typical proton signals
in the polyesters of Gly and ADCAs, such as the protons from the aliphatic chains of
the ADCA units (δH 1.21 ppm (c), δH 1.48 ppm (b), and δH 2.21 ppm (a)), as well as the
protons from the Gly units (δH 3.0–3.4 ppm (d), δH 3.8–4.3 ppm (e), and δH 4.9–5.3 ppm
(f)) [44]. Compared to the prepolymers, the proton signals of the –CH=CH2 in the acetylated
polyesters appeared at δH 5.94, 6.16, and 6.31 ppm (annotated as i, h, and g, respectively)
in the spectra, thereby indicating that the acrylate groups had been introduced into the
polymers [39]. Moreover, the greatly reduced intensity of proton signals at δH 3.0–3.4 ppm
(d) that corresponded to the –CH and –CH2 connected with the unreacted –OH was clearly
discernible, thus further confirming the acrylation of residual hydroxyl groups in the Gly
units by acryloyl chloride.
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Figure 2. (a) The 1H NMR and (b) 13C NMR spectra of the polyglycerol dicarboxylic acid esters and
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In the 13C NMR spectra of the polymers (Figure 2b), the signals observed at δC
70.1 ppm (C1), and δC 64.9 ppm (C2) were ascribed to the alkyl skeleton of the Gly units,
while the three sharp signals at δC 33.9 ppm (C6), δC 29.3 ppm (C8), and δC 24.9 ppm (C7),
respectively, were attributed to the alkyl carbon chains of the ADCA units. The signals at
approximately δC 174 ppm (C9) were assigned to the carbonyl groups that originated from
esterification of the hydroxyl groups in the Gly with the carboxyl groups in the ADCAs.
The acetylated polyesters evidently exhibited new signals at δH 130.8 ppm (C4), and δH
128.0 ppm (C5) belonged to C=C. In addition, the ones at δH 165.7 ppm (C3) were ascribed
to the carbonyl groups related to the acrylate groups.

The integration of the proton peak in the 1H NMR spectroscopy was used to calculate
the acrylation percentage (Acr%) of the polymer [41]. From the 13C NMR spectroscopy, the
ratio of carbonyl groups was obtained by comparing the relative intensity of the signals at
164.5–167.5 ppm with the ones at 62.5–72.5 ppm. According to the acetylation chemistry,
the acrylation degree increased with the molar ratio of the acryloyl chloride and reaction
time [39,41]. In order to achieve the most similar acetylation degree as possible, excessive
acryloyl chloride was used for all of the prepolymers during the reaction process. Figure 3
shows that all of the acetylated polyesters had a relatively high acetylation degree due
to the sufficient amount of residual hydroxyl groups in the prepolymers endowing a
greater number of reactive sites. The acetylated polyesters with the same molar ratio of
Gly:ADCA = 1:1 exhibited a relatively similar Acr% except PGDT, which had the lowest
acylation degree due to the highest steric hindrance effect of the long carbon chains.
Moreover, the Acr% of the acetylated polyesters slightly decreased when the molar ratio of
Gly:ADCA decreased. This was consistent with the results of the 13C NMR spectra, where
the carbonyl groups at δH 165.7 ppm (C3) decreased with the ADCA proportion. This could
be attributed to the fact that more of the hydroxyl groups in Gly were esterified by ADCAs
during the synthetization of the prepolymers (PGD1:1.5), which decreased the acetylation
active sites. Conversely, the PGS1:0.8 and PGD1:0.8 that had more terminated hydroxyls and
less of a branched structure showed higher Acr%.

Figure 3. The acrylation percentage (Acr%) and number of carbonyl groups (at δH 165 ppm) of the
acrylated polyesters.

3.3. Photocuring Performance of the Acetylated Polyesters

In considering the application of photocurable polymers in the fields of medicine and
bioengineering, which generally forbid the presence of other adulterated substances, no
photoinitiator was used when performing photocuring. The irradiation of the acetylated
polyesters with an ultraviolet light of 365 nm led to a cleavage of unsaturated C=C bonds
that went on to form free radicals, which initiated the copolymerization of the polymer
molecules. This was confirmed by the remarkable increase in the peak at 2922 cm−1

(Figure 1c), which corresponded to the alkyl C-H stretching vibration [39]. The characteristic
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peaks of the unsaturated double bonds at 1635 cm−1 and 810 cm−1 produced a significant
attenuation, thus further indicating that the polymer was successfully cured after ultraviolet
light irradiation. The cross-linked long polymer chains formed solid networks, which were
undissolved in solvent dichloromethane; meanwhile, the uncured molecules showed a
propensity to dissolve in the solvent after a long period of soaking extraction. Thus, the gel
content was used to characterize the cross-linked degree of the polymers [47]. As shown in
Figure 4, all of the acetylated polyesters needed a longer time to photocure completely due
to no photoinitiator being used. And it was also found that the oxygen inhibition effect
reduced the photopolymerization rates of the polymers under an air atmosphere [18].
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It was found that the acetylated polyesters exhibited similar photocuring curves, where
a high photopolymerization rate appeared in the early curing stage. The surface polymer
molecules will preferentially absorb the UV light to photopolymerize and form a cured layer.
Once the surface cured layer is formed, the transmission of the UV light might be hindered,
and the internal polymer molecules will not be able to receive enough light, which would
limit the production of the internal free radicals and result in a reduction in the curing
speed [48]. Moreover, the fast conversion of unsaturated double bonds might cause the gel
effect to appear prematurely [46], which will make the chain segments move with difficulty
and increase the steric effect between the molecules, thus limiting the photopolymerization
efficiency of the unsaturated double bonds. In addition, as the photocrosslinking of the
polymers increased, the initiation and propagation of the polymerization became diffusion-
controlled; thus, the formed polymer network reduced the diffusion rate of the free radicals,
thereby leading to a decrease in the polymerization rate [18]. Figure 4 also shows that, due
to the steric hindrance, for the PGTA, the longer-chain ADCAs limited the diffusion and
migration of the primary living free radicals, thereby leading to a relatively low rate of
photopolymerization. Moreover, the restricted movement of the unsaturated double bond
by the ADCA segment also hindered the complete curing of the PDTA [46]. Additionally,
when the molar ratio of Gly:ADCA decreased, the polymerization efficiency of the polymers
slightly decreased, which was attributed to the relatively high molecular weight (Table 1),
as well as the lower Acr% of the acetylated polyesters (such as cp-PGDA1:1.5).

3.4. The Properties of Photocured Elastomers

The photoinitiated radical polymerization of the acetylated polyesters yielded a kind
of solid network, where the crosslinked polymer chains formed an amorphous domain,
and the un-crosslinked molecules formed a semicrystalline domain [38]. The DSC analysis
(Figure 5) showed that a higher molar ratio of Gly:ADCA resulted in a lower Tg in the
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pc-PGDA1:0.8, while the elastomers with a lower Gly:ADCA molar ratio exhibited a higher
Tg. This indicated that the lower molecular weight and higher Acr% of the PGDA1:0.8
that was obtained from a molar ratio of Gly:ADCA = 1:0.8 yielded a corresponding pho-
tocured elastomer with a higher crosslinking density, thereby reducing the flexibility of
the molecular chain and preventing the formation of semicrystalline domains, which re-
sulted in a relatively lower Tg. When the molar ratio of Gly: ADCA was the same (1:1),
the Tg of the photocured elastomers increased with the alkyl chain length of the ADCAs.
For example, the Tg of the pc-PGDA with ten CH2 in the ADCAs was 11.5 ◦C, while the
pc-PGTA with twelve CH2 in the ADCAs showed a Tg of 25.6 ◦C. The longer chains were
less mobile, which made the polymer molecules more resistant to crosslinking but more
amenable to forming semi-crystalline regions [41], thus resulting in increased Tg values in
the photocured elastomers.
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As shown in Figure 5d,e, all of the photocured elastomers showed almost the same
thermal decomposition curve, and the temperatures (Tm) corresponding to the maximum
decomposition rates were very similar. However, the longer molecular chain of the ADCAs
resulted in a slightly higher Tm (422.4 ◦C) in the cp-PGTA. And it was also found that a
higher cross-linking density in the cp-PGSA and cp-PGDA1:0.8 also led to slightly higher
Tm (Figure 5e).

The mechanical properties of the photocured elastomers were evaluated by tensile
testing. The representative stress–strain curves are shown in Figure 6, where a nonlinear
elastic mechanical performance is displayed. The stress and strain at the point of break
of the photocured elastomers pc-PGDA increased with increasing the ADCA proportion
in the polymers. For instance, when the Gly:ADCA molar ratio decreased from 1:0.8
to 1:1.5, the stress at break (i.e., the ultimate tensile strength) increased from 0.45 MPa
up to 1.73 MPa; meanwhile, the strain at break increased from 7.10% up to 18.33% with
the Young’s modulus, and toughness also increased from 10.50 MPa to 23.99 MPa and
1.95 KJ/m3 to 25.31 KJ/m3, respectively. The mechanical properties of the elastomers were
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a comprehensive result of the gel content, molecular chain length, and the branching and
crosslinking degree of the elastomer. The a greater Gly proportion in the prepolymer led to
a relatively low molecular weight and high cross-linking density of the cured pc-PGDA,
which made the pc-PGDA become brittle and less tough [49].
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Figure 6c also shows that the stress and strain at the break of the pc-PGDA were
significantly higher than that of the pc-PGSA and pc-PGTA. And it was also found that
the pc-PGTA showed a relatively lower strain at break compared to the pc-PGSA. This
meant that longer alkyl chain enhanced the strength and toughness of the elastomers, but
too long molecular chains could lead to an increased rigidity of the elastomers, such as the
pc-PGTA that had the highest Young’s modulus (Figure 6d). These differences demonstrate
that the properties of photocured elastomers can be adjusted by changing the molar ratio
of Gly:ADCA and choosing the carbon chain length of ADCAs, and this holds even apart
from varying the acrylation percentage [50].

The degradation properties of the elastomers were evaluated by immersing them
in PBS at 37 ◦C. Figure 7 shows that the degradation of the photocured elastomers was
slightly faster than that of the thermal-cured elastomers (which were cured at 130 ◦C for
48 h), although their mass loss profile via hydrolysis were much similar. The degradation
mechanism of the polyesters was the hydrolysis of the ester bonds; thus, the higher degra-
dation rates of the photocured elastomers was attributed to the increased carbonyl groups
introduced by acetylation (Figure 2b). As can be seen from Figure 7a, the mass losses
of the corresponding elastomers decreased with increasing the alkyl chain length of the
ADCAs. This was due to the higher steric hindrance effect of the longer alkyl chain, which
hindered the cleavage of the ester bonds and resulted in reductions in the degradation rates.
Moreover, the photocured elastomer with a lower molar ratio of Gly:ADCA exhibited a
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slower degradation rate (Figure 7b), which was due to its higher molecular weight (such as
in cp-PGDA1:1 vs. cp-PGDA1:0.8).
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4. Conclusions

A photocurable polymer was developed via the introduction of acrylate groups to
the backbone of poly(glycerol-co-aliphatic dicarboxylic acid). More terminated hydroxyls
and a less branched structure are beneficial to the acetylation modification of the precursor
polyester. The acetylated polyester can photocure under the irradiation of ultraviolet light
without the use of a photoinitiator. A lower molar ratio of Gly:ADCA and longer-alkyl-
chain ADCAs led to a relatively lower photopolymerization rate. However, the photocured
elastomer with an appropriate ADCA carbon chain length and a high ADCA proportion
exhibited high mechanical properties and a low degradation rate. Moreover, the longer-
chain ADCAs resulted in a higher Tg in the photocured elastomer, and the elastomer with
a lower Gly:ADCA molar ratio exhibited a higher Tg. Therefore, the properties of the
photocured elastomers can be adjusted by changing the molar ratio of Gly:ADCA, as well
as by choosing the alkyl chain length of the ADCAs.
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