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Abstract: The existing analytical solutions for the peeling and shearing stresses in polymeric
adhesively bonded structures are either too inaccurate or too complex for adoption by practicing
engineers. This manuscript presents a closed-form solution that is reasonably accurate yet simple and
concise enough to be adopted by practicing engineers for design analysis and exploration. Analysis
of these concise solutions have yielded insightful design guidelines: (i) the magnitude of peeling
stress is generally higher than that of shearing stress; (ii) the peeling stress in a balanced structure
may be reduced most effectively by reducing the elastic modulus of the adherends or by increasing
the adhesive-to-adherend thickness ratio and less effectively by reducing the elastic modulus of the
adhesive; and (iii) the peeling stress in an unbalanced structure may be reduced by increasing the
in-plane compliance of the structure, which may be implemented most effectively by reducing the
thicknesses of the adherends and less effectively by reducing the elastic modulus of the adherends.
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1. Introduction

The polymeric adhesive in many bonded structures is much more structurally compliant than the
adherends, leading to a significantly lower magnitude of in-plane stress in the adhesive. Completely
ignoring this in-plane stress in the adhesive substantially reduces the complexity of the analysis and
allows the formulation of closed-form solutions. The first of such analyses was presented by Volkersen
(1938) [1], who modelled the adhesive layer in a single lap-shear structure as having only shear stiffness
and the adherends as capable of only in-plane stretching. A more sophisticated analysis was presented
by Goland and Reissner (1944) [2], who modelled the adhesive as having stiffness in shearing and
transverse stretching and the adherends as capable of in-plane stretching and bending.

Goland and Reissner [2] assumed the adherends to have negligible shear and transverse-normal
compliances, which may not be valid for bonded structures with relatively large ratios of
adherends-to-adhesive thicknesses. Assuming a linear distribution of shear stress along the thickness
of the adherends—An overly simplistic assumption—Tsai et al. (1998) [3] incorporated shear
compliance of the adherends into the formulation of Goland and Reissner [2]. But before Tsai et al. [3],
Suhir (1986, 1989) has evaluated the shear compliance [4] and the transverse compliance [5] of the
adherends using Ribiere Solution for a long-and-narrow strip [6].

Besides assuming nil in-plane stress in the adhesive, the above authors and many others [7–12]
have also conveniently assumed that the shear and the transverse stresses are unvarying over the
thickness of the adhesive. Ojalo and Eidinoff (1978) [13] were believed to be the first to challenge this
assumption; assuming linear variation of the in-plane and the transverse deformations of the adhesive
along its thickness, they concluded that the shear stress varies linearly while the transverse stress is
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unvarying along the thickness of the adhesive. More recently, Wang and Zhang (2009) [14] assumed
that transverse stress in the adhesive exhibits a step-jump in magnitude while shear stress is unvarying
along its thickness. These assumptions invariably violate the differential equation of equilibrium:

∂σx
∂x + ∂τxz

∂z = 0

∂σz
∂z + ∂τxz

∂x = 0
(1)

Except for [14], these strength-of-material solutions have also failed to satisfy the condition that
there shall be no shear stress at the free edges of the adhesive, thus leading to gross underestimation of
the magnitude of peeling stress at the free edge [15].

Moreover, the strength-of-material solution of Goland and Reissner [2] was restricted to
balanced structures—That is, structures in which the adherends are identical in geometry and
materials—For which the resultant differential equations for the shear and the transverse stresses in
the adhesive are uncoupled and can be solved with relative ease. Delale et al. (1981) [8], Bigwood and
Crocombe (1989) [9], Liu et al. (2014) [11], Zhao et al. (2011) [16], and Zhang et al. (2015) [17] have
analysed unbalanced structures experiencing arbitrary edge loading such that the differential equations
are heavily coupled. The resultant closed-formed solutions are immensely chunky and complex.

A “theory of elasticity” solution that is based on variational formulation was presented by
Allman (1977) [18]. The solution satisfied Equation (1) while also ensuring that the free-edge condition
of nil-shear stress was satisfied. Similar approach was followed by Chen and Cheng (1983) [19],
Yin (1991) [20], Adams and Mallick (1992) [21], and Wu and Zhao (2013) [22]. The solutions are not
only complex but highly restrictive—The boundary conditions are embedded within the governing
differential equation, thus limiting the generality of the solutions.

From the perspective of practicing engineers, the current state of closed-form solutions for
adhesively bonded structures is far from satisfactory—These solutions are either too inaccurate or too
complex for practical adoption. It is the objective of this manuscript to offer a closed-form solution
that is reasonably accurate yet simple and concise enough to be adopted by practicing engineers for
design analysis and exploration.

2. Analytical Equations

Figure 1 shows a bonded structure made up of adherend #1, adherend #2, and adhesive #3.
The structure experiences a mismatched thermal expansion between the adherends and stretching,
shearing, and bending at their edges. Note the notations and positive directions of the in-plane
stretching forces N±il, the shear forces Q±il, moments M±il, and curvatures κ±il, at x = ±l, where l
is the half-length of the adhesive. The height, Young’s modulus, shear modulus, flexural stiffness,
and thermal coefficient of expansion of member #i are denoted as hi, Ei, Gi, Di, and αi, respectively.
The shear, in-plane (x), transverse (z), and flexural compliances of the bonded structure are denoted
as κs, λx, λz, and D, respectively. The corresponding compliances of member #i are denoted as κsi,
λxi, λzi, and Di, respectively. The formulas for computing these compliances are collected under the
heading “basic formula” at the front of this article. The derivations of these formulas may be found in
Refs. [15,23].Polymers 2017, 9, 664  3 of 14 

 

 
Figure 1. Schematic of a bonded structure experiencing general conditions of edge loading and 
thermal strain. 

The adhesive is assumed to experience negligible in-plane stress, σx. The differential equation of 
equilibrium, Equation (1), then suggests an nonvarying shear stress, τxz, and a linearly varying 
transverse stress, σz, along the thickness of the adhesive. Denoting σm and σa respectively as the mean 
and amplitude of variation of the transverse stress along the thickness of the adhesive, the peeling 
stress at the two interfaces of the adhesive with adherend #i is given by 

ampi σσσ = , i = 1, 2 (2) 

Unless otherwise stated in this manuscript, the upper and the lower signs in ∓	 are associated 
with adherend #1 and adherend #2 respectively. These stresses, together with the interfacial shear 
stress, τ, on an elemental representation of a bonded structure are shown in Figure 2. Substituting 
∂σz/∂z as σa/(2h3) into Equation (1) gives 
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The derivations of the differential equations for τ and σm are elaborated upon in Appendix A. 
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2.1. Balanced Structures 

Referring to Equation (A5) and with the parameter, µσ, equates to nil for a balanced bonded 
structure, the differential equation for the interfacial shear stress is given by 

Figure 1. Schematic of a bonded structure experiencing general conditions of edge loading and
thermal strain.
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The adhesive is assumed to experience negligible in-plane stress, σx. The differential equation
of equilibrium, Equation (1), then suggests an nonvarying shear stress, τxz, and a linearly varying
transverse stress, σz, along the thickness of the adhesive. Denoting σm and σa respectively as the mean
and amplitude of variation of the transverse stress along the thickness of the adhesive, the peeling
stress at the two interfaces of the adhesive with adherend #i is given by

σpi = σm ∓ σa, i = 1, 2 (2)

Unless otherwise stated in this manuscript, the upper and the lower signs in ∓ are associated
with adherend #1 and adherend #2 respectively. These stresses, together with the interfacial shear
stress, τ, on an elemental representation of a bonded structure are shown in Figure 2. Substituting
∂σz/∂z as σa/(2h3) into Equation (1) gives

σa = −
h3

2
dτ

dx
(3)
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The derivations of the differential equations for τ and σm are elaborated upon in Appendix A.

2.1. Balanced Structures

Referring to Equation (A5) and with the parameter, µσ, equates to nil for a balanced bonded
structure, the differential equation for the interfacial shear stress is given by

d3τ

dx3 − β2 dτ

dx
= 0 (4)

where β2 = λx/κs. For structures of reasonably large length, say βl > 3, the solution is given
approximately by

τ(x) = Aceβ(x−l) + A3, x > 0 (5)
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The boundary conditions κsdτ(l)/dx = εT + εNl + εMl and
∫ l
−l τdx = N2l − N−2l return

A±c =
εT+ε±Nl+ε±Ml

βκs

A3 =
N2l−N−2l

2l − Ac−A−c
2βl =

N2l−N−2l
2l − εNl−ε−Nl+εMl−ε−Ml

2λx l

(6)

where
εT = (α2 − α1)∆T

ε±Nl = N±2lλx2 − N±1lλx1

ε±Ml =
1
2 ((h1 + h3)κ±1l + (h2 + h3)κ±2l)

(7)

Referring to Equation (A6) and with the parameter, µτ , equates to nil for a balanced bonded
structure, the differential equation for the mean of the peeling stress is given by

d4σm

dx4 + 4α4σm = 0 (8)

where 4α4 = D/λz. For structures of reasonably large length, say αl > 3, the solution is given
approximately by

σm(x) = eα(x−l)[B1c cos α(x− l) + B2c sin α(x− l)], x > 0. (9)

The boundary conditions λzd2σm/dx2 = M2l/D2 − M1l/D1 = M̂21l and λzd3σm/dx3 =

−(Q2l/D2 −Q1l/D1) = −Q̂21l return

B1c =
Q̂21l

2α3λz
+ B2c, B2c =

M̂21l
2α2λz

(10)

Substituting Equation (5) into Equation (3) yields the amplitude of the peeling stress:

σa(x) = −Asβh3

2
eβ(x−l) for x > 0. (11)

2.2. Unbalanced Structures

2.2.1. Non-Free Edge Solutions

Combining Equations (A5) and (A6) gives rise to a seventh-order differential equation for τ(x)
and a sixth-order differential equation for σm(x) [5,7–9,11]. The resulting solutions are far too complex
to be attractive to practicing engineers. Instead, solving Equations (A5) and (A6) iteratively would
lead to approximate solutions of τ(x) and σm(x) that are far simpler, thus enabling insights and
encouraging application by practicing engineers. Designating the subscripts c and p as complimentary
and particular solutions, respectively, the approximate solution involves solving for the complementary
solutions for the interfacial shear stress, τc, and the mean of the peeling stress, σmc—these are given by
Equations (5) and (9)—followed by substituting σmc into Equation (A5) to obtain τ =τc + τp, and τc

into Equation (A6) to obtain σm = σmc + σmp.
The interfacial shear and peel stresses have been evaluated as

τ(x) = Aseβ(x−l) + A4 + eα(x−l)[Ap1 cos α(x− l) + Ap2 sin α(x− l)
]

σm(x) = eα(x−l)[B1 cos α(x− l) + B2 sin α(x− l)] + Bpeβ(x−l)

σa(x) = − h3
2

[
βAseβ(x−l) + αeα(x−l)[(Ap1 + Ap2

)
cos α(x− l)−

(
Ap1 − Ap2

)
sin α(x− l)

]] (12)
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where
As = Ac −

α(Ap1+Ap2)
β

A4 = A3 − 1
2l

(
1

2α −
α
β2

)(
Ap1 − A−p1

)
+ 1

2l

(
1

2α + α
β2

)(
Ap2 − A−p2

)
A±p1 = µσ

κs

(2α3+αβ2)B±1c+(2α3−αβ2)B±2c

2α2(4α4+β4)
, Ap2 = µσ

κs

(2α3+αβ2)B±2c−(2α3−αβ2)B±1c

2α2(4α4+β4)

B±1c =
Q̂±21l
2α3λz

+ B±2c, B±2c =
M̂±21l
2α2λz

B1 =
β3Bp+Q̂21l/λz

2α3 + B2, B2 = −β2BP+M̂21l /λz
2α2

BP = µτ Ac
λz

β

4α4+β4

(13)

It is worth noting that in the case of an unbalanced bonded structure experiencing only
mismatched thermal expansion and/or differential stretching between the adherends, the magnitude
of σm is negligibly small compared to that of τ and σa [23]. Ignoring σm, the differential equation for τ

is given by Equation (4); and τ(x) and σa(x) are given by Equations (5) and (11), respectively.

2.2.2. Free Edge Solutions

The expression of shear stress in Equation (12) does not satisfy the free edge condition, τ(l) = 0,
which is essential for accurate modelling of σa(l). The free edge condition may be enforced artificially
through the introduction of a decay function, 1 − enβ(x−l) [15,23]. The derivation of the factor n
is explained in Appendix B. The expressions of τ(x), σm(x), and σa(x) with the free edge condition
enforced are given by

τ(x) =
{

Aseβ(x−l) + A4 + eα(x−l)[Ap1 cos α(x− l) + Ap2 sin α(x− l)
]}[

1− enβ(x−l)
]

(14)

σm(x) = eα(x−l)[B1n cos α(x− l) + B2n sin α(x− l)] + Bpeβ(x−l) − Bpn1e(n+1)β(x−l) − Bpn2enβ(x−l)

≈ eα(x−l)[B1n cos α(x− l) + B2n sin α(x− l)] + Bpeβ(x−l)
(15)

σa(x) = − h3

2


(

1− enβ(x−l)
){

βAseβ(x−l) + αeα(x−l)[(Ap1 + Ap2
)

cos α(x− l)−
(

Ap1 − Ap2
)

sin α(x− l)
]}
−

nβenβ(x−l)
{

Aseβ(x−l) + A4 + eα(x−l)[Ap1 cos α(x− l) + Ap2 sin α(x− l)
]}

 (16)

where

B1n =
β3
(

Bp−(n+1)3Bpn1−n3Bpn2

)
+Q̂21l /λz

2α3 + B2n, B2n =
−β2

(
Bp−(n+1)2Bpn1−n2Bpn2

)
+M̂21l /λz

2α2

Bpn1 = µτ Ac
λz

(n+1)β

4α4+(n+1)4β4
, Bpn2 = µτ A3

λz

nβ

4α4+n4β4

(17)

3. Numerical Validations

Equations (5), (9), and (11) for the balanced structures [15] and for unbalanced bonded
structure experiencing only mismatched thermal expansion and/or differential stretching between the
adherends [23] have been validated in previous publications. Hence, only the equations for unbalanced
structures experiencing the general state of edge loading shall be validated. The material properties,
dimensions of the bonded structure, thermomechanical loads, and finite element model used in this
study are shown in Figure 3a. The domain of the bonded structure was modelled using more than
100,000 eight-node quadrilateral elements. The domain around the free edge was discretised at 75
divisions per mm. The adhesive was assigned with anisotropic properties of negligible Ex, rendering it
consistent with the assumption in the analytical solutions that the adhesive experiences negligible σx.
The compliances (assuming plane stress), characteristic parameters (α, β), free-edge parameters (φ, n)
which are computed using Equations (A9) and (A10), coupling parameters (µσ, µτ), and the coefficients
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in the stress equations are tabulated in Table 1. It is noted that (i) βl, αl ≥ 4, thus justifying the use of
the reduced form of solutions as presented in Section 2; (ii) the magnitudes of the coupling parameters
are significantly large, reflecting the significant difference in the stiffness between the two adherends;
and (iii) the relatively strong coupling has led to the relatively large magnitudes of the particular stress
coefficients (Ap1, Ap2, Bp) compared to that of the complementary stress coefficients (As, B1n, B2n).

Figure 3b shows the shear stress, τ(x), for (i) the analytical solution that enforces the nil-shear
stress free-edge condition, Equation (14), (ii) the analytical solution that does not enforce the above
free-edge condition, Equation (12), and (iii) the finite element analysis (FEA) solution. The analytical
solution, Equation (14), agrees reasonably well with the FEA solution for the entire length of the
bonding although the magnitude of the former is consistently at approximately 85% that of the FEA.
The free-edge parameter at φ = 0.45 is in reasonable agreement with that extracted from FEA at φFEA =
0.40 and 0.48 for −l ≤ x ≤ 0 and 0 ≤ x ≤ −l, respectively.

Figure 3c shows the mean of the transverse stress, σm(x), for (i) the analytical solution that enforces
the nil-shear stress free-edge condition, Equation (15), (ii) the analytical solution that does not enforce
the above free-edge condition, Equation (12), and (iii) the FEA solution. The free-edge solution,
Equation (15), agrees well with the FEA solution, especially if the FEA solutions at x = ±l, which are
susceptible to numerical error, are ignored.

Figure 3d shows the amplitude of the transverse stress, σa(x), for (i) the analytical solution that
enforces the nil-shear stress free-edge condition, Equation (16), (ii) the analytical solution that does not
enforce the above free-edge condition, Equation (12), and (iii) the FEA solution. Both Equation (16)
and the FEA show the magnitude of σa increases rapidly near the free edge. In contrast, Equation (12)
shows a very mild increase in magnitude near the free edge, in the opposite direction.Polymers 2017, 9, 664  7 of 14 
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Table 1. Numerical validation: characteristics of the unbalanced structure.

Compliances Characteristic Parameters (mm−1) Free Edge Parameters

κs 2.83 × 10−4 α 1.08 φ 0.45
λx 4.31 × 10−4 β 1.23 n 7.4

λz 1.21 × 10−4 Coupling parameters (N−1)

µσ 1.67 × 10−4 µτ 2.50 × 10−4

Stress coefficients (N. mm−2)

Domain As A4 Ap1 Ap2 B1n B2n Bp
−l ≤ x ≤ 0 3.23

0.31
1.33 0.83 4.94 7.23 1.67

0 ≤ x ≤ l 1.53 0.3 0.1 0.35 0.98 0.61

κs, λz (N−1.mm3), λx (N−1.mm).

4. Design Analysis

4.1. Balanced Structures

The shear stress in the adhesive for a balanced structure is given by Equation (5). For simplicity,
we shall assume Ac » A3, the maximum magnitude of shear stress is given by

τmax ≈ Ac =
εT + εNl + εMl√

λxκs
(18)

For the same magnitude of the applied strains, the magnitude of shear stress may be reduced
by increasing the x-compliance and the shear compliances of the bonded structure. We shall analyse
two extreme cases; case I: the ratio hadhesive/hadherend is significant such that the shear compliance of
the structure is dominated by that of the adhesive; that is, κs ≈ h3/G3, and case II: hadhesive/hadherend
is insignificantly small, such that the shear compliance of the structure is dominated by that of the
adherends; that is, κs ≈ h1/4G1. The product λxκs for the two extreme cases (for plane stress) are
given by:

λxκs =


2h3/h1
E1G3

(4 + 3h3/h1) Case I

2
E1G1

Case II
(19)

Thus, for Case I, the magnitude of shear stress in the adhesive may be reduced by reducing
the elastic moduli of the adherends and the adhesive while increasing the thickness ratio of
adhesive-to-adherend. For Case II, the magnitude of shear stress in the adhesive may be reduced by
reducing the elastic modulus of the adherends.

The mean of the transverse stress in the adhesive, σm, for a balanced structure is given by
Equation (9). The maximum magnitude of σm occurs at x = l and is given by

σm,max = B1c =
1

2α2λz

(
Q̂21l

α
+ M̂21l

)
(20)

Noting that 2α2λz =
√

λzD, Q̂21l = Q2l/D2 − Q1l/D1, M̂21l = M2l/D2 −M1l/D1 and D1 = D2,
for the same magnitude of the normalised edge forces, (Q2l − Q1l)/α, and the edge moments,
M2l-M1l, the magnitude of σm,max may be reduced by increasing the product λzDD1

2 = 2λzD1; that is,
by increasing the z-compliance and the flexural stiffness of the structure. We shall analyse the same
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two extreme cases described for shear stress : λz ≈ h3/E3 for Case I and λz ≈ 13h1/16E1 for Case II.
The product λzD1 for the two extreme cases (for plane stress) are given by:

λzD1 =


h1

3h3E1/E3
12 Case I

13h1
4

192 Case II
(21)

Thus, for Case I, the magnitude of σm,max may be reduced most effectively by increasing the
thickness of the adherends and less effectively by increasing the thickness of the adhesive or the ratio
of Eadherend-to-Eadhesive. For Case II, the magnitude of σm,max may be reduced very effectively by
increasing the thickness of the adherends.

The amplitude of the transverse stress in the adhesive, σa, for a balanced structure is given by
Equation (11), which however ought to be modified to include the free-edge condition:

σa(x) = −h3

2

{(
1− enβ(x−l)

)
βAceβ(x−l) − nβenβ(x−l)

[
Aceβ(x−l) + A3

]}
(22)

The maximum magnitude of σm occurs at x = l. For simplicity, we shall assume Ac » A3;
the maximum magnitude of σa, after substituting the exponential factor n with Equation B(2) is
given approximately by

σa,max ≈
nβh3 Ac

2
≈ 0.72Ac

ϕ1.4(βh3)
0.4 ≈

0.72
ϕ1.4

εT + εNl + εMl
4
√

λx3κsh32
(23)

Assuming φ to be a constant, then for the same magnitudes of the applied strains, the magnitude of
σa,max may be reduced by increasing the product λx

3κsh3
2, which for the two extreme cases: κs ≈ h3/G3

for Case I and κs ≈ h1/4G1 for Case II - are given by (for plane stress)

λx
3κsh3

2 =


8(h3/h1)

3(4+3h3/h1)
3

E1
3G3

Case I

128(h3/h1)
2

E1
3G1

Case II
(24)

Thus, for Case I, the magnitude of σa,max may be reduced most effectively by reducing the elastic
modulus of the adherends or by increasing the thickness ratio of adhesive-to-adherend and less
effectively by reducing the elastic modulus of the adhesive. For Case II, the magnitude of σm,max may
be reduced most effectively by reducing the elastic modulus of the adherends and less effectively by
increasing the thickness ratio of adhesive-to-adherend.

It is clear from the above that the design guidelines do not concurrently minimise τmax, σa,max,
and σm,max. In other words, the design guidelines for minimizing the magnitudes of τmax, σa,max,
and σm,max are contradictory. We shall examine the relative magnitudes of these components of stress.
Equation (25) presents the ratio of σa,max/τmax. It is noted that the magnitude of σa,max is almost
always larger than that of τmax. This, together with the fact that the peeling strength of a bonded
joint is generally weaker than its shear strength, suggests that it is more important to minimise the
magnitudes of σa,max and σm,max than the magnitude of τmax.

σa,max
τmax

= nβh3
2 ≈ 0.72

ϕ1.4(βh3)
0.4 ≈ 2

(βh3)
0.4 assuming ϕ = 0.5

≈ 2
[

E1h1
2G3h3(4+3h3/h1)

]0.2
for Case I

≈ 3 to 4 for E1h1/G3h3 between 60 to 250

(25)

Equation (26) presents the ratio of σa,max/σm,max. Noting that σm,max ≈ 0 for adherends
experiencing only thermal strain and/or stretching strain, σa,max is much larger than σm,max for
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these cases. Noting that σa,max ≈ 0 for adherends experiencing only edge shear forces, Qil, σa,max is
much smaller than σm,max for this case. Thus, σa,max may be larger or smaller than σm,max for a general
loading condition. For the case of single lap-joints (SLJ) that are dominated by stretching and bending
through a single adherend, i.e., εT = 0, Q̂21l ≈ 0, κ1l = 0, while N2l and M2l are positive, σa,max is
almost always larger than σm,max. It is therefore advisable to give more weight to the design guidelines
that minimize the magnitude of σa,max.

σa,max
σm,max

= nβh3
2

√
λzD
λxκs

εT+εNl+εMl
Q̂21l/α+M̂21l

≈ nβh3
4

√
6

(4+3h3/h1)(1+ν)

(
N2l h1
6M2l

+ 1 + h3/h1

)
> 1 for SLJ and Case I

(26)

4.2. Unbalanced Structures

In light of the coupling of τ(x) and σm(x) for the unbalanced structures, it is improbable to find
a universal guideline for the optimum design of unbalanced structures that can be expressed in the
simple forms of Equations (19), (21) and (24).

The shear stress in the adhesive of an unbalanced structure is given by Equation (14).
For simplicity, we shall assume As » A4 while also ignoring the decay function, 1 − enβ(x−l),
the maximum magnitude of shear stress is then given by

τmax ≈ As + Ap1 = Ac − α
β

(
Ap1 + Ap2

)
+ Ap1

= εT+εNl+εMl√
λxκs

+
µσ[(2α3−2α2β+αβ2)Q̂21l/α+(−4α4/β+4α3−2α2β)M̂21l ]

4α4(4α4+β4)λzκs

(27)

The magnitude of Ac may be reduced by increasing the x-compliance and the shear compliance of
the structure. Equation (27) suggests that the magnitude of the particular solution may be reduced
by increasing the product

(
4α4 + β4)λzκs, which implies increasing the x-compliance and the flexural

compliance of the structure. While increasing the x-compliance of the structure would reduce the
magnitudes of both the complimentary and particular solutions, this does not imply that it will always
lead to reduced magnitude of the τmax of the unbalanced structure. This is because εT, εNl, εMl, Q̂21l ,
M̂21l and µσ could be either positive or negative and hence the particular solution may not act in
the same direction as the complementary solution. Nevertheless, increasing the x-compliance of the
structure is more likely than not to reduce the τmax of an unbalanced structure. In the same breath,
it should be noted that the magnitude of τmax in an unbalanced structure may not always be larger
than that in a balanced structure assuming both structures have identical characteristic parameters.

The mean of the transverse stress in the adhesive, σm, for an unbalanced structure is given by
Equation (15). For the reason of simplicity, we shall ignore those terms associated with the decay
function. The maximum magnitude of σm occurs at x = l and is given by

σm,max ≈ B1 + Bp = B1c +
(

β3

2α3 −
β2

2α2 + 1
)

Bp

= 1√
Dλz

[
Q̂21l

α + M̂21l +
µτ(β4/α−β3+2α2β)

4α4+β4
εT+εNl+εMl

βκs

] (28)

Noting that Q̂21l = Q2l/D2 −Q1l/D1 and M̂21l = M2l/D2 −M1l/D1, for the same magnitudes
of Qil and Mil, the magnitude of B1 may be reduced by increasing the z-compliance while reducing
the flexural compliance of the structures. Equation (28) suggests that the magnitude of the particular
solution may be reduced by increasing the magnitudes of the characteristic parameter, α, which implies
increasing the flexural compliance of the structure while reducing the z-compliance of the structure.
This is in reverse to the trend for Bp.
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The amplitude of the transverse stress in the adhesive, σa, for an unbalanced structure is given by
Equation (16). Assuming As » A4, the maximum magnitude of σa is given by:

σa,max ≈
nβh3

(
As + Ap1

)
2

≈ nβh3

2
τmax ≈

0.72

ϕ1.4(βh3)
0.4 τmax (29)

which again suggests that the magnitude of σa,max is likely to be reduced by increasing the x-compliance
of the structure.

It has been argued in the previous section that the magnitude of σa,max is almost always larger
than that of τmax for balanced structures. Comparing Equations (23) and (29), it is reasonably safe
to suggest that this will also be the case for unbalanced structures. It has been established in the
previous section that the ratio of σa,max to σm,max for balanced SLJ is larger than unity. If the ratio for
the particular solutions is also larger than unity then one can safely assume that the ratio of σa,max to
σm,max for unbalanced SLJ is also larger than unity. The ratio for the particular solutions is given by

σa,max

σm,max
≈ nβh3

2
µσ

(
−2α2/β + 2α− β

)
κ2l

µτ(β3/α− β2 + 2α2) εNl+εMl√
λxκs

(30)

which is not necessary larger than unity. Thus, σa,max is only conditionally larger than σm,max for
unbalanced SLJ.

Given the loadings and the design space, the optimum designs of unbalanced structure that
gives rise to a minimum τmax, a minimum σm,max, and a minimum σa,max, respectively, can be readily
established using Equations (27)–(29).

5. Conclusions

Strength-of-material solutions for the shear stress, τ, the mean, σm, and amplitude, σa, of the
peeling stress in both balanced and unbalanced structures have been derived and used for design
analysis. Design guidelines for balanced structures have been established. The magnitude of σa,max

for balanced structures is almost always larger than that of τmax and the magnitude of σa,max for
balanced single-lap-joints is also almost always larger than σm,max. The magnitude of σa,max for
balanced structures may be reduced most effectively by reducing the elastic modulus of the adherends
or by increasing the thickness ratio of adhesive-to-adherend and less effectively by reducing the
elastic modulus of the adhesive. The simple expressions of τmax, σm,max and σa,max established in this
manuscript for the unbalanced structures will help practicing engineers find the optimum design
within the given design space.
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Nomenclatures

Subscript #i Subscript #1 and #2 are adherends and #3 is adhesive.
Di, Ei, Gi, hi Flexural rigidity, elastic modulus, shear modulus, thickness of member #i.
D Flexural compliance of the bonded structure.
M±il, N±il, Q±il Moment, sectional stretching force, sectional shear force applied on adherend #i at x = ±l.
l Half-length of the bonded structure.
α, β Characteristic parameters of a bonded structure in peeling, shearing.
αi Coefficient of thermal expansion of adherend #i.

εT, ε±Nl, ε±Ml
Differential strain between adherends #2 and #1 at x = ±l due to temperature and edge
stretching; effective bending strain due to edge bending at x = ±l.
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κ±il Edge curvature of adherend #i at x = ±l.

κsi, κs
Shear compliance of member #i, of the bonded structure between the centroid planes of
adherends #1 and #2.

λxi, λx x-compliance of adherend #i, of the bonded structure.
λxθ Additional x-compliance of the bonded structure attributed to its flexural deformation.

λzi, λz
z-compliance of member #i, of the bonded structure between the centroid planes of
adherends #1 and #2.

θi Rotation of the centroid axis of adherend #i (due to bending).

σm(x), σa(x)
Mean, amplitude of variation, of transverse stress along the thickness of the adhesive
(or between the bonded interfaces).

σp(x) Peeling stress along the bonded interfaces.
τ(x) Shear stress within the adhesive (and along the interfaces).

∆T Temperature change.

Basic formulas
4α4 = D

4λz
; β2 = λx

κs
.

Di =
Eihi

3

12 (plane stress); D = 1
D1

+ 1
D2

.

κs = κs1 + κs2 + κs3

κsi ≈ hi
8Gi

, i = 1, 2; κs3 = h3
G3

λx = λx1 + λx2 + λxθ

λxi =
1

Eihi
, i = 1, 2; λxθ = 1

4

[
h1(h1+h3)

D1
+

h2(h2+h3)
D2

]
λz = λz1 + λz2 + λz3

λzi ≈ 13
32

hi
Ei

, i = 1, 2; λz3 = h3
E3

µσ = 1
2

(
h2
D2
− h1

D1

)
, µτ = 1

2

(
h2+h3

D2
− h1+h3

D1

)
Appendix A. Fundamental Equations

Refers to Figure 2, assuming the traction Ni passes through the centroid plane of adherend #1,
the equilibriums of the differential elements gives

dNi = ∓τdx

dQi = (∓σm + σa)dx

dQ3 = −2σadx i = 1, 2

dMi =
(

τhi
2 −Qi

)
dx

(A1)

where the upper and the lower signs in “∓” refers to adherend #1 and #2, respectively. The x-directional
traction-stretching relation of the centroid plane of adherend #i is given by:

dui
dx
− αi∆T = Niλxi (A2)

The moment-rotation relation of the centroid plane of adherend #i is assumed to obey simple beam:

d3wi
dx3 =

d2θi
dx2 =

1
Di

dMi
dx

=
1

Di

(
hiτ

2
−Qi

)
(A3)

The differential displacement of the centroid planes of adherend #1 and #2 in the u-direction and in the
z-direction are given by:

u2 − u1 = κsτ − h1θ1+h2θ2
2

w2 − w1 = λzσm
(A4)

where θi is the rotation of the neutral axis of member #i. Differentiating Equation (A2) twice with respect to x
followed by taking the difference between adherend #2 and #1, and equating with the third differential of the first
equation of (A4) gives the differential equation:

d3τ

dx3 − β2 dτ

dx
= −µσ

ks
σm (A5)
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Differentiating Equation (A3) with respect to x followed by taking the difference between adherends #2 and
#1, and equating with the fourth differential of the second equation of (A4) gives the differential equation

d4σm

dx4 + 4α4σm =
µτ

λz

dτ

dx
(A6)

The parameters and the coefficients are given by

β2 = λx
κs

, 4α4 = D
λz

λx = λx1 + λx2 +
2
∑

i=1

hi(hi+h3)
4Di

κs =
3
∑

i=1
κsi, λz =

3
∑

i=1
λzi, D =

2
∑

i=1

Di
1

µσ = 1
2

(
h2
D2
− h1

D1

)
, µτ = 1

2

(
h2+h3

D2
− h1+h3

D1

)
(A7)

Appendix B. Imposing Free-Edge Condition

The free-edge condition, τ(l) = 0, can be artificially imposed by multiplying the expression of the shear
stress, Equation (12), with a decay function 1−enβ(x−1), wherein n is a positive real number with a magnitude
significantly larger than unity such that the decay function diminishes rapidly from the free edge towards x = 0.
Assuming (i) τc(x)≈ Aceβ(x−l)(1−enβ(x−l)) and (ii) the stationary point of τ(x) occurs at a distance ϕh3 from the free
edge, where ϕ is assumed to be a constant, the magnitude of n may be evaluated approximately by differentiating
τc(x) with respect to x followed by equating the stationary point with l−ϕh3. This yields:

n = enϕβh3 − 1 ≈ 1.43(ϕβh3)−1.40 (A8)

which for ease of engineering manipulation may be approximated as

n ≈ 1.43(ϕβh3)−1.40 (A9)

The “constant” φ is approximately 0.5 but has been established through collocating with the finite element
analysis as:

ϕ ≈ 0.407(βh3
0.88)−0.26 (A10)

for 0.018 ≤ βh3 ≤ 1.73.
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