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Abstract: Synthetic nitrogen fertilizer substitution (NSS) with different types of organic material is a
cleaner agricultural practice for reducing the application of synthetic N input in farmlands while also
relieving the environmental issues caused by the discharge of organic wastes. However, the effects of
the NSS practice on crop yields, being the primary objective of agricultural activity, is still uncertain in
China. This study conducted a meta-analysis to assess the impacts of the NSS practices with different
types of organic materials on crop yields. Results showed that the average crop yield was increased
by 3.4%, with significant differences under NSS, thereby demonstrating that this practice contributed
to improving crop yields, especially of rice and maize. According to published reports, the NSS
practices involving chicken manure, pig manure, and crop straw increased crop yields by 4.79, 7.68,
and 3.28%, respectively, with significant differences, thus demonstrating the superior effects needed
for replacing synthetic N fertilizer. Moreover, substitution ratios (SR) between 0% and 60% could
be suggested when using the NSS practice, with the high SR recommended when the original soil
fertility was adequate for crops. Considering the long-term effects of applied organic materials,
improving the grain yield with the NSS practice should be expected in the long-term. By effectively
applying the NSS, this study attempted to scientifically decide on the type of organic materials and
the appropriate SR based on the conditions of the soil and the crop. The results provide research
information for the development of clean agricultural production and food security in China.

Keywords: organic materials; synthetic N fertilizer; grain yield; meta-analysis; China

1. Introduction

Nitrogen (N) is the main limiting factor of crop productivity. During the past fifty years,
the grain yield per unit area in the world has increased by 130.34%, which the wide appli-
cation of synthetic N fertilizer around the world has significantly contributed to [1]. At the
same time, the excessive application of synthetic N fertilizer in agricultural production has
caused to serious environmental issues, including soil acidification [2], N2O emissions [3],
water eutrophication [4], acid rain [5], etc. The environmental impacts are damaging
the sustainability of crop farming systems and causing the possibility of declining crop
yields [6]. Therefore, how to reduce the application of synthetic N fertilizer by using
scientific approaches has been a hotspot of interest in global agricultural production and
sustainable development.

In recent years, replacing synthetic N fertilizer with organic materials was proposed
as a possible strategy for decreasing the synthetic N input in cropping systems, which was
considered as an effective N fertilizer substitution (NSS) practice. On the one hand, the
addition of organic materials could provide the N element required for crops when the
original applied amount of synthetic N fertilizer was reduced. On the other hand, the NSS
practice contributed to the relief of various environmental issues caused by the discharge of
organic materials, such as animal manure, crop straw, etc. Thus, the NSS practice has been
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studied in different regions, analyzing its various aspects including N use efficiency [7],
N2O emission [8], soil nutrients [9,10], and crop yield [11].

China is one of the largest agricultural countries in the world with a population of
1.4 billion, thus ensuring that grain production and food security are very important to
China. The production quantities of grain crops in China increased by 44.86% during the
past twenty years [12]. However, the gap between the consumption and the production of
grain in China could potentially reach 130 million tons by 2025 according to the “China
Rural Development Report 2020”, which also estimated that grain consumption in China
would be about 651 million tons in 2025 [13]. Meanwhile, the environmental pressures
derived from grain production in China have been increasing during the past decades.
The quantity of consumed synthetic N fertilizer in China increased by 72.5% from 2000
to 2020 [14]. However, the N use efficiency in China was only 30−35%, which was far
lower than the levels in developed countries [15]. Every percentage point increase in the
application of synthetic fertilizer increased the grain yield by 0.32% but the environmental
costs by 1.74% during 1983–2019 [16]. Clearly, the negative environmental impacts caused
by the excessive application of synthetic N fertilizer has exceeded the positive benefits of
increasing the crop yield in China.

Since 2016, the government of China has begun to implement the “zero growth policy”
of synthetic fertilizer use. At the same time, large amounts of organic wastes, such as crop
straw and animal manure, are generated in China each year, but the utilization rate is less
than 40% [17]. In this context, the NSS practice was paid more attention by researchers for
reducing synthetic N fertilizer use and disposing of organic wastes. The primary standard
of evaluating the benefits of the NSS practice in China was if the advanced practice could
ensure crop yield and even increase yield. So far, there have been many studies exploring
the effects of the NSS in different areas in China [18–22]. For example, Yang et al. [23]
showed that a 30% and 50% substitution of organic fertilizer increased grain yields by
10.4% and 12.4% in Hebei province, respectively. Tang et al. [24] showed that rice yield was
increased with the added input of pig manure in Jiangxi province, China. Liu et al. [25]
found that the NSS practice showed a slight increase in rice yield than that of the single
application of synthetic fertilizer in Jiangsu. Ma et al. [20] found that the rice yields
fertilized by pig manure with all proportions were higher than those of straw treatment.
Clearly, the effects of the NSS practice on grain yields were affected by various factors,
including the type of organic materials, the applied amount of the organic materials and
the synthetic N, the experimental site, and so on [26–28]. The effect of the NSS practice on
grain yield is still uncertain in China.

Meta-analysis is a comprehensive statistical analysis method for multiple independent
experiments or studies under the same subject. The method can be used for the quantitative
analysis of large sample data from a macro-regional scale. In the agricultural research field,
meta-analysis is mainly used for the comprehensive study of controlled trials to explore the
response characteristics of the main treatments and the influence mechanisms of other key
factors [29]. In recent years, meta-analysis has been widely used to explore the effects of
different agricultural practices, including straw turnover [30,31], conservation tillage [32,33],
and deficit irrigation [34–36]. However, information on the grain yield caused by the different
NSS practices in China and the key influence factors have still been lacking.

Therefore, this study conducted a meta-analysis to quantitatively assess the impacts
of the NSS practices with different types of organic materials on grain yields in China,
including crop straw, animal manure, biogas residue, and biochar. The considered organic
materials were the main types of organic materials applied in croplands in China at present,
which were the typical representatives of the organic wastes derived from the planting,
livestock rearing, and the bioenergy sectors, respectively. The results provide the theoretical
basis for the rational application of the NSS practice in China, and new research information
for the development of clean agricultural production in the world.
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2. Materials and Data
2.1. Data Sources

The data used in this study were published peer-reviewed papers which were collected from
the Web of Science (From 1985 to January in 2021, http://apps.webofknowledge.com/) and the
China Knowledge Resource Integrated Database (Before January 2021, http://www.cnki.net/).
The type of literature was the “article”. The search terms that referred to yield, organic materials
type, and reduced N fertilizer input were used in various combinations. The Boolean operators
“AND” and “OR” were used to combine three separate searches and contained optional search
terms. Specific search terms were set out in supplementary material (Table S1).

The filtering criteria for the collected data retrieval were as follows: (1) the experimen-
tal data were collected from field trials of wheat, maize, and rice cultivation systems in
China; (2) the number of replicates in the control group (CK) and the treatment groups
were not less than three; (3) the dosage of N input between the CK and the treatment
groups were equal, and the CK only applied synthetic N fertilizer while the treatment
groups applied organic fertilizer replace synthetic N fertilizer in different ways; (4) grain
yield and standard deviation (SD) could be obtained directly from the papers or by indirect
calculation; (5) the N doses of synthetic fertilizer and/or organic materials were reported
for the substitution ratio (SR), defined as the N input from the organic materials that are
from different sources divided by the total N input in each treatment. If more than one
publication presented the results from the same field plots, we collected the experimental
data from the articles that were recently published in the journals with higher impact
factors. Finally, we collected a total 263 comparisons from 78 publications that met the
selection criteria for meta-analysis (Figure 1). The distribution of collected test sites in the
study was presented in the Figure 2.

2.2. Data Aggregation

This study summarized the results of grain yield, SD, and the number of replicates
reported in the articles. At the same time, the information on the experimental site, soil type,
fertilization treatment, experimental period, and regional distribution were considered.
All the information forms a database in supplementary material (Table S2). For analyzing
the key factors of affecting the grain yield under the NSS practice, this study divided
all the collected datasets into different subgroups based on the standard of maximizing
group homogenization (Table 1). Differences in regional environmental characteristics
were shown in Table 2.
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Table 1. Data grouping for regional distribution, nutrients, and experimental duration.

Item Regional
Distribution

Type of Organic
Materials

Substitution Ratio
(SR)

Grain
Type

Grouping

East China
North China

Southwest China
Northeast China
Northwest China

Center South
China

Cow dung
Chicken manure

Pig manure
Straw

Biochar
Biogas residue

0 < SR ≤ 20%
20 < SR ≤ 40%

40% < SR ≤ 60%
60% < SR < 100%

Maize
Wheat

Rice

Note: substitution rate (SR) is defined as the ratio of manure N input and total N input (%).

Table 2. Regional environmental characteristics 1.

Regional Distribution Prevailing Soil Type Prevailing Climate Summary Soil PH Soil Carbon

East China Medium loam Subtropical humid monsoon climate,
temperate monsoon climate 5.39–8.56 medium

North China Medium loam Temperate continental monsoon climate 11.9–21.50 medium
Southwest China Sandy loam Subtropical monsoon climate 5.59–7.57 super
Northeast China Clay loam Monsoon climate of medium latitudes 6.01–7.60 super
Northwest China Medium loam Temperate continental monsoon climate 6.58–8.79 medium

Center South China Loam Subtropical humid monsoon climate 5.10–8.05 super
1 The data were collected from the retrieved articles in the study.

2.3. Data Preparation

In this study, all of the units of grain yields in the publications were converted into
kg/ha. For studies providing only standard error (SE), this study calculates SD by the
following formula:

SD = SE× √n (1)

where the n was the number of repetitions. If the SD and SE values were both not reported
in the publications, the overall SD values were estimated in the present study based on
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the proportion of the mean of the SD values across all collected data. For the study of
presenting data in graphic form, the software Get Data Graph Digitizer 2.26 was used in
this study to extract the required mean values and SD.

2.4. Data Analysis

Meta-analysis quantifies the main indicators emerged in research results (data) through
effect indicators and summarizes the different results of similar studies through weighted
integration, for directly and briefly expressing the objective laws [30]. In meta-analysis, the
effect value is the most basic and critical existence. The reasonable selection of the effect value
is also related to the scientific and reasonable final results. Effect values can be combined,
compared, and analyzed with data from different independent studies [37]. In this study,
the ratio of the treatment group to the CK was used as a response ratio (R). Based on the
collected results and the statistical assumptions, this study selected the natural logarithm (lnR)
as the effect value index to reflect the impact of treatments on the corresponding indicators
compared to the CK. The lnR was calculated based on Equation (2):

lnR = ln
Xt

Xc
= lnxt − lnxc (2)

where the xt and xc were the mean values of the grain yield of the treatments and the CK
groups, respectively.

The overall effect value of the treatment groups was obtained by adding the weights
of the different research data pairs, which was calculated based on Equation (3):

lnR++ =
∑(lnRi × wi)

∑ wi
(3)

where the i was the ith observation, and the lnRi and wi were the effect values and weights
of the ith pair of data.

The weight (w) of each data pair was the inverse of the variance (v) of the correspond-
ing effect value. The v referred to the variance of the effect values in an independent study.
The w and v were calculated based on Equations (4) and (5):

w =
1
v

(4)

v =
(St)

2

nt(xt)
2 +

(Sc)
2

nc(xc)
2 (5)

where the St and Sc were the SD values in the treatment and the CK groups, respectively, and
the nt and nc were the number of replicates in the treatment and the CK groups, respectively.

Finally, the increased or decreased percentage (E) of grain yield between the treatment
and the CK groups could be calculated by Formula (6):

E = (exp(lnR++)− 1)× 100% (6)

In this study, the mean effect sizes and the 95% confidence intervals (CIs) were gener-
ated by a bootstrapping procedure with 4999 iterations [29] by using METAWIN 2.0 [38]. If
the 95% CIs included a value of 0, the treatment and the control groups were considered
insignificant. If 95% CIs did not contain 0 value, it was considered as a significant difference.
The NSS practice increased compared with the CK (positive effect) if it was greater than
0, whilst the NSS practice decreased (negative effect) if it was less than 0 [32]. The mean
effect sizes of the subgroups were compared by classification random effect analysis in this
study. Sigma Plot 12.5 software was used for plotting.
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3. Results and Discussions
3.1. Effects of the NSS on Grain Yields in Different Regions in China

As shown in the Figure 3, the grain yield in the treatment groups in China was
increased by 3.4% compared to the CK, with a significant difference at the p < 0.05 level,
indicating that the NSS practice could significantly improve the grain yield in China.
In particular, the grain yields were improved by 3.88%, 3.89%, 3.09%, and 3.62% under
the NSS practices in northeast China, northwest China, east China, and south-central
China, respectively, with significant differences. In North China and southwest China, the
yields were increased by 2.81% and 3.39%, respectively, but the differences between the
NSS treatments and the CK were not significant due to some special features of the field
experiments. For example, the result of the decreased grain yield in southwest China was
primarily caused by the overly high SR of synthetic N fertilizer [32]. The negative effect
of the grain yield in the northern China mainly resulted from the shortage of irrigation
water, because one of the experimental factors in the research was the limited irrigation
treatment [21]. Nevertheless, the effects of the NSS practice among the different study
regions did not show significant differences at the p < 0.05 level. In general, we concluded
that the application of the NSS practice in the cropping system contributed to improving
the grain yield in China. Moreover, the response of the grain yield on the NSS practice was
not significantly affected by the changed regions.
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values in parentheses represents the number of observations. The error bars indicates the effect sizes
at the p < 0.05 level. The effect was statistically significant if the error bar did not bracket the dotted
line (zero graduation). The notes above are applicable for the following figures as well.

In fact, the combined application of organic materials and synthetic fertilizer has
been viewed as an effective approach for increasing grain yields in different regions in the
world for hundreds of years [39–42]. The addition of organic materials in farmlands could
improve the quality of the soil. The organic materials could not only effectively promote
the reduction of soil compactness in farmlands, but also increase the buffer capacity and
fertilizer retention performance in the soil [43]. Compared to the single application of
synthetic N fertilizer, the decomposition and transformation rate of N in organic materials
was relatively slow, which was conducive to the accumulation of N pools in the soil [44].
Meanwhile, the addition of organic materials in the farmland increased the diversity and
the richness of soil microorganisms. The input of active organic carbon brought by organic
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materials provided a rich carbon source for the growth of soil microorganisms, thereby
increasing the soil microbial activity and the N use efficiency in the farmland [44]. Moreover,
more synthetic N would be fixed in the microbial body when the organic materials were
applied into the soil, thus lowering the N volatilization and loss from the soil. When the
N requirement of the crops increased in the middle and late growth period, the energy
material in the soil to maintain the life activities of microorganisms would be inhibited.
As a result, a large number of microorganisms died off, releasing part of the immobilized
N that could be absorbed by the crops [45]. Moreover, the NSS practice improved the
metabolism of the soil microorganisms and the crops, thereby improving the soil fertility
and crop yield [26,46,47].

3.2. Influence from Grain Types

This study mainly considered the staple grain crops in China, including wheat, maize,
and rice. As shown in Figure 4, the NSS practice increased the yield of rice and maize
by 4.16% and 3.07%, with significant differences at the p < 0.05 level. The grain yield in
the treatment groups for wheat production was also increased by 1.11% compared to the
CK, but the difference was not significant. For example, the growing period of wheat
encountered dry weather, resulting in extreme water shortage and the lower yield [48]. The
soil carbon content and nutrients in the experimental treatments were much lower than
in the CK group of the experiment area [49]. The soil texture is saline-alkali soil, and the
organic materials released mineral elements slowly under conditions of low rainfall, thereby
resulting in a significant reduction of the wheat yield [48]. Besides, one reason was possibly
that the maize and the rice were mainly cultivated in the warm conditions in China while
the wheat was generally cultivated in cool weather conditions. The lower temperature in
the wheat planting regions limited the N mineralization and the supply from the organic
materials [50]. The transfer rate of the N to the grains was reduced because the wheat was
sensitive to the high N input in the late growth period [51]. Although the yield increase
effect of the wheat was not significant, the combined application of the organic and the
synthetic fertilizers could improve the quality of the wheat grains, including the increase
of crude protein and crude fat content in the grains [49]. Moreover, the difference among
the wheat, maize, and rice yields under the NSS practice were not significant.
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3.3. Influence from the Type of Organic Materials

As shown in Figure 5, when the pig manure, chicken manure, and straw were used as
a N source, the grain yields were increased by 4.79%, 7.68%, and 3.28%, respectively, with
significant differences at the p < 0.05 level. The grain yields in the cow manure and the
biochar treatments were also increased by 0.97% and 1.4%, respectively, but the differences
were not significant at the p < 0.05 level. Specifically, the chicken manure showed the
greatest increase effect on the grain yield, possibly due to the high nutrient content. The
effect of improving the yield by the chicken manure NSS practice presented significant
differences when compared to the cow dung and the biogas residue treatments. The N
supply capacity of the pig manure, the cow manure, the crop straw, and the biochar were
generally less than that of the chicken manure. When the proportion of the synthetic
fertilizer was at a low level, the chicken manure could supply timely nutrients for the
grain compared to the other organic materials [52]. However, the grain yield in the biogas-
residue-based NSS treatment was decreased by 2.95%, although the difference was not
significant at the p < 0.05 level. The possible reason was that the content of the organic
carbon in the biogas residue was less than the other types of organic materials, which
affected the soil fertility. Moreover, because the collected data on the biogas-residue-based
NSS treatment were limited, the effect of the biogas residue on the grain yield should be
further analyzed by using more and longer experimental results. Generally, we believed
that the application of different types of NSS practice in the cropping system, except for
the biogas residue, contributed to improving the grain yield in China. The NSS practices
involving the chicken manure, the pig manure, and the straw were the best options for
improving the grain yield in China according to the current published results.
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3.4. Influence from Substitution Ratio

According to Figure 6, when the SRs were less than 60%, the grain yields were
increased by 3.01–4.08% compared to the CK, respectively, with significant differences at
the p < 0.05 level. The grain yield was increased by 3.16% as well when the SR was more
than 60%, but the difference was not significant because some of the published results
showed a negative effect on the grain yield. Meanwhile, the effects among the different
SRs also did not present significant differences. Clearly, the overly high SR in the NSS
practice could potentially have caused the reduction of the grain yields. The primary
reason was that the slow release of the organic materials limited the N supply to the early



Agronomy 2021, 11, 2429 9 of 12

stage of crop growth. The original soil fertility was the most important factor related to
the SR of the NSS practice. The soil with poor fertility should adopt a lower SR to meet
the immediate demand of crops for nutrients. For the soils with higher fertility, the higher
SR in the farmland contributed to improving the soil microbial activity, activating the soil
nutrients, and hence simultaneously increasing the grain yield [25,53]. In fact, the yield
of the cropping system that only applied the organic materials was even higher than the
combined application of the organic and the synthetic fertilizers in some studies when the
soil fertility was high enough [26]. In addition, different types of the organic materials
had different mineral rates and humification coefficients [54]. The results implied that
the appropriate SR must be scientifically decided based on the actual conditions of the
research regions, although the higher SR meant the lower input of synthetic N fertilizer
and the more consumption of organic wastes in the farmland, which was possibly helpful
for decreasing environmental pollution.
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4. Conclusions

The effects of the NSS practice on grain yields, the primary objective of agricultural ac-
tivity, were still uncertain in China. This study conducted a meta-analysis to quantitatively
assess the impacts of the NSS practices with different types of organic materials on grain
yields in China. The results showed that the application of the NSS practice in cropping
systems contributed to the improvement of rice and maize yields in China. Moreover, the
response of the grain yields on the NSS practice would not be significantly affected by the
changed regions. According to the current published results, chicken manure, pig manure,
and straw were the best options to replace synthetic N fertilizer for improving grain yields
in China. Moreover, in the case of poor soil texture, the NSS practice has a negative effect
on the grain yield. Therefore, it is recommended to use SRs less than 60%. However, 60%
SRs could also be considered when the soil original fertility is superb.

We also noted two limitations in this study. First, this study did not analyze the
responses of the soil properties, the crop varieties, and the characteristics of the organic
materials to the NSS practice in China due to the lack of detailed data. Second, because
one of the important standards of collecting a raw dataset was the same amount of N
input between the CK and the treatment groups, the relative published results in some
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regions were limiting. They lowered the reliability of the conclusions derived from the
meta-analysis, especially for those in the North China Plain and in southwest China.

Overall, the application of the NSS practice in the cropping system has generally
showed the positive effect on increasing the present grain yield in China. Considering the
long-term effects of the applied organic materials, the improvement of the grain yield by
the NSS practice should be expected in the long-term period of application. Under the
background of the development of a sustainable agricultural system in China, the NSS
practice showed a good potential to spread to more regions. The key points of effectively
applying the NSS practice were to scientifically decide on the type of organic materials
and the appropriate SR based on the actual conditions of the soil and the crops during
agricultural production.
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