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Abstract: Computer vision is currently experiencing success in various domains due to the harnessing
of deep learning strategies. In the case of precision agriculture, computer vision is being investigated
for detecting fruits from orchards. However, such strategies limit too-high complexity computation
that is impossible to embed in an automated device. Nevertheless, most investigation of fruit
detection is limited to a single fruit, resulting in the necessity of a one-to-many object detection
system. This paper introduces a generic detection mechanism named FruitDet, designed to be
prominent for detecting fruits. The FruitDet architecture is designed on the YOLO pipeline and
achieves better performance in detecting fruits than any other detection model. The backbone of the
detection model is implemented using DenseNet architecture. Further, the FruitDet is packed with
newer concepts: attentive pooling, bottleneck spatial pyramid pooling, and blackout mechanism. The
detection mechanism is benchmarked using five datasets, which combines a total of eight different
fruit classes. The FruitDet architecture acquires better performance than any other recognized
detection methods in fruit detection.

Keywords: deep learning; object detection; agriculture; convolutional neural network

1. Introduction

Precision agriculture [1] implements the knowledge gained through data processed by
machinery and software to deal with uncertainties of agricultural systems. Currently, the
uncertainties of agricultural systems are dealt with various approaches, such as weather
data, field sensor data, vision data, and so forth. Precision agriculture is required to achieve
sustainability to fulfill the requirements of the current population growth and effectively
handle the food-to-land demand. Therefore, massive harvesting is often conducted by
farmers to fulfill the current agricultural needs. Moreover, modern agriculture seeks
to manage crops in controlled environments, which maintains specific environmental
properties enabling fast growth of agricultural products.

Robotic harvesting is being implemented to reduce labor costs that also offer a faster
and autonomous harvesting process. Autonomous harvesting systems often require vision
systems to pinpoint the targeted objects, plants, or crops. Further, some agricultural per-
spectives require specializations, such as identifying diseases, identifying crops, estimating
crops in orchards, etc. Moreover, developing an autonomous harvesting system requires
solving various vision-related problems: (a) is the fruit seen or not, (b) pinpointing fruit
location, (c) is the fruit ready to be picked or not, (d) estimating the fruit load, (e) diseased
or not, and so on.

Due to the accomplishments of deep learning, computer vision is in a period of
rapid advancement. Hence, deep learning-based computer vision is being implemented
to solve numerous challenges in agricultures including leaf disease segmentation [2,3],
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weed detection [4], three-dimensional reconstruction of fruit [5,6], and fruit detection [7].
Moreover, computer vision is being drastically applied in agriculture to detect fruits from
orchards, solving the challenges mentioned earlier. Detection systems are observed to
be implemented for detecting individual fruits such as mango [8], tomato [9], apple [10],
kiwifruit [11], strawberry [12], and so on. Apart from the particular fruit detection systems,
efforts have been made to implement a general fruit detection system that can detect fruits
from the general environment [13] as well as the orchard environment [14].

Although there are general object detection systems [15,16] which can detect a wide
range of objects, agricultural detection systems face some specific challenges. Often, fruits
that appear in agricultural environments are small, causing the available detection systems
to struggle. Further, agricultural detection systems often have to detect more objects
per image than general object detection systems. Moreover, the detection system has to
be lightweight, resulting in a real-time detection system. Being such a challenging task,
fruit detection systems in orchards generally target specific fruits for achieving better
performance [9–11]. Therefore, implementing a system that works as a generic fruit
detection is required.

This paper introduces an architecture based on deep learning that is specifically
designed for agricultural large-scale fruit detection. The proposed model is dubbed as
FruitDet, defining “fruit detection”. The model is built upon one-stage detection based
upon the YOLO pipeline. The proposed architecture is faster and robust. Therefore, the
proposed method is a suitable fruit detection system for automated machinery.

The overall contribution of the paper includes:

• The paper introduces a faster and robust fruit detection system, FruitDet, capable of
detecting single and multiple fruits from a single model.

• The paper proposes a modified attention mechanism for better stability of the detec-
tion model.

• The paper introduces an attentive pooling block, which combines the attention model
and a max-pooling layer. The attentive pooling block can flow prioritize and down-
sample the essential features.

• The paper proposes a blackout regularization, which provides better detection capa-
bility by neglecting the object size to head detection mapping.

The rest of the paper is segmented as follows: Section 2 represents the relevant
works carried out on the fruit detection domain. Section 3 defines the methodology of the
proposed FruitDet. Section 4 evaluates the FruitDet architecture by benchmarking. Finally,
Section 5 concludes the paper.

2. Related Work

Deep learning strategies are overflowing the object detection domain of computer
vision due to their robustness. The current implementation of object detection systems is
segmented into two different scenarios: two-stage and one-stage object detectors. Two-
stage detectors [17] implement detection and prediction in a different module, which often
causes a time complexity bottleneck in implementation perspectives. In contrast, one-stage
detectors (also called single-shot detection [18]) perform both detection and classification
in a single module.

However, from a user perspective, a one-stage detection system may not achieve real-
time inference speed due to hardware limitations. Thus, a one-stage detection system often
has to balance the exactness and time-complexity tradeoff from architectural perspectives.
EfficientDet [19] architecture achieves better performance in detection yet is slow in inference
time. On the other hand, SDD [18] and RetinaNet [16] are insignificantly fast. Nevertheless,
they lag due to low accuracy depending on the detection speed. Comparatively, YOLO [15,20]
achieves better speed by slightly compensating the detection performance. Object detection
systems need to be lightweight and robust. Lightweight systems cause real-time inference
and require cost-efficient devices. Amongst the numerous object detection pipelines, YOLO
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architectures are currently preferred for faster and comparatively accurate fruit detection
systems [21].

Detecting fruits from the orchard environment is critical due to various aspects. The
quantity of detection can be massive compared to the general object detection systems.
The objects/fruits can be overlapped by environmental factors causing a critical detection
situation. Further, objects in orchard situations can be much smaller than the general
object detection systems target. Therefore, detecting fruits from orchards requires more
specialized engineering concepts than the available detection systems.

The early stage of deep learning-based object detection systems in agriculture was
implemented using a two-stage object detection system. Two-stage object detection systems
are typically robust. Therefore, researches were conducted on multifruit detection systems
using two-stage detectors. Sa et al. [13] used faster RNN to detect multiple fruits using
faster region-based CNN (Faster R-CNN) [17] from two different modalities: RGB and
Near-Infrared (NIR). The authors inherited a transfer learning strategy to train the classifier
and gain better detection results in their dataset. Bargoti et al. [14] introduced their
dataset and implemented Faster R-CNN to detect three fruits (apple, almond, and mango)
simultaneously. However, although the Faster-RCNN produced better results on detecting
mango and apple, it generated average accuracy on detecting almonds. Although the
Faster-RCNN methods achieved marginal accuracy, they suffer from higher inference
time. Therefore, the systems are not perfect for a cost-friendly and real-time robotic
harvesting system.

One stage detectors solve the drawback for lightweight and real-time fruit detec-
tion systems by negotiating robustness. However, in fruit detection systems, the robust-
ness of one-stage detection methods is competitive to the two-stage detection strategies.
Koirala et al. [22] implemented a mango detection system based on the YOLO backend and
named it MangoYOLO. The authors designed their YOLO detection mechanism specifically
for mango detection and tested it in their produced dataset. Lawla et al. [9] implemented
a tomato detection system which is a modified version of YOLOv3 [20]. The authors
named the architecture YOLO-Tomato model. The authors benchmarked their proposed
architecture in their generated dataset and achieved a marginal detection accuracy. How-
ever, the benchmark showed that the current YOLO, YOLOv4 achieves more competitive
performance than the YOLO-Tomato model.

Kang et al. [10] introduced the apple detection model LedNet, which is a refined
version of RetinaNet [16]. The authors compared their proposed architecture with YOLO
family detectors and demonstrated that their proposed architecture performs better in
detecting apples. Further, Santos et al. [23] introduced a grape dataset and implemented
YOLOv2 [24] and YOLOv3 [20] as a grape detector system. Surprisingly, the older version
of the YOLO family, YOLOv2, performed superior in detecting grapes than the improved
version YOLOv3. Therefore, the enigma remains. What is the optimal architecture for
detecting fruits?

The paper introduces a fruit detection system, FruitDet, that is built upon the YOLO
pipeline. The FruitDet architecture is faster, lighter, and can recognize multiple fruits at
once. Further, we perform benchmarks in five different datasets to validate the FruitDet
architecture to be efficient in the most complex scenarios, solving the enigma for finding
one robust detection model.

3. FruitDet

A general end-to-end detection system consists of three major segments: (a) backbone,
(b) neck, (c) head. The backbone of a detection mechanism performs feature extraction.
The extracted features are passed to the neck of the object detector. The neck performs a
fusion of the features gathered from the different layers of the backbone model. Finally, the
neck passes the feature maps to the head of the detector model. The head finally predicts
the classes and bounding box regions which is the final output produced by the object
detection model. The head may produce a stack of outputs, mainly designed to recognize
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different sizes of objects from an image. Figure 1 illustrates the standard concept of an
object detection system.

FruitDet architecture follows the general input–output pipeline of the YOLO family.
However, the proposed FruitDet architecture contains a modification in the backbone,
neck, and head model. Figure 2 illustrates the architectural schema of the FruitDet model.
The FruitDet architecture consists of the three general segments of the YOLO family (as
illustrated in Figure 1). A lightweight modification DenseNet architecture (fused with
attentive pooling mechanism) is implemented as a backbone of the network, discussed in
Section 3.1.1. Consequently, feature pyramid network (FPN) along with spatial pyramid
pooling (SPP) is used in the neck of the FruitDet architecture, discussed in Section 3.2.
Finally, the head of the FritDet network is implemented using a modified attention module,
discussed in Section 3.3.1. The training process of the network consists of a head dropout
regularization scheme discussed in Section 3.3.2.

3.1. Backbone

The backbone of a detection model extracts essential features in different resolutions
and provides adequate information related to position and object structure. A backbone
architecture is generally implemented using a robust classifier model, excluding the final
classification layers of that model. However, while selecting a backbone architecture for
a real-time detection system, the inference time must also be considered. The current
proceedings of the YOLO family, both YOLOv3 and YOLOv4, implements the Darknet53
architecture as a backbone. The Darknet53 was initially proposed in YOLOv3. The Dark-
Net53 consists of general convolutions with residual blocks. The backbone was faster yet
heavily parameterized. Hence, in YOLOv4, the parameter of DarkNet53 architecture is
reduced by half using cross-stage spatial blocks (CSP).

FruitDet implements a modified version of DenseNet [25] as a backbone. DenseNet
architecture has a general pattern of aggregating the previous features and extracting
the spatial information from a set of the previous features. Therefore, DenseNet archi-
tecture offers a better propagation of features to the detection mechanism. Besides, as
DenseNet architecture can fuse the features of multiple blocks, it alleviates the vanishing-
gradient problem.

The DenseNet proposed for FruitDet is re-engineered to be smaller and lighter. The
traditional DenseNet architecture implements a transition block. In FruitDet, the gen-
eral transition block is replaced with an attentive transition block (depicted in Figure 3).
The DenseNet backbone and attentive transition is discussed in Sections 3.1.1 and 3.1.2,
respectively.

Extracts 

features from 


multiple 

resolutions

Performs 

multi-resolution 


feature aggregation

Generates final 

predictions based 


on object resolution

Neck Head

Input Image

Backbone

Figure 1. A detection model contains a backbone, neck, head module. The backbone module exploits
the essential features of different resolutions, and the neck module fuses the features of different
resolutions. Finally, multiple head modules perform the detection of objects in different resolutions.
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Figure 2. The figure illustrates the overall mechanism of the FruitDet detection model. The backbone
of the FruitDet model contains a lighter DenseNet architecture with the proposed attentive transition
block. The neck of the FruitDet model contains a feature pyramid network (FPN) with a bottleneck
spatial pyramid pooling (SPP) method. The head consists of a modified attention module.
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Convolution

f = 32, k = 3, s = 1 ConcatenationInput Convolution


f = 32, k = 3, s = 1 Concatenation

Convolution

f = inpf, k = 3, s = 1Attention BlockMaxpool
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Convolution
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Dense Block 2x

Output

Modified DenseNet TransitionGeneral DenseNet Transition

Figure 3. The figure depicts the construction of a dense block (with two convolutions) followed by different transition
modules. The left figure illustrates the transition module of DenseNet. The right figure depicts the proposed attentive
transition module. At first, the attentive transition module performs a convolution operation. Further, there exists an
attention block, followed by a max pool layer.

3.1.1. Densely Connected CNN

Apart from the general implementation of the YOLO family, FruitDet is designed with
a DenseNet [25] backbone. The general implementation of DenseNet (as a backbone) is
evaluated to be slower than Darknet-53 [20]. Hence, the FruitNet architecture contains
handcrafted DenseNet blocks with lesser parameters, resulting in a lightweight detection
mechanism.

A dense block consists of multiple convolutions. In general, a dense block with n
convolution performs the following operation:

xn = Hn([x0, x1, x2, · · · , xn−1]) (1)

Here, xi are the feature maps produced by a non-linear function H(·). A dense block
contains a growth rate, referring to the number of channels produced by a non-linear
function Hi(·). The general DenseNet architecture contains a growth rate of 32. The
implemented dense block of FruitDet is the same as the general dense block introduced in
DenseNet. Nevertheless, the number of dense blocks in FruitDet is significantly reduced.
Each of the convolution blocks of DenseNet consists of activation, batch normalization,
and convolution block in sequence.

3.1.2. Attentive Pooling: Feature Selective Pooling

In the general implementation of DenseNet, each dense block is followed by a transi-
tion block that produces a simple non-linear feature map containing a pointwise convo-
lution. Afterward, a transition block also performs 2× 2 average-pooling to reduce the
resolution of the feature map.

In contrast, FruitDet architecture is packed with an attentive transition module, fusing
attention with the transition block. In general, an attention block can prioritize a feature by
increasing the activation value and vice-versa. Before performing the pooling operation, we
found that adding an attention block improves the robustness of the FruitDet architecture.
As the attention layer can prioritize features, it focuses on passing important features via the
pooling layers. Moreover, we perform max-pooling instead of performing average-pooling
suggested in DenseNet. To validate such an implementation, we theorize an example.
Let xn be a set of feature map values xn = {x0, x1, · · · , xn−1}. Performing a max-pool to
choice n

2 values would select the high confidence features. Further passing xn through
an attention layer would guarantee the max-pool layer choosing the best feature maps.
In contrast, performing an average-pooling would cause mixing the high-priority feature
maps with low priority feature maps. Hence, average-pooling is avoided in the attentive
transition block.
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Figure 3 illustrates the schema of a dense block followed by the attentive transi-
tion. The attentive transition first performs a convolution, followed by the attentive
pooling mechanism. The attentive pooling mechanism contains an attention block and
a max-pooling layer. The attention mechanism implemented in FruitDet is discussed in
Section 3.3.1.

3.2. Neck

The neck of object detection systems is observed to be implemented using different
pyramid network [26] approaches. Pyramid networks are observed to be better at per-
forming feature fusion from different layers of the backbone model. In general, there
exist three types of hand-crafted pyramid networks: feature pyramid network (FPN) [26]
implemented in YOLOv3, path-augmented network (PAN) [27] implemented in YOLOv4,
and bi-directional feature pyramid network (BiFPN) [19] introduced in EfficientDet. The
internal workings of the pyramid networks are illustrated in Figure 4. The neck of FruitDet
is implemented using the FPN. Adding FPN in FruitDet resulted in better performance,
being lightweight and faster than the rest of the pyramid networks. Besides the FPN,
adding other pyramid networks would cause an extra computation burden, resulting in a
comparatively slower detection system in low-cost devices.

Apart from the pyramid network in the neck of the detection system, YOLOv4 adds
Spatial Pyramid Pooling (SPP) [28]. SPP has been demonstrated to be better at recognizing
numerous features, ignoring the size of the appearance. Inspired by the analogy of SPP
in object detection, FruitDet architecture implements a scarce modification of SPP block,
which is discussed below.

(a) FPN (b) PAN (c) BiFPN

= Backbone output = Upsample node (inside neck) = Downsample node (inside neck) = Head output

Figure 4. The figure illustrates three different implementations of neck architectures in detection
models. FPN is implemented in YOLOv3, PAN is implemented in YOLOv4, and BiFPN is introduced
in EfficientDet. The neck of FruitDet is implemented using FPN.

Bottleneck Spatial Pyramid Pooling

SPP performs a set of max-pool operations comprising different pooling sizes. Differ-
ent pooling sizes help to identify similar feature maps neglecting the different resolution of
feature patterns. Adding SPP in YOLOv4 causes an increase in parameters and complexity.
Hence, FruitDet is implemented with a bottleneck SPP block. The proposed bottleneck
SPP block concatenates the set of pooling outputs and performs a pointwise convolution
operation. The pointwise convolution operation reduced the number of features, and the
output result is again concatenated with the actual input of the SPP block. The bottleneck
reduces the required parameters after the SPP block and provides a slight performance
improvement. Figure 5 illustrates a visual difference between the implementation of SPP
(in YOLOv4) and bottleneck SPP implemented in FruitDet.
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Maxpool 
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(b) Bottleneck SPP(a) SPP in YOLOv4

Figure 5. The figure illustrates the comparison of the SPP block (implemented in the YOLO family)
and the proposed bottleneck SPP block. The bottleneck SPP reduces the feature dimension resulting
in a reduction in trainable parameters and complexity.

Multiplication

Channel Attention

Sigmoid

Multiplication

Addition

Input

Convolution

Spatial Attention

Sigmoid

Output

(a)

Sigmoid

Input

Convolution

Output

Multiplication

(b)

Input

Convolution

f = inpf, k = 1, s = 1

Sigmoid

Multiplication
Addition

Output

(c)
Figure 6. The figure depicts a comparison of attention modules. CBAM [29] is an attention module
combining channel and spatial information. SAM [15] is used as an attention module in YOLOv4.
Finally, the proposed attention module for FruitDet is illustrated. (a) CBAM [29] attention module.
(b) SAM attention module. (c) Attention module in FruitDet.
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3.3. Head

The head of the object detection model performs the final prediction of the bounding
boxes and class scores. End-to-end object detection systems contain multiple heads to
detect objects of different resolutions accurately. In general, the YOLO family contains three
heads, whereas EfficientDet contains three to five heads. Based on mapping object detection
to different heads based on the resolution, a new object detection to head mapping policy
is proposed. The policy is introduced in Section 3.3.2.

The head construction contains slight differences between YOLOv3 and YOLOv4.
YOLOv4 contains a Spatial Attention Module (SAM) [15] block. The SAM block is a
generalized version of the Convolutional Block Attention Module (CBAM) [29], which is
less parameterized and requires less computational cost. Apart from the general imple-
mentation of the attention module, FruitDet is introduced with a modified version of the
attention block discussed below. Moreover, a comparison of the attention modules is given
in Figure 6.

3.3.1. Modified Attention

The general implementation of the SAM block contains a non-linear function Hl ,
which is used for extracting spatial relationships. The output of the non-linear function
is passed through a sigmoid function, resulting in the output to be in scale [0, 1]. The
sigmoidal output is further multiplied with the actual input of the non-linear function. The
process can be mathematically illustrated as:

xout = σ(Hl(xin))× xin (2)

Here, xin is the input feature map and xout is the output feature map after applying
the attention module. The function σ(Hl(·)) is the attention function that prioritizes spatial
features of the input. Higher priority features receive values close to 1, and low priority
features receive values close to 0.

The flaw of the SAM attention module is that if it fails to prioritize a vital feature
map, the overall output of the detection model can be erroneous. Furthermore, the SAM
attention module can hardly produce the same results as the input. The sigmoid activation
function requires a higher value as an input to achieve the output value of 1. Therefore,
SAM blocks might struggle to prioritize vital feature maps.

To solve such a problem, FruitDet is implemented with a modified attention module
that can be mathematically represented as follows:

xout = xin + σ(Hl(xin))× xin (3)

The proposed attention module performs an addition operation with the input of the
attention module. Unlike the SAM module, the proposed attention module cannot directly
vanish vital spatial feature maps, and even the attention module fails to identify them.
Figure 7 depicts a difference between the SAM module (Equation (2)) and the proposed
attention module (Equation (3)). The proposed attention module can achieve the value of
one faster than the SAM module. Therefore, the proposed attention model does not push
the detection architecture to produce high-valued feature maps for activating the attention
function. Hence, the attention block achieves a better flow of information from the neck to
the head of the FruitDet model.
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Figure 7. The left and right figures visualize the SAM module and the proposed attention module, respectively. The x-axis
is the input of the functions, whereas the y-axis indicates the output values. The SAM module requires a higher input value
to produce an output of 1. In contrast, the proposed attention module can achieve an output of 1 by getting almost half of
the input of the SAM module.

3.3.2. Blackout: A Head Dropout Mechanism

In the training process of FruitDet, a head dropout policy is introduced. The head
dropout policy randomly drops one or two head outputs by multiplying the outputs by
zero. The head dropout policy forces the detection model to detect objects from the rest of
the head models, which results in a more confident detection output. Let h1, h2, and h3 be
the heads, where an object p is only detected by h2.Using the head dropout policy, if the
output of the h2 is multiplied by zero, the object would not be detected by the detection
model. Therefore, during backpropagation, the detection model would update the weights
of head h1 and h3 to correctly detect object p via the other heads (excluding h2). Therefore,
the head dropout policy improves the probability of detecting an object from multiple
heads. Hence, it improves the overall performance of the FruitDet model. We name the
overall policy of dropping out detection heads as blackout. The overall process of blackout
is illustrated in Figure 8.

Detection output

of small objects

Detection output

of medium objects

Detection output

of large objects

Detection output

of small objects

Detection output

of medium objects

Detection output

of large objects

(a) Training in YOLO (b) Training in FruitDet

= Backbone output = Neck output = Head output

Figure 8. The figure illustrates the detection process of multiple heads concerning the object size
(illustrated on the left). FruitDet applies a blackout strategy that eliminates the output of some
detection heads, forcing other detection heads to detect any size of objects.

3.4. Training and Inference

The FruitDet is trained using the loss criteria as same as YOLOv4. The loss function
aggregates three distinct features: positional loss, confidence loss, and class loss. The
positional loss defines the quality of overlap of the detected object by the FruitDet concern-
ing the actual object. The confidence loss defines the existence of an object for a specific
bounding box. The class loss defines the correctness of the detected class in the case of
multi-fruit classification. The positional loss is implemented using CIoU loss [30]. The
overall loss function is derived below:
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Loss = Lposition + Lcon f idence + Lclass

Lposition = 1− IoU +
ρ2(b, bgt)

c2 + αv

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

α =
v

1− IoU + v

Lcon f idence = −
S2

∑
i=0

B

∑
j=0

Iobj
ij CEbinary(Ĉij, Cij)− λnoobj

S2

∑
i=0

B

∑
j=0

Inoobj
ij CEbinary(Ĉij, Cij)

Lclass =
S2

∑
i=0

Iobj
ij CEcategorical(P̂ij, Pij)

(4)

Here,

S2 = 2D detection grid of FruitDet head

B = Number of candidate boxes in each head (B = 3)

Iobj
ij = Object mask, take 1 if object exists for a grid position (i, j), 0 otherwise

Inoobj
ij = Object mask, take 1 if object does not exist for a grid position (i, j), 0 otherwise

ρ(·) = Eucledian distance

Ĉij, Cij = Confidence of object in ground and predicted output, respectively

P̂i,j, Pi,j = Category probability of ground and predicted output, respectively

bgt, wgt, hgt = Center coordinates, width, and height of actual object

b, w, h = Center coordinates, width, and height of the predicted object

The YOLOv4 architecture uses CIOU loss for detecting large-scale objects. CIOU loss
is a refined version of the DIOU loss that adds an extra penalty based on the aspect ratio
difference between true/actual and predicted objects. The additional aspect ratio penalty
is added by the term αv while detecting Lposition.

The training of FruitDet is conducted implementing the blackout policy. Further, gen-
eral augmentation strategies including zooming, flipping, rotating, random crop, bright-
ness, and contrast shifting were conducted. In the inference, the blackout policy is removed.

4. Experimental Analysis

An object detection system not only classifies an object but also pinpoints the object’s
location using a bounding box (rectangle), which covers the area of an object. A detection
system is trained using a training dataset containing ground truth values. The ground
truth values comprise bounding boxes for a given image. Moreover, each bounding box
contains the class labels indicating the object name that a particular bounding box covers.

4.1. Datasets

Five datasets have been used to evaluate the robustness of FruitDet. In the experiments,
both single-class and multi-class datasets have been implemented for better evaluation.
Each dataset contains a predefined, train-test split by the dataset producers, which was
directly used in the evaluation. Figure 9 illustrates some of the image examples of the five
datasets. The figure explains that the number of detectable objects in an orchard situation
is substantially higher than in general environments.

Table 1 illustrates the distribution of fruit counts in the train and test portion of each
dataset. The datasets have unique characteristics which help the evaluation to be more
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extensive and proper. The DeepFruit [13] dataset contains an insufficient number of images
available for training. Therefore, the dataset is suitable for evaluating multi-class object
detection considering the scarcity of data. In contrast, the MultiFruit [14] dataset contains a
large number of objects. However, the image and color quality of MultiFruit is challenging,
and it contains images in both daylight and night-time. The WGISD [23] dataset contains
grape cluster images, which are distributed into four classes. The four classes of grapes are
mostly similar, which makes the classification task critical.

Both MineApple [31] and MangoYOLO [22] are single-class object detection datasets.
The MangoYOLO dataset contains images in critical low-light environments. The MineAp-
ple dataset contains a large number of detectable objects in a single image frame (Figure 9a).
WGISD contains different grape classes, which are easy to localize yet harder to classify
the correct grape type (Figure 9c). The DeepFruit dataset contains data in different light
conditions and also represents a scenario of data scarcity (Figure 9(e.1–e.3). The MultiFruit
dataset contains diverse lighting (day/night) with low-quality images (Figure 9(b.1,b.2).
Overall, the five datasets target numerous challenges of the object detection platform,
which are observed explicitly in fruit detection from orchards.

(a) MineApple (c) WGISD (d) MangoYOLO

(b.1) MultiFruit

(e.1) DeepFruit

(b.2) MultiFruit

(e.2) DeepFruit (e.3) DeepFruit

Figure 9. The figure illustrates snapshots of five different datasets: (a) MineApple [31], (b) Mul-
tiFruit [14], (c) WGISD [23], (d) MangoYOLO [22], and (e) DeepFruit [13]. Some datasets contain
numerous objects, complex classification scenarios, diverse lighting, and day/night-time photography.
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Table 1. The table illustrates the number of objects present in the training and testing portion of the
datasets. The number of objects indicates the total number of objects found in the overall subset of
the dataset.

Dataset Classes
Train Test

Counts Total Counts Total

DeepFruit [13]

Apple 294

1952

65

489

Avocado 138 40
Mango 905 240
Orange 221 53

Rockmelon 123 14
Strawberry 271 77

MangoYOLO [22] Mango 12,681 12,681 2600 2600

MultiFruit [14]
Almond 3980

15,309
797

2298Apple 5211 554
Mango 6118 947

MinneApple [31] Apple 24,539 24,539 3643 3643

WGISD [23]

Chardonnay 660

3582

180

850
Cabernet Franc 910 159

Cabernet Sauvignon 532 111
Sauvignon Blanc 1034 283

Syrah 446 117

4.2. Evaluation Metrics

To identify if a detection system correctly determines an object, a two-step process
is followed. Firstly, the ratio of overlap of the predicted bounding box (predicted by the
detection system) and the actual/ground bounding box is calculated. Intersection over
union (IOU) is used to measure the ratio of overlap between the predicted and ground
bounding box. If the IOU score is above a certain threshold, it is assumed that the detection
system has pinpointed an object correctly. Secondly, the class/label of the corresponding
predicted and the ground bounding box is matched. An object is assumed to be correctly
detected by the detection system if both constraints are fulfilled. In the experiments, a
default IOU threshold of 0.2 is used. IOU = 0.2 is selected through a grid search approach
over all datasets and baseline models (YOLOv3, YOLOv4, MangoYOLO, and FruitDet).
For IOU = 0.2, most of the model performs to its best.

An object detection system can be evaluated using numerous metrics. Among the
various metrics, the mean average precision (mAP) is widely used in benchmarking
famous object detection pipelines [32]. mAP is the mean of the average precision (AP)
metric. Average precision is the numeric representation of the area under the curve of
the precision-recall graph of an object detection system, for a given set of queries, with a
particular IOU threshold. We refer to [32] for the clear mathematical concept of AP and
mAP metrics.

Further, in the case of agricultural detection systems, the precision score is also
preferred [22]. Precision evaluates the ability to identify relevant objects by a detection
system. Therefore, mAP and precision are used to evaluate and compare FruitDet with
respective detection models.

4.3. Experimental Setup

The introduced and compared detection mechanisms are implemented in Python.
Tensorflow [33] and Keras [34] frameworks are used to implement deep learning models.
The training of deep learning models included general augmentation techniques such as
flip, rotate, brightness, and contrast manipulations. The augmentations are performed
using Albumentation [35]. In the overall training, a default batch size of 8 is used. The
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YOLO detection models are observed to work better using cosine decay [36] that resets
the learning rate after a particular epoch. Instead, while training, the learning rate was
manually reset for better convergence. The learning rate was decayed by a factor of 0.5 if
the loss does not reduce by the previous three epochs. The input image for FruitDet and
the rest of the image models are set to be 416× 416, which is the default input image shape
for YOLO detection models. The training was halted when the mAP score of the model
did not improve within 50 epochs.

YOLO architectures depend on anchor points, an offset value (height and width)
assigned to the head model’s output. In general, each head of the YOLO architecture pro-
duces three outputs per grid pixel. Therefore, there are total 3× 3 anchor positions for the
YOLO architectures. The anchor offset values are dataset-dependent and may provide poor
results if not properly calibrated. Hence, in the overall experiment, the anchor values are
set to {(30, 32), (33, 51), (34, 39), (39, 47), (44, 41), (46, 50), (48, 58), (55, 58), (61, 69)}. The
values are generated using k-means clustering, performed on the five datasets (mentioned
in Section 4.1). The updated anchor values are also used for the other baseline architectures
introduced in the comparison.

4.4. Result Analysis

In the analysis, six versions of the FruitDet architecture are used to determine the
necessity of some modules. By FruitDet, the general architecture of FruitDet, proposed
in the paper, is indicated. The experiment contains versions of FruitDet architecture by
excluding blackout, attention, and attentive pooling system. In addition, to identify the
integrity of FruitDet architecture with FPN, FruitDet architecture is also implemented
with a PAN neck structure. Further, to test the robustness of the DenseNet backbone, two
other backbone networks, EfficientNet [37] and DarkNet53 [20], are attached with FruitDet,
presented in the benchmarks. Apart from FruitDet versions, two pioneers of the YOLO
family, YOLOv3 and YOLOv4, are used for comparison. MangoYOLO architecture is
a detection model based on YOLO, explicitly engineered for detecting mangoes on the
MangoYOLO dataset. MangoYOLO architecture is also implemented and presented in the
comparison. Table 2 explains the acronyms for different models used in the benchmarks.

Table 2. The table explicates the different model acronyms used in the comparison.

Model Construction

FruitDet The actual FruitDet model with attentive pooling, FPN, attention, and blackout.
FruitDet-Blackout The FruitDet architecture without blackout.
FruitDet-Att FruitDet architecture excluding attention module.
FruitDet-AttPool FruitDet architecture excluding attentive pooling module.
FruitDet+SAM FruitDet architecture with SAM attention module.
FruitDet+PAN FruitDet architecture with PAN network.
DarkNet+FPN FruitDet architecture with DarkNet53 as backbone and FPN in the neck.
DarkNet+PAN FruitDet architecture with DarkNet53 as backbone and PAN in the neck.
EfficientNet+PAN FruitDet architecture with EfficientNetB0 as backbone and PAN in the neck.
EfficientNet+FPN FruitDet architecture with EfficientNetB0 as backbone and FPN in the neck.
MangoYOLO The default MangoYOLO architecture.
YOLOv4 The default YOLOv4 architecture.
YOLOv3 The default YOLOv3 architecture.

Detection models require a vast amount of data, which is often costly and time-
consuming. In the case of fruit detection models, data scarcity can also be a challenge,
as the orchard scenario tends to have more objects than usual. The DeepFruit dataset
represents the scenario mentioned above. Table 3 represents a benchmark on the DeepFruit
dataset, presenting the average precision and precision of each of the six classes present in
the dataset. Moreover, mAP and average precision are presented for a better comparison.
Amid data scarcity, FruitDet architecture significantly outperforms any other detection
mechanisms in per-class average precision and precision. Apart from the other imple-
mentations, FruitDet architecture is also compared with its variants: FruitDet without the
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attention module and FruitDet without the attentive pooling modules. It can be observed
that the precision of FruitDet architecture is worst if the attention module is left off. Fur-
ther, if the attentive pooling layer is replaced by an average pooling module, the FruitDet
architecture gives a better mAP and precision value. The improvement by adding attention
and attentive pooling module validates both implementations’ outstanding contributions
in the FruitDet architecture.

Table 3. The table represents the benchmark conducted on the DeepFruit dataset. Average Precision and Precision are
presented for each class of the DeepFruit dataset. Further, mean average precision (mAP) and mean precision are reported
for better comparison. Best scores are marked bold.

Dataset
Apple Avocado Mango Orange Rockmelon Strawberry

mAP Mean
Prec.AP Prec. AP Prec. AP Prec. AP Prec. AP Prec. AP Prec.

FruitDet 73.53 61.96 68.78 59.26 76.38 80.61 52.15 77.50 53.05 47.37 69.22 64.49 65.52 71.30
FruitDet+SAM 80.78 56.19 55.06 49.15 83.50 81.95 51.64 68.18 43.61 34.78 72.89 71.88 64.58 69.65
EfficientNet+PAN 75.65 60.23 53.70 48.15 73.90 68.28 61.76 64.71 54.86 45.00 71.28 60.18 65.19 62.82
EfficientNet+FPN 68.78 52.94 52.81 53.06 67.69 69.61 58.18 66.67 55.97 60.00 67.48 57.26 61.82 62.72
FruitDet-Blackout 73.10 59.18 64.24 51.67 68.53 74.21 51.80 75.12 48.40 46.72 70.42 64.28 62.75 61.86
DarkNet+PAN 75.29 60.47 35.27 45.24 62.56 64.49 48.37 50.00 11.11 11.11 64.93 71.25 49.59 60.22
FruitDet-AttPool 80.58 61.54 40.66 31.67 70.76 63.32 56.46 46.67 21.59 28.57 78.36 67.01 58.07 58.08
FruitDet+FPN 79.25 42.86 56.54 40.51 79.16 65.45 56.05 58.33 56.91 28.57 73.26 51.39 66.86 54.09
DarkNet+FPN 65.89 49.02 32.48 33.33 54.81 57.88 46.34 49.09 20.86 18.52 46.82 63.01 44.53 52.45
FruitDet-Att 73.16 48.18 41.12 39.62 59.53 58.82 40.28 22.43 9.09 11.11 78.42 69.15 50.27 50.86
MangoYOLO 46.90 39.17 18.99 47.06 37.66 50.59 17.68 20.93 1.14 12.50 16.77 34.18 23.19 40.67
YOLOv4 41.27 20.54 0 0 25.64 30.26 11.98 13.62 0 0 15.39 22.91 15.71 23.11
YOLOv3 60.76 69.49 27.27 1.00 15.58 52.70 22.53 40.74 0 0 27.27 66.67 25.57 59.80

Apart from FruitDet, the MultiFruit and WGISD dataset contain a greater quantity of
trainable objects, sufficient for training a fruit detection model. Tables 4 and 5 represent the
benchmark conducted on MultiFruit and WGISD datasets, respectively. For both datasets,
FruitDet architecture performs superior in the benchmark. In case of MultiFruit dataset,
apart from the FruitDet architecture, the rest of the detection mechanism performs compet-
itive mean precision results. However, considering mAP, FruitDet architecture achieves
a quality detection score on a large margin. In the WGISD dataset, the FruitDet family
performs superior to any other detection model presented in the benchmark. Considering
both of the comparisons (MultiFruit and WGISD), it can be validated that FruitDet also
performs better if trained on sufficient data.

Table 4. Benchmark conducted on MultiFruit dataset is presented in the table. Best scores are
marked bold.

Dataset
Almond Apple Mango

mAP Mean
Prec.AP Prec. AP Prec. AP Prec.

FruitDet 58.87 83.02 84.02 93.10 81.08 88.31 74.66 88.14
YOLOv3 55.84 82.12 77.01 92.51 74.57 88.43 69.14 87.40
MangoYOLO 53.68 80.88 77.81 91.30 72.92 85.21 68.14 85.39
YOLOv4 58.26 76.42 77.82 92.94 73.95 88.52 70.01 85.27
FruitDet-Blackout 58.67 81.40 83.18 91.33 80.41 88.10 74.09 86.94
FruitDet-Att 58.54 77.12 76.70 91.15 72.36 86.88 69.20 84.53
FruitDet-AttPool 59.17 78.59 76.06 91.22 78.43 84.74 71.22 84.27
DarkNet+PAN 57.09 75.57 76.69 91.20 68.67 81.28 67.49 81.57
FruitDet+SAM 58.61 74.34 81.93 87.24 77.63 83.77 72.72 81.28
EfficientNet+FPN 57.27 75.21 74.47 88.08 68.46 82.42 66.73 81.18
FruitDet+PAN 58.42 70.94 82.44 88.65 79.75 84.15 73.54 80.30
EfficientNet+PAN 54.78 70.57 71.99 82.62 70.56 82.27 65.78 78.14
DarkNet+FPN 53.67 73.05 76.60 88.95 71.81 75.26 67.36 77.81
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Apart from the one-to-many object detection mechanism, Tables 6 and 7 present
benchmarks on single-class object detection datasets. Table 6 presents a benchmark on
the MangoYOLO dataset and Table 7 presents a benchmark on the MineApple dataset.
FruitDet architecture slightly outperforms MangoYOLO architecture, which is specifically
designed for the MangoYOLO dataset. Further, in the MangoYOLO dataset, YOLOv3 and
YOLOv4 produce a competitive score but not better than the score of FruitDet. In contrast,
on the MineApple dataset, FruitDet architecture outperforms the existing detection models
in a larger margin, validating a superiority in single-class object detection.

Table 5. Benchmark conducted on the WGISD dataset is presented in the table. Best scores are
marked bold.

Dataset
Chardonnay Cabernet

Franc
Cabernet

Sauvignon
Sauvignon

Blanc Syrah
mAP Mean

Prec.
AP Prec. AP Prec. AP Prec. AP Prec. AP Prec.

FruitDet 75.35 60.00 70.15 74.07 60.61 58.06 75.35 80.00 70.35 77.68 70.36 75.63
FruitDet-AttPool 77.25 73.63 66.57 71.08 59.67 68.52 74.33 77.15 68.71 81.82 69.31 74.75
FruitDet-Att 67.16 74.07 68.95 70.06 59.25 71.28 63.17 71.34 70.03 85.86 65.71 73.35
EfficientNet+PAN 67.19 75.28 57.48 64.33 50.66 57.14 67.00 80.40 59.67 82.11 60.40 72.56
FruitDet+SAM 77.24 83.24 67.45 74.10 60.18 59.15 73.13 78.69 62.36 64.07 68.07 71.85
EfficientNet+FPN 63.03 61.95 65.78 64.57 42.25 63.53 65.56 73.40 49.73 66.99 57.27 67.06
FruitDet+PAN 54.68 55.29 51.13 62.59 43.36 67.61 55.07 65.35 35.15 68.85 47.88 62.66
DarkNet+PAN 66.87 63.64 67.59 55.14 47.18 43.06 64.83 70.77 60.21 50.94 61.34 58.96
MangoYOLO 48.56 46.43 48.94 60.29 27.27 83.78 48.22 58.66 35.89 78.00 41.78 58.25
DarkNet+FPN 64.86 48.54 66.28 51.75 44.24 65.06 65.54 65.55 62.52 63.72 60.69 57.73
YOLOv4 39.17 39.82 45.63 53.05 26.65 75.00 55.64 49.47 35.59 43.85 40.53 48.08
YOLOv3 12.41 22.64 1.30 9.09 0 0 1.54 16.98 9.09 61.54 4.87 18.21

Table 6. Benchmark conducted on the MangoYOLO dataset is presented in the table. The reported
average precision and precision are utilized on a single class (mango). Best scores are marked bold.

Dataset AP Prec.

FruitDet 81.50 99.18
FruitDet-noBlackout 81.28 99.14
MangoYOLO 81.15 98.96
FruitDet-Att 81.14 98.94
YOLOv4 81.20 98.62
YOLOv3 80.90 98.60
EfficientNet+FPN 80.88 98.57
FruitDet-AttPool 80.97 98.52
DarkNet+FPN 80.73 98.33
FruitDet+SAM 80.75 98.22
DarkNet+PAN 80.79 98.04
FruitDet+PAN 80.54 97.88
EfficientNet+PAN 79.51 96.81

Aggregating the benchmarks presented in Tables 3–7, FruitDet achieves superior
performance in all of the datasets. FruitDet architecture performs robustly independent of
the data quantity and the domain of data. Additionally, the elimination of certain modules
causes FruitDet’s performance degradation. Adding SAM instead of the proposed attention
module also degrades the performance of FruitDet. The comparison of PAN and FPN in
different datasets explains that both methods are competitive in different cases. However,
FruitDet maintains a balanced performance using FPN. Finally, implementing FruitDet
architecture with EfficientNet and Darknet53 architectures greatly degrades the model’s
performance. Hence, it can be concluded that FruitDet is a mixture of certain modules and
ideas that aggregately enhance its performance.
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Table 7. Benchmark conducted on the MineApple dataset is presented in the table. The reported
average precision and precision are utilized on a single class (apple). Best scores are marked bold.

Dataset AP Prec.

FruitDet 79.34 85.07
FruitDet-noBlackout 79.01 84.60
FruitDet-AttPool 71.01 84.41
FruitDet-Att 70.50 84.00
FruitDet+SAM 78.28 83.83
FruitDet+PAN 78.00 83.55
YOLOv4 68.82 80.04
YOLOv3 68.59 80.34
MangoYOLO 68.25 79.36
DarkNet+PAN 66.35 77.68
EfficientNet+PAN 65.65 77.62
EfficientNet+FPN 64.20 75.22
DarkNet+FPN 78.20 73.47

Object detection architectures are often designed to perform better for a particular
situation, environment, and data quantity. YOLOv3, YOLOv4, are specifically designed
and benchmarked to perform better on general-purpose object detection. However, the de-
tection performance usually degrades due to data quality, quantity, and domain variation.
Therefore, numerous enhancements are made on such object detection models in multiple
platforms [21,38,39]. The phenomenon is also true for the fruit detection environment be-
cause YOLO family architectures are tested to work better on large datasets, comparatively
bigger objects, with sufficient information available. In contrast, fruit detection datasets are
often smaller. Therefore, YOLO architectures struggle to learn proper annotations from the
given scarce dataset. Due to such domain variation, YOLO family architectures become
more unproductive than the usual performance on large-scale datasets. Furthermore, the
number of parameters of YOLO is not suitable for limited data in fruit detection. Therefore,
it often becomes hard for the model to learn due to over-parameterization while training
on a small dataset [40]. Thus, YOLO family architectures may produce zero performance
on scarce datasets, as observed in Tables 3 and 5.

Comparatively, in the case of fruit detection in agriculture, data-dependency is a big
challenge. Architectures developed on fruit detection platforms are mostly data-centric. For
instance, MangoYOLO [21], YOLOmuskmelon [41], and a tomato detection model [9] are
designed to perform better on the self-developed proprietary dataset. Similar to the YOLO
family, the data-centric development of fruit detection models may cause unsatisfactory
results in a diverse dataset of comparable or different fruits. Such a scenario can be observed
for the MangoYOLO detection model. Although MangoYOLO performs excellently in
the actual dataset (shown in Table 6), it delivered contradictory results in the rest of the
benchmarks in Tables 3 and 5 due to domain variation and data scarcity. Therefore, it
is required to benchmark on various datasets while developing detection architectures.
FruitDet architecture is a generic model suitable for most diverse data domains in fruit
detection schemes compared to most detection models.

Apart from the robustness, Table 8 illustrates a comparison of the number of parame-
ters and computational complexity of the architectures. Floating-point operation (FLOPs)
is used to measure the computational complexity of the detection models. From the com-
parison, it can be validated that FruitDet architecture requires lower memory than the
existing YOLO baselines. Further, the model is computationally less expensive than any
other detection model in the comparison. From the overall perspective, it can be validated
that FruitDet architecture is faster, lighter, and more robust than any other detection model,
specifically for detecting fruits from orchards.
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Table 8. Complexity benchmark conducted on the different detection models are presented in the
table. Best scores are marked bold.

Model Parameters
(in Million) FLOPs Time (Milliseconds)

FruitDet 6.79 1.45× 109 211.0
YOLOv3 61.53 3.26× 109 214.67
YOLOv4 60.28 26.36× 109 221.33
MangoYOLO 13.78 5.16× 19 217.67

4.5. Inference

The difference in the produced results of FruitDet and other detection architectures
can be reasoned via the inference example depicted in Figure 10. The figure illustrates the
final inference output of the models. Further, GradCam [42] is used to show the activation
of the final outputs, produced by the three heads of the detection mechanisms in three
different resolutions: 52× 52, 26× 26, 13× 13. In comparison to FruitDet architecture,
the MangoYOLO architecture misses some of the detectable objects. The MangoYOLO
architecture produces a strong probability of objectness in almost the entire region of the
tree. Hence, the MangoYOLO architecture fails to pinpoint the objects due to an imbalance
of the final prediction probabilities.

In contrast, FruitDet architecture misses the minimum number of objects. In addition,
the probability heatmaps of the three heads are relevant and to the point compared to
the MangoYOLO architecture’s GradCam output. The FruitDet without attention module
(FruitDet-noAtt) also generates a similar detection output during inference. However, con-
sidering the GradCam output, the FruitDet-noAtt architecture confuses leaves as objects.
Comparatively, adding FruitDet architecture with the attentive module better prioritizes
leaves instead of objects. FruitDet-noAttPool resembles a grid of gradient maps, consid-
ering the output of heads 2 and 3. The mosaic output is caused due to using an average
pooling mechanism inside DenseNet’s transition block. The average pooling of the default
DenseNet prioritizes only a specific region, causing a separation of detectable features.
Instead, the FruitDet architecture’s attentive pooling mostly avoids the separation of fea-
tures. Instead, FruitDet architecture provides better feature maps in both low and high
resolutions, resulting in better accuracy.
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Figure 10. The figure illustrates an inference example of the FruitDet, FruitDet-Att, FruitDet-AttPool,
and MangoYOLO architectures, along with an example of the ground truth. Each of the models
contains four images (contained in an individual column). The first in each column is the detection
output, and the latter are the GradCam [42] visualizations of the three heads of the architectures.
The warmer tones of the GradCam images indicate the stronger activation of the final head models.
Zoom in for a better view.

5. Conclusions

Fruit detection from orchards contains numerous challenges in real-time object detec-
tion systems, including object size, number of objects per image, memory consumption,
speed, and robustness. Therefore, most fruit detection models are designed for detecting
only a specific fruit. This paper introduces a fruit detection model named FruitDet to
recognize multiple fruits in a single pipeline. The FruitDet model contains architectural
exploration, including attentive feature pooling, modification of attention mechanism,
bottleneck spatial pyramid pooling layer, and blackout regularization. The detection model
is further evaluated using five datasets, containing numerous challenges: data scarcity,
low-quality images, a high number of detectable objects, and so on. The comparison
evaluates that the FruitDet architecture outperforms the present YOLO family detection
models, including YOLOv3 and YOLOv4. Apart from the robustness, FruitDet architecture
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is lighter and faster than the existing detection models. However, extensive study is re-
quired for dealing with data scarcity in fruit detection systems. Additionally, more rigorous
investigations are needed to determine the best methods for fruit detection systems. We be-
lieve that the architectural contribution of the paper would encourage the development of
lighter and more robust detection models and improve the overall capability of end-to-end
detection models.
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