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Abstract: Farmers are supported by European Union (EU) through contributions related to the
common agricultural policy (CAP). To obtain grants, farmers have to apply every year according to
the national/regional procedure that, presently, relies on the Geo-Spatial Aid Application (GSAA).
To ensure the properness of applications, national/regional payment agencies (PA) operate random
controls through in-field surveys. EU regulation n. 809/2014 has introduced a new approach to
CAP controls based on Copernicus Sentinel-2 (S2) data. These are expected to better address PA
checks on the field, suggesting eventual inconsistencies between satellite-based deductions and
farmers’ declarations. Within this framework, this work proposed a hierarchical (HI) approach to
the classification of crops (soya, corn, wheat, rice, and meadow) explicitly aimed at supporting CAP
controls in agriculture, with special concerns about the Piemonte Region (NW Italy) agricultural
situation. To demonstrate the effectiveness of the proposed approach, a comparison is made between
HI and other, more ordinary approaches. In particular, two algorithms were considered as references:
the minimum distance (MD) and the random forest (RF). Tests were operated in a study area located
in the southern part of the Vercelli province (Piemonte), which is mainly devoted to agriculture.
Training and validation steps were performed for all the classification approaches (HI, MD, RF) using
the same ground data. MD and RF were based on S2-derived NDVI image time series (TS) for the
2020 year. Differently, HI was built according to a rule-based approach developing according to
the following steps: (a) TS standard deviation analysis in the time domain for meadows mapping;
(b) MD classification of winter part of TS in the time domain for wheat detection; (c) MD classification
of summer part of TS in the time domain for corn classification; (d) selection of a proper summer
multi-spectral image (SMSI) useful for separating rice from soya with MD operated in the spectral
domain. To separate crops of interest from other classes, MD-based classifications belonging to HI
were thresholded by Otsu’s method. Overall accuracy for MD, RF, and HI were found to be 63%,
80%, and 89%, respectively. It is worth remarking that thanks to the SMSI-based approach of HI, a
significant improvement was obtained in soya and rice classification.

Keywords: agronomic knowledge; hierarchical crops classification; rule-based classification; common
agricultural policy controls; sentinel-2

1. Introduction
1.1. EU CAP

The common agricultural policy (CAP) is managed and funded by the European Union
(EU) to support farmers and ensure food security. CAP’s main goals can be summarized
in: (a) supporting farmers and improving agricultural productivity, ensuring a stable
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supply of affordable food [1]; (b) safeguarding EU farmers by guaranteeing a reasonable
living; (c) helping tackle climate change [2] and the sustainable management of natural
resources [3]; (d) maintaining rural areas and landscapes across EU [4]; (e) keeping the
rural economy alive by promoting jobs in farming, agri-foods industries, and associated
sectors (ec.europa.eu). CAP operates through two funds that are used to support main
agricultural activities: the first and second pillars. These are respectively named EAGF
(European Agricultural Guarantee Fund) and EAFRD (European Agricultural Fund for
Rural Development) [5]. The former (EAGF) is linked to the Common Market Organization
(CMO), which supports farmers with direct payments that reward actions promoting
market stability, agricultural production increases, and environmental sustainability. The
latter (EAFRD) promotes sustainable rural development and, in particular, climate change
adaptation, fostering agricultural competitiveness, ensuring sustainable management of
natural resources, and developing rural economies and communities [6].

Since CAP operates in all EU member states, it is hardly conceivable that payments
should be centralized. Therefore, for efficiency and simplicity, payment management is
delegated to the member states. In Italy, funded with a total of 41.5 billion euros in the
2014–2020 CAP, several regional payment agencies (PA) exist and refer to the national
one (AGEA–Italian Agency for Payments in Agriculture). According to Art. 17 of Reg.
(EU) n. 809/2014 [7] application for CAP subsidies must be presented by the farmer to
the competent PA through the Geo-Spatial Aid Application (GSAA). GSAA contains in-
formation about managed fields (land use, location, and size) for which CAP contribution
is requested. Additionally, it allows the unique identification of agricultural parcels pop-
ulating databases useful for systematic checks [8]. GSAA data are managed by farmers
through a GIS (geographic information system)-based system. PA verifies application com-
pliance with requirements through the Integrated Management and Control System (IACS),
relying on administrative (AC) and spot controls (SC) [9]. AC is automatically carried out
by IACS for all the applications (100%) with the aim of verifying their compliance: with
eligibility criteria and maintenance of long-term commitments, with due deadlines, and
with required documentation. Moreover, IACS verifies that no other EU grant is financing
the same field [10]. As far as SCs are concerned, they are performed on a sample subset of
GSAAs corresponding to 5% of the total. SCs are intended for: (i) checking the truthfulness
of declared areas; (ii) verifying compliance of the application with the eligibility criteria;
(iii) testing commitments and obligations from farmers according to the declared crop.
Field selection by SCs is managed for 80% according to risk-based criteria and for the
20% randomly. SCs are presently performed by photo-interpretation of high-resolution
satellite/aerial images and/or, in specific and rare cases, by direct ground controls (GC).

1.2. Supporting CAP Controls by Copernicus Satellite Data

Copernicus is the EU’s Earth Observation (EO) Programme aimed at monitoring the
Earth and its environment. Specifically, Sentinel-1 (S1) and Sentinel-2 (S2) missions are
extensively used to support several human activities, including agricultural and forestry
ones [11,12]. In particular, S2 images can be used to obtain several spectral indices (e.g., the
Normalized Difference Vegetation Index, NDVI) that can be used as predictors for some
vegetation properties [13–15] such as phenology [16,17], ecosystems characterization [18],
crop production estimation [19–21], tree stability assessment [22], crop damage estimation
for insurance purposes [23,24]. EU Reg. No. 809/2014 Art. 40 is amended by EU Reg.
No. 746/2018, proposing the adoption of EO satellites to support SCs [10,25]. Several EU
countries are working to include Copernicus data in their monitoring procedures [26]. A
pilot project was experienced in Italy in 2018; AGEA proceeded to verify CAP applications
for the Titles III and V of EU Regulation no. 1307/2013 (Basic Payment and Small Farmers
Scheme) based on markers derived from satellite data in the province of Foggia (SE-Italy).
Specifically, AGEA’s markers allow checking for each parcel the presence of: plowing,
crop development, mowing of meadow, and checking the existence of vegetation and crop
harvest. Afterward, they are used to establish different control phases, such as financial
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impact analysis of the farmer’s application or a parcel-specific assessment carried out
by a qualified operator with other data sources (orthophotos, geotagged images). Other
provinces enter the same project in the following years.

Within this framework, in this work, a prototype procedure is proposed to support
CAP controls by the regional Agency for Payments in Agriculture (ARPEA) of the Piemonte
Region (NW, Italy). Procedure development was achieved in the framework of a collab-
oration between ARPEA and the Department of Agricultural, Forest and Food Sciences
(DISAFA) of the University of Torino that started in 2019. The procedure, mainly relying
on the S2 image time series (TS), is aimed at classifying the main regional crops that CAP
actions take into consideration to make it possible to better address controls at the ground.
The procedure was tested within the province of Vercelli in the Piedmont (NW) region.

The authors’ philosophical approach for crop recognition by satellite imagery appears
to be different from the mostly adopted ones, mainly relying on the identification of
proper “markers” along a spectral index time series [27,28]. The idea is to exploit most
of the spectral information that can be directly related to ordinary agronomic practices
and crop behavior, making possible an immediate interpretation of spectral predictors
from an agricultural point of view. This permits to better investigate back eventual failures
of the recognition process and better control/correct system deductions in a reasonable
way. We, in fact, strongly believe that, in such contexts, expert systems based on human
knowledge (possibly related to the considered application domain) are mandatory and
preferable to other approaches based, for example, on artificial intelligence (AI) [29,30].
Biotic issues and targets are difficult to be completely described by trained algorithms
underlying AI since they continuously change in time and space, making practically
impossible a complete generalization capability. Consequently, forecasted services based
on digital technology, designed to support and address decision makers and controllers,
must preserve a significant quote of controllability by human experts of the domain that
can interpret and overcome possible paradoxes/errors from the system.

For example, one of the biggest challenges in the literature is the separation between
winter and summer crops by using a multi-temporal NDVI profile [31–33]. The agronomic
knowledge about crop development in such periods allows for defining a proper temporal
window in order to focus the analysis on vegetation active phases. Without this refinement,
high classification errors could persist [34]. Despite the improvement in such differentiation,
similar NDVI temporal behavior could occur. For example, in Italy, soya and rice were poorly
separable while working with NDVI temporal profile [10]. To avoid this issue, the agronomic
knowledge about the phenological stage that maximizes the spectral differences between
these crops allow for improving classification accuracy [35–37]. Therefore, a priori selection
of temporal window and the maximum spectral separability moment should be locally
calibrated and involved in the workflow before applying any classification algorithms.

With these premises, agronomic information concerning crop calendars phenology
and management actions have been used to develop a rule-based procedure that operates
hierarchically, trying to extract single crops of interest, step by step, with customized rules.
After describing the proposed methodology, its performances were compared with the
ones from more ordinary classification approaches, namely minimum distance and random
forest operating on NDVI temporal profiles.

2. Materials and Methods
2.1. Study Area

The test area (AOI) is located in the southern part of the Vercelli province in the
Piemonte Region (NW, Italy). The area develops at 130 m a.s.l. and a size of about 1295 km2.
In the area, the climate is temperate with a continental character; the yearly average rainfall
gauge and temperature are 930 mm and 11.9 ◦C, respectively. AOI well fits its role of test
site hosting crops of interest for CAP over more than 75% of its area. It is characterized by
intensive agricultural management with a prevalence of submerged crops (Figure 1).
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Figure 1. Study area (red) located in the southern part of the province of Vercelli in the Piemonte
Region, NW Italy. (Reference system is WGS84/UTM 32N, EPSG: 32632).

2.2. Crops of Interest

In Italy, CAP applications for AC are ordinarily verified by PAs by photo-interpretation
of high-resolution satellite/aerial orthoimages [38] that are newly acquired every three years.
Differently, the new CAP philosophy for controls is expected to be based on EO data and
aims at automatically detecting evident inconsistencies between farmers’ declarations and
actual crops in the field, thus excluding significant time latency. No standard methodology
has been still proposed at the national and European levels, and the task remains a true
challenge in the context of services based on EO data. It has to be considered that these
tools should be thought of as highly adaptive and customized with respect to the local
agricultural landscape with a low probability of being successful as they come for all the
situations. Consequently, it is expected that a crucial role will be played by ground data that
will be continuously needed to train classification algorithms growing season after growing
season. It is the authors’ opinion that no successful tool can ever come if not supported by a
proper network of reliable providers of ground data that constantly feed the system with
updated training and validation set for crops of interest. With these premises, the present
work was aimed at developing and testing a possible approach for classification of the main
crops in Piemonte in accordance with the Title III of Reg. (EU) 1307/2013) of CAP 2020.
ARPEA indicated the crops of interest (CoI), namely soya, corn, wheat, rice, and meadow.
Local agronomic calendars were taken into consideration to support the recognition of the
phenological development of CoI. Crop development can greatly differ around the world.
In particular, its phenology can vary in terms of length, strength, and period of the year.
Consequently, crop detection is a real challenge without any local information. Agronomic
calendars play, therefore, a key role in classification processes and cannot be neglected. In
Figure 2, calendars of the abovementioned CoI are reported.

2.3. Copernicus Satellite Data

According to local agronomic calendars, a total of 137 S2 Level 2A images were collected
covering the period 17 September 2019–12 November 2020. They were obtained from the
Copernicus Open Access Hub geoportal (scihub.copernicus.eu). Level 2A products are
supplied already calibrated “at-the-bottom of the atmosphere” (BOA) reflectance, permitting
an immediate use for land applications. S2 images are supplied as 100 km × 100 km
tiles or those projected in the WGS84 UTM reference frame [39]. NIR (band 8) and RED
(band 4) bands were used to compute the correspondent maps of the Normalized Difference
Vegetation Index (NDVI), having a geometric resolution of 10 m and a nominal temporal
resolution of 5 days. S2 L2A data set also contains the scene classification layer (SCL), which
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is useful to automatically detect and remove bad observations (mainly clouds and shadows)
from images while composing time series. Technical features of the S2 multi-spectral sensor
(multi-spectral instrument, MSI) and SCL encoding are reported in Table 1.

Figure 2. Crop agronomic calendars where the main agronomic phases of crop growing are reported.

Table 1. Sentinel-2 MSI technical features and SCL code pixel assignment.

MSI Technical Features SCL Codes

Geometric Resolution (m) Bands Wavelength (nm) Code Description

10

b2 458–523 0 No data

b3 543–578 1 Saturated or
defective

b4 650–680 2 Dark area
pixels

b8 785–900 3 Cloud
shadows

20

b5 698–713 4 Vegetation
b6 733–748 5 Not vegetated
b7 773–793 6 Water

b8a 855–875 7 Unclassified

b11 1565–1655 8 Cloud medium
probability

b12 2100–2280 9 Cloud high
probability

60
b1 433–453 10 Thin cirrus
b9 935–955 11 Snow

b10 1360–1390 - -

2.4. Farmers’ GSAA

GSAA contains all information about fields that CAP contributions are requested
for (e.g., location, size, crop types, etc.). For this work, about 196,500 GSAA, sizing a total
of about 98,000 ha, were made available by ARPEA in vector format for the 2020 agronomic
season. These data are for PAs reserved use and, therefore, not currently accessible for all
users (not open data).

2.5. Ground Data

During summer 2020, ARPEA conducted several GCs in order to calibrate and validate
the proposed methodology. Crop type was detected by ground inspections, as well as
several auxiliary information derived by interviews with local farmers such as sowing
and harvesting date, type and date of operated agronomic practices, and eventual known
and detected anomalies along crop growing season. GCs information was georeferenced
by Topcon GRS-1 (Topcon Positioning Italy Srl, Ancona, Italy) GNSS (global navigation
satellite system) receiver coupled with Mercury© (Mercury Systems, Inc., Andover, MN,
USA) post-processing software [40]. A total of 1026 GSAA, covering about 3193 ha, were
surveyed to collect data for training and validating classification. GC data set was randomly



Agronomy 2022, 12, 1228 6 of 20

split into training (T) and validation (V) sets, corresponding to the 60% (615 fields) and 40%
(323 fields), respectively. This was achieved at the class level (n. of fields) in order to ensure
equal representativeness of samples for all CoI. Figure 3 shows the spatial distribution of
data sets; Table 2 reports the number and size of surveys for each crop.

Figure 3. (a) GCs used in the training and validation phase. (b) GCs crop types (reference system is
WGS84/UTM 32N, EPSG: 32632).

Table 2. Number and size of the surveyed plots carried out by ARPEA per crop type and relative
split of GCs involved in TP and VP.

Crops Total Number of
Surveyed Fields

Total Area of
Surveyed
Fields (ha)

Training Set
(n. Fields) Training Set (ha) Validation Set

(n. Fields) Validation Set (ha)

Soya 220 705.2 132 (60%) 393.2 (56%) 88 (40%) 312 (44%)
Corn 244 493.2 146 (60%) 287 (58%) 98 (40%) 206.2 (42%)

Wheat 182 246 109 (60%) 167.9 (68%) 73 (40%) 78.1 (32%)
Rice 233 1554.1 140 (60%) 921.5 (59%) 93 (40%) 632.6 (41%)

Meadows 147 194.3 - - 147 (100%) 194.3 (100%)

2.6. Data Processing
2.6.1. Compliance of GSAA with S2 Data

The benefits and limitations of remote sensing in agriculture are well known in the
literature [41,42]. One of the most important issues that have to be considered is the
compliancy of field geometry and shape with the technical features (mainly geometric) of
remote data. With a special focus on the agricultural Italian context, it can be easily found
that it appears as highly fragmented, thus determining, in many cases, unfavorable size
and shape of fields. Depending on the shape and size of agricultural fields, deductions
generated with remotely sensed data can significantly vary [43,44]. A preliminary selection
of “proper” fields (or GSAA-related geometries) to be monitored is therefore mandatory
when designing a new control service based on a specific remotely sensed data set [45]. This
immediately highlights that properness of detection/controls can be a priori associated only
with a subset of the GSAA that must be controlled. In other words, controllers must be
informed that the service will provide information only about larger and well-shaped fields.
In fact, in small or badly shaped (highly anisotropic) fields, remote spectral measures can
be unreliable since a great number of “mixed” pixels (made of different cover types) can
generate spectral responses, significantly shifted from the reference ones. In this work, the
geometric resolution of S2 data (10 m) was, therefore, crucial to a priori mask out those
GSAA polygons not suitable for remote control. Consequently, to take care of this important
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issue, supplied GSAA polygons were analyzed and the correspondent area and shape index
(SI, Equation (1)) were computed by ordinary GIS tools available in SAGA GIS 7.9 [46].

SI =
P

2
√

πA
(1)

where A and P are the polygon area and perimeter, respectively [47].

2.6.2. NDVI Image Time Series

NDVI is one of the most popular spectral indices [48] able to derive information
concerning vegetation with special concerns about its biomass and phenology. In this work,
NDVI was computed from all the available scenes within the explored period (growing
season 2020) and the correspondent time series generated from band 8 (NIR) and band 4
(Red) stacks. This was achieved by taking care of the available SCL layer that was used
to filter out, at the pixel level, all bad acquisitions while composing the NDVI time series.
TS was generated from the native band 8 and band 4 by a self-developed routine imple-
mented in IDL v 8.0.1 [49] in charge of removing bad observations depending on the local
SCL code, smoothing the remaining observations by a symmetric Savitzky–Golay filter
(kernel = 3, derivative = 0, degree = 1) and regularizing the profile by spline interpolation
(tensor value = 10) to obtain a time series with a time frequency of 5 days [50,51]. Finally, a
TS of 85 NDVI (×10,000) maps were obtained for the investigation period. Local NDVI tem-
poral profile from TS is assumed to describe crop phenology and time behavior (including
effects of management practices) along its growing season [52,53].

2.6.3. Minimum Distance and Random Forest Classification of Crops

Minimum distance (MD, [54]) and random forest (RF, [55]) algorithms are largely
used in agriculture for supervised crop classification [56–59]. In particular, MD is well
known to be one of the simplest algorithms for supervised classification that, exactly for
this reason, made possible a complete control of results and a more reasonable tuning of the
few parameters that it requires. In general, it can be said to be compliant with a user profile
characterized by a high level of skill concerning the application domain he is managing (e.g.,
agriculture) and a low level of technological/digital consciousness. According to a crop
classification approach based on NDVI temporal profile, MD is in charge of comparing,
in the hyperdimensional space (time domain) of TS, the Euclidean distance between the
generic pixel and the class centroids as derived from the training set [60]. MD classification
(hereinafter called MDC in order to distinct this classification from the rule-based phases)
makes possible to define a threshold able to test if the winning (shorter) distance relating
the generic pixel to the centroid of the closest class is reasonable or not. This determines
the eventual migration of pixels into the unclassified class hosting pixels that are assumed
to not belong to any of the classes of interest.

Differently, RF is a more nested approach to classification, basing its deductions on
an arbitrary number of decision trees. RF has been extensively used in the remote sensing
context, showing very suitable performances in crop classification [55,61,62]. Conversely,
the variety of the parameters the user has to set is larger, and results (mainly failures) are,
in general, trickier to be interpreted and eventually corrected by tuning the parameters
more properly.

2.7. Rule-Based Hierarchical Classification

Literature reports many classification approaches for land use mapping based on
satellite data [63]. Complex algorithms able to manage large quantities of data during
the training step have often been used to improve classification results. Some of the most
popular and newest techniques are based on the deep learning approach; results appear to
confirm very suitable performances of these algorithms [64,65]. Nevertheless, these often
require users with a high level of technical skills in information technology that, generally,
do not belong to the knowledge domain the classification is required for. Moreover, they



Agronomy 2022, 12, 1228 8 of 20

make it difficult to interpret criticalities and, consequently, to adjust algorithm parameters
that, in most cases, cannot be related to tangible factors close to the knowledge domain the
user belongs to. This criticality appears to be especially important in agriculture when the
agronomic interpretation of both training sets and results is highly desirable. With these
premises, a rule-based hierarchical classification approach (HI) built around easy-to-use
and controllable algorithms (i.e., MD and thresholding) can be preferable [66,67]. HI is, in
fact, intended to approach classification by applying simple rules or tasks, to disaggregate
a complex problem into a succession of simple and more controllable ones, where domain
knowledge can play a crucial role in improving classification results.

In this framework, the authors decided to approach CoI classification in AOI by a
self-developed HI procedure and compare results with those obtainable through MDC and
RF. Proposed HI relies on auxiliary agronomic data and knowledge that are used to define
agronomically based rules useful to identify CoI. The correspondent workflow is shown in
Figure 4. Details are reported, with reference to the single CoI, in the following sections.

Figure 4. Workflow of the proposed hierarchical classification process concerning crop mapping.

2.8. Meadow Detection

Agricultural management of meadows significantly affects NDVI temporal profile [68,69].
In fact, meadows show an NDVI level averagely high and stable if compared with other
crops; moreover, its management is ordinarily characterized by several cuts along the grow-
ing season that do not completely remove biomass [70]. Consequently, changes of NDVI
values are limited, thus determining, along the whole season, low values of NDVI standard
deviation (σNDVI). Differently, others CoI (e.g., corn, wheat, soya) are characterized by a
greater NDVI variability along the year; they present the typical phenological behavior
where NDVI starts to grow after plow, reaches the maturity plateau and finally decrease
after the harvest. This highly moved behavior generates higher values of σNDVI along the
year thus suggesting that σNDVI can be used as discriminant to detect meadows pixels. A
proper threshold value has therefore to be found. GCs can provide this type of information.
To achieve this task, the 5th, 25th, 50th, 75th, and 95th percentiles of σNDVI values were
computed at class level for all CoI and compared by boxplot. The threshold was expected
to fall in the upper (i.e., >75th) and lower (i.e., <25th) percentile for meadows and other
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classes, respectively. A proper threshold was finally found and meadow fields mapped.
Meadow pixels were therefore removed (masked) from TS and no more considered in the
next classification steps aimed at recognizing other CoI.

2.9. Wheat Detection

In order to facilitate classification, TS was twice subset to generate a winter (WTS)
and a summer (STS) time series useful to classify winter and summer crops, respectively.
According to the local agronomic calendar of winter crops, WTS was assumed to cover the
period between 15 September 2019 and 15 July 2020, resulting in a stack of 64 NDVI images.
According to the local agronomic calendar of summer crops, STS was assumed to cover
the period between 15 March 2020 and 15 October 2020, resulting in a stack of 51 NDVI
images. Since winter crops are expected to be characterized by a medium-high NDVI value
in Spring (typically in April, [31], only pixels showing an NDVI value > 0.62 on 24 April
were selected and considered for classification as supported by De Petris [71].

Candidate wheat pixels were detected by MD with reference to the previously thresh-
olded WTS. Since two classes were expected-wheat and other winter crops, and MD training
was achieved with reference to a single class (wheat), other winter crops were placed in the
unclassified class. Labeling of unclassified pixels strictly depends on the distance threshold
that is used during MD running. To make the threshold selection objective, the Euclidean
distance layer (DL), generated as auxiliary data during MD classification as implemented in
SAGA GIS, was used. DL image histogram was analyzed by Otsu’s method (OM), searching
for an automatic and objective threshold able to separate the wheat from other winter crops.
OM is a nonparametric and unsupervised thresholding approach that locates the threshold
where the separability of image pixels is maximum [72]. An optimization is operated itera-
tively, looking for a threshold that contemporarily minimizes within-class and maximizes
between-class variances. The method is data-dependent and, consequently, adaptive; this
makes it possible to automatically detect a new threshold value depending on the operational
situation (area, time, band/index, etc.) that time to time one has to be analyzed.

With these premises, once a proper threshold value was found, all pixels showing a
DL value greater than the threshold were labeled as “other winter crops”.

2.10. Corn Detection

NDVI profile from STS was used to separate the corn from other summer crops (soya and
rice). Previous classification experiences in the same area based on TS profile analysis proved
that corn was well separable from other summer crops [10]. The classification was achieved
with reference to all the pixels that were not previously classified as meadows or wheat.

STS was initially analyzed to select only vegetated pixels [73] by NDVI thresholding
(NDVI > 0.62 @ 8 July 2020), admitting that summer crops reach their maximum NDVI
values in this period of the year.

Again, MD was used, and OM was applied with reference to the DL image histogram
to separate corn fields from other summer crops. Detected corn pixels were removed from
STS and archived as representatives of the corn class in AOI.

2.11. Soya and Rice Detection

Previous studies from Sarvia [10] in the same area found that rice and soya are difficult
to be separated if classification is achieved with reference to the yearly NDVI time series.
A different but more traditional approach based on the classification of a single multi-
spectral image acquired at the right time along the year appeared to be more successful in
separating these two classes. The most critical issue at this point was the selection of the
proper summer image that maximizes spectral differences between these two classes. A
subset of 3 summer native L2A S2 images (hereinafter called SMSI, summer multi-spectral
image) was used for this task. They were selected according to the agronomical criteria
that are reported in Table 3, mainly relying on crops’ local phenological behaviors.
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Table 3. S2 images and corresponding phenological stage of rice and soya crops.

S2 L2A Image Crop Phenological Stage

15 June 2020
Soya Leaf and node development
Rice Tillering

18 July 2020 Soya End node development-bloom
Rice Maximum tiller number-panicle formation

14 August 2020 Soya End bloom-beans develop
Rice Flowering-dough

A separability analysis, based on statistical concerns, was therefore performed in order
to detect the most suitable moment and bands useful to separate rice and soya. Soya and
rice class mean (µλ

i ) and standard deviation (σλ
i ) values were computed for all the bands

and the selected images (June, July, and August) according to GCs. A separability index
was computed at band and image level according to Equation (2):

Sk
i,j(t) =

∣∣∣∣∣∣
µλ

i (t)− µλ
j,t(t)√

σλ
i,t

2(t) + σλ
j,t

2(t)

∣∣∣∣∣∣ (2)

where µλ
i (t) and µλ

j (t) are the mean values of λ-th S2 band for i-th and j-th class (i.e., soya

and rice) at the date t; σλ
i

2(t) and σλ
j

2(t) are the variances of λ-th spectral band for i-th and
j-th class at the date t. This index quantifies the ratio between the average distance between
two classes in the spectral domain of the λ-th spectral band (numerator) and the uncertainty
affecting the distance measure (denominator). Separability is statistically possible when
Sλ

i,j(t) > 1, consequently, only bands and dates satisfying this condition can be considered.

Sλ
i,j(t) was therefore plotted against the wavelength and the most promising combination

selected. This corresponds to a subset of bands of the best performing acquisition in
terms of Sλ

i,j(t) values. Once the most promising date and bands were selected, a new
MD was carried out. Again, OM applied on the DL image histogram was used to locate a
proper threshold to separate soya and rice from other summer crops not considered in this
work (e.g., tomato, courgette, apples, sunflower, etc.).

Finally, all previous classifications were merged into a single map, hereinafter called
crop types map (CTM). All crop types not considered in previous steps were masked out
from CTM.

2.12. Comparing HI with MDC and RF

A comparison of CTMs from the different approaches was performed at the parcel
level (GSAA polygons). Consequently, pixels belonging to the same parcel were merged by
a majority operator to assign a unique class to the same parcel. A total of 323 GCs were used
as the validation set, and the corresponding confusion matrices were generated. Overall
accuracy (OA), User’s accuracy (UA), Producer’s accuracy (PA), and K coefficient were cal-
culated [74] and compared. To highlight improvements/limits of the compared approaches,
accuracies were compared as percentage differences (∆%MDC, ∆%RF, Equation (3)) and
some discussions given.

∆%MDC =
(PHI − PMDC)

PMDC
·100; ∆%RF =

(PHI − PRF)

PRF
·100 (3)

where PHI is the generic accuracy parameters for HI classification, PMDC and PRF the
correspondent ones for MDC and RF, respectively.
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3. Results and Discussion
3.1. Compliance of GSAA Geometry with S2 Data

All GSAA polygons showing a SI < 3 (long and tight shape) and an area < 0.1 ha were
excluded from the analysis. These values were suggested by Sarvia [10] for the same area.
Results are reported in Table 4.

Table 4. Number and surface of monitorable GSAA.

N◦ of fields before filtering 196,573
N◦ of fields after surface filtering 66,095

N◦ of fields after geometrical filtering 57,230
Area of field before filtering (ha) 97,978

Area of fields after surface filtering (ha) 95,306
Area of fields after geometrical filtering (ha) 93,230

Monitorable fields (%) 29.11%
Monitorable area (%) 95.15%

Table 4 shows that only 29% (57,230 out of 196,573) of the plots within the GSAA
satisfy the geometric criteria required for proper detection with satellite S2 data. The high
drop in terms of the number of plots was mostly due to the peculiar fragmentation of
the Italian agricultural context, characterized by many small-sized plots with anisotropic
geometries [75]. Although this result was quite critical, the reduction in terms of the
controllable area does not vary significantly. Specifically, the area that can be monitored
with S2 data was about 95% of AOI (from 97,978 ha to 93,230 ha). This outcome highlights
the great advantage of S2 data to support controls for the entire area under CAP payments.
Moreover, it can also be affirmed that the high number of plots removed after the geometric
survey has a very low impact on CAP payments as their area is very limited.

3.2. MDC and RF Classification

MDC classification was achieved as proposed in [10] by SAGA GIS 7.9.1 [46]. Accord-
ingly, a single value (class independent) of 15,000 (NDVI points) was adopted for DL image
histogram thresholding to map all CoI.

Similarly, RF classification was achieved by SNAP v.8.0.0 [76] as proposed by Sarvia [10]
using a number of trees equal to 10 and a number of training samples equal to 5000 pixels.

Classification maps from MDC and RF classification are reported in Figure 5. Figure 5c
confirms that rice was the main crop within AOI. With regard to soya, significant differences
were found between the two classifications.

The percentage of soya parcels was found to be 25% and 9% from MDC and RF,
respectively, in AOI. The percentage of rice fields was found to be 40% and 54% for MDC
and RF, respectively, thus highlighting a significant misclassification problem affecting rice
and soya classes. No validation is given here; it is demanded in the section “Validation and
Comparison of CTMs”.

Figure 5c shows that the number of plots was not proportional to their areal size. This
is probably due to rice fields that were generally characterized by medium to large size,
while other crops, e.g., meadow, generally show smaller areas.

3.3. Rule-Based Hierarchical Classification
3.3.1. Meadow Detection

Meadows were identified by per-pixel thresholding of NDVI standard deviation in
the time domain (σNDVI, Figure 6a). σNDVI threshold was set equal to 1695 falls between
the 75th percentile of meadow and the 5th percentile of wheat, as shown in Figure 6b,
providing suitable separability of the meadow from other crops. It is worth highlighting
that this technique does not require any training set. Figure 6b demonstrates that meadows
present very low σNDVI values if compared with other CoI. This is probably due to their
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development cycle, which is very long, being a permanent culture. Figure 6c reports the
obtained map of meadows.

Figure 5. (a) MDC classification map. (b) RF classification map. (c) Fields (%) and surface (%) monitored
for each crop in MDC and RF classification (reference system is WGS84/UTM 32N, EPSG: 32632).

Figure 6. (a) σNDVI map. (b) σNDVI assessment for the crops analyzed, red line highlights the
threshold identified to separate the meadows from other crops. (c) Fields classified as meadow
(reference system is WGS84/UTM 32N, EPSG: 32632).

3.3.2. Wheat Detection

Wheat was identified by MD classification of WTS trained with 109 fields from GCs; OM
was used to automatically find an objective threshold with respect to the DL image histogram
(Figure 7a,b) able to properly separate wheat from other winter crops. DL histogram shows
two maxima. One is centered around low values (about 10,000) and is probably related to the
wheat class. The other one is located around high values (about 26,000) and is probably related
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to other winter crops. OM placed the threshold at 15,000, i.e., between the two histogram
peaks. Figure 7c shows wheat fields as mapped by the proposed approach.

Figure 7. (a) DL map of wheat. (b) Wheat DL map frequency histogram (units are NDVI × 10,000).
Red line is threshold found by OM. (c) Fields classified as wheat (reference system is WGS84/UTM
32N, EPSG: 32632).

3.3.3. Corn Detection

Corn detection was achieved by MD classification of STS trained with 146 fields from
GCs. OM was used to locate a proper threshold (4500) along the DL image histogram
(Figure 8b) that, again, showed two peaks. The first, centered around DL low values (about
2000), is probably related to corn fields. The second, centered around DL high values (about
12,000), is probably related to other summer crops.

Figure 8. (a) DL map of corn. (b) Corn DL map frequency histogram. Red line is threshold found by
OM. (c) Fields classified as corn (reference system is WGS84/UTM 32N, EPSG: 32632).

It is worth noticing that the DL map (Figure 8a) alone is already able to provide a
preliminary overview of the spatial distribution of corn (red) and other summer crops
(green). Figure 8c shows the map of corn fields as classified by the proposed method.

3.3.4. Soya and Rice Detection

Soya and rice were classified using the three selected SMSI in place of TS. Separability
was computed for all SMSI, and its spectral profile (Figure 9) was analyzed by visual
interpretation. It highlights that for all the acquisitions: (i) visible bands show low sepa-
rability; (ii) NIR and MIR bands show high separability values; (iii) NIR and MIR related
separability is generally lower in June (S ≈ 1) than in July and August (S > 2). From an
agronomical point of view, this can be interpreted as probably due to the similar earlier
development stage that the two analyzed crops present in June (Table 3). Consequently,
June’s spectral signature cannot be assumed as a strong discriminant to separate soya and
rice in AOI.
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Figure 9. SMSIs separability analysis. Red line is the threshold over that observations are
statistically different.

Conversely, in July spectral response of the two crops appears to maximize their
separability. Agronomically speaking, in this period of the year, soya and rice are showing
two different phenological stages (see Table 3) in AOI. In fact, in July, soya is experiencing
its node development and bloom; rice is approaching panicle formation while exiting its
tillering phase.

With reference to the selected band subset (b5-b8a, b11, and b12) from the July acqui-
sition, MD was run trained with 132 soya and 140 rice fields from GCs. OM was used to
locate a proper threshold in the correspondent DL image histogram (Figure 10b) to separate
these two classes from the remaining ones. DL image histogram shows a drastic fall just
after the OM threshold (2500). Figure 10c shows the final map of soya and rice fields.

Figure 10. (a) DL map of soya and rice. (b) Soya and rice DL map frequency histogram. Red line is
threshold found by OM. (c) Fields classified as soya and rice (reference system is WGS84/UTM 32N,
EPSG: 32632).

CTM was finally generated by merging all the abovementioned partial maps in order
to provide a comprehensive representation of CoI in AOI (Figure 11a).

Some statistics were therefore computed to synthesize the agricultural landscape of
the area. In Figure 11b, a plot is reported showing that: (i) rice is the main crop in AOI
(about 60% of total plots and almost 75% in terms of area); (ii) soya is poorly present in the
area covering about 2% both in terms of parcel number and area. This value is significantly
different from the ones estimated by MDC and RF (25% and 9%, respectively). Further
differences can be found in the next section.
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Figure 11. (a) Rule-based hierarchical classification map. (b) Fields (%) and surface (%) monitored
for each crop in HI classification (reference system is WGS84/UTM 32N, EPSG: 32632).

3.4. Comparing HI with MDC and RF

To evaluate the performance of HI, a comparison was made with respect to MDC
and RF. After computing the main performance parameters (see Materials and Methods
section) of each classifier with reference to the validation set reported in Table 2, they were
compared and discussed. Results are reported in Figure 12. In particular, Figure 12a,c,e
report the absolute value of the computed accuracy parameters. Figure 12b,d,f report the
percentage differences as defined in Equation (3).

Concerning PA, Figure 12a shows that MDC was the best performing one for wheat
and meadow: in particular, MDC PA was 94% and 92% for wheat and meadow, respectively,
against 86% and 73% from HI and 77% and 68% from RF. For all other CoI, HI PA was
higher than the ones from RF and MDC. MDC proved to be the one generating the highest
variability in PA accuracies. Differently, RF showed a fairly low variability and fairly high
PA; HI was the best performing one showing low variability and high PA.

As far as the analysis of PA performance differences is concerned, Figure 12b shows
that: (i) HI performed better than RF for all CoI (∆% > 0) except wheat, where it was slightly
negative; (ii) HI performed better than MDC for soya, corn, and rice, while it was slightly
worse for meadow (−20%) and wheat (−8%); (iii) the major improvement given by HI was
found for soya (+220% and +38% with respect to MDC and RF, respectively).

Concerning UA, Figure 12c shows that, again, MDC was better for detecting wheat
and meadow MDC (89% and 92%, respectively). Correspondent UA were 78% and 86% for
HI and 88% and 66% for RF. For all other CoI, HI UA was higher than those from both RF
and MDC. Moreover, it can be noted that both MDC and RF showed fairly high variability
in class UA if compared with HI.

As far as the analysis of UA performance differences is concerned, Figure 12d shows
that: (i) HI performed better than RF for all CoI (∆% > 0) except wheat, where it was slightly
negative (−12%); (ii) HI performed better than MDC for soya, corn, and rice, while it was
slightly worse for meadow (−7%) and wheat (−13%); (iii) with respect to MDC ∆% was
higher for soya (+43%) and rice (+68%). Concerning RF, ∆% was higher for soya (+29%)
and meadow (+30%).

It is worth stressing that the high-class commission affecting both MDC and RF
classification appeared to be solved by the proposed HI approach, which is driven by
agricultural knowledge.
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Figure 12. (a) Producer’s accuracy (PA) of the three tested classifications; (b) PA improvement (∆%)
from HI with respect to MDC and RF; (c) user’s accuracy (UA) of the three tested classifications;
(d) UA improvement (∆%) from HI with respect to MDC and RF; (e) overall accuracy (OA) and K
value for the three classifications; (f) OA and K value improvement (∆%) from HI with respect to
MDC and RF.

Figure 12e shows OA and K values. OA values were found to be 63%, 80%, and 89%,
respectively, for MDC, RF, and HI. K values were found to be 44% (MDC), 70% (RF), and
84% (HI), proving that, in the local context, HI is preferable.

Figure 12f compares the improvements that HI generated with respect to both OA and
K values. Specifically, ∆%OA was found to be +42% and +11% with respect to MDC and RF
approaches, respectively. ∆%K was found to be +87% and +18%, respectively. It can be, therefore,
assumed that the HI approach can provide better results from this point of view, as well.

To preliminarily test the generalization of our conclusions, a comparison with similar
works was performed. It was found that Foerster [77] obtained an OA close to the one
from this work (86%) using a hierarchical winter-summer and grass/permanent crops
classification in NE Germany. Li also obtained their best results in classifying crops in Cali-
fornia through a hierarchical approach based on deep learning approaches [78]. Specifically,
they report a ∆% OA equal to +10%, proving how hierarchical approaches can effectively
improve crop classification.

These few references provide a first benchmark useful to affirm that our results can be
somehow assumed as general, even if depending on the degree of agricultural knowledge
one can provide during rules definition in HI.

Nevertheless, this approach suffers from some limitations and constraints. The most
important one is the need to possess proper agronomic knowledge about local crops and
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some ground reference data for training classifiers (in this work, ARPEA GCs). Furthermore,
the quality and truthfulness of GCs used to train classifiers and validate results are basic
in determining the final quality of CTM. Since GCs campaigns require a significant effort
in terms of time and cost from public administrations, they have to carefully evaluate
the sustainability of such an approach within their ordinary operative/administrative
framework. With these premises, the proposed approach can be defined as a reliable tool
for CAP controls.

4. Conclusions

In this work, a hierarchical classification of crops was proposed in order to support
CAP controls in agriculture. This work was supported by ARPEA, which provided several
GCs for five crops: soya, corn, wheat, rice, and meadow. The proposed hierarchical ap-
proach was compared with other more traditional approaches, namely MDC and RF, trying
to overcome some classification problems that previous studies highlighted, especially for
detecting rice and soya. The analysis was focused on those fields that can actually be moni-
tored by S2 data (about 57,230 parcels) according to their geometric features. Consequently,
a preliminary step was achieved to select them out of the whole.

The proposed approach was structured in the following several steps: (a) TS standard
deviation analysis in the time domain for meadows mapping; (b) MD classification of
winter part of TS in the time domain for wheat detection; (c) MD classification of summer
part of TS in the time domain for corn classification; (d) selection of a proper summer multi-
spectral image (SMSI) useful for separating rice from soya with MD operated in the spectral
domain. To separate crops of interest from other classes, consequent MD classifications
defining HI were thresholded by Otsu’s method. Overall accuracy for MD, RD, and HI were
found to be 63%, 80%, and 89%, respectively. It was found that especially the SMSI-based
approach within HI generated a significant improvement in soya and rice detection. Based
on this work, it is advised to not proceed with crop classification using a single algorithm
but rather, if possible, to structure a hierarchical approach based on agronomical and local
calendars knowledge in order to maximize the accuracy of the classification. Moreover, it is
worth reminding that satellite data allow monitoring of all GSAAs in a cost and effective
way; however, the minimum size of the plot and the geometric parameters of the satellite
sensor must always be considered.

It is worth reminding that, presently, the ordinary procedure for controls is based on
manual photo-interpretation and ground surveys. Only 5% of the total number of fields
declared by farmers are verified based on risk and randomness criteria. Consequently,
95% of applications cannot be verified, and the possibility of supplying illegitimate CAP
grants is very high. The new EU CAP controls will be supported by remote sensed data,
making public administrations able to focus their checks on those fields where satellite-
based classification founds some inconsistencies with farmers’ declarations. Precisely for
this reason, crop classification and mapping from satellite data (S2 mission) is getting more
and more important [79,80], and the HI approach well fits this point.

Author Contributions: Conceptualization, F.S. and E.B.-M.; methodology, F.S., S.D.P. and E.B.-M.;
software, F.S. and S.D.P.; validation, F.S.; formal analysis, F.S., E.X. and S.D.P.; investigation, F.S. and
E.B.-M.; resources, F.S., G.C. and E.X.; data curation, F.S. and E.X.; writing—original draft preparation,
F.S., S.D.P., F.G. and E.B.-M.; writing—review and editing, F.S., S.D.P. and E.B.-M.; visualization, F.S.,
S.D.P., E.X. and E.B.-M.; supervision, G.C., E.X. and E.B.-M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Piemonte Regional Agency for Payments in Agriculture
within the research contract titled “Management and experimental application of satellite-based
monitoring as alternative methodology to the CAP objective controls” (“Gestione e sperimentazione
del monitoraggio satellitare come metodologia alternativa ai controlli oggettivi di ammissibilità
superfici–CIG: ZDF2F1BE82”).



Agronomy 2022, 12, 1228 18 of 20

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to thank Elena Xausa and Gianluca Cantamessa, technicians by
the Piemonte Regional Agency for Payments in Agriculture (ARPEA), for having provided guidelines
and fundamental operational information useful to reach the results presented in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Geiger, R.; Kotzur, M.; Khan, D.-E. European Union Treaties; Germany Beck: Munich, Germany, 2015.
2. Dupraz, P.; Guyomard, H. Environment and Climate in the Common Agricultural Policy. EuroChoices 2019, 18, 18–25. [CrossRef]
3. Shucksmith, M.; Thomson, K.J.; Roberts, D. The CAP and the Regions: The Territorial Impact of the Common Agricultural Policy; CABI

Publishing: Wallingford, UK, 2005.
4. Regulation, C. No 1257/1999 on Rural Development Support by Means of the European Agricultural Guarantee Fund (EAGGF).

J. Rural Stud. 1999, 23, 416–429.
5. Cagliero, R.; Henke, R. Evidence of CAP Support in Italy. Between First and Second Pillar [Common Agricultural Policy].

PAGRI-Politica Agric. Internazionale 2008, 5, 43–62.
6. Dwyer, J.; Ward, N.; Lowe, P.; Baldock, D. European Rural Development under the Common Agricultural Policy’s ‘Second Pillar’:

Institutional Conservatism and Innovation. Reg. Stud. 2007, 41, 873–888. [CrossRef]
7. Regulation EU No. 809/2014 of the European Parliament and Council with Regard to the Integrated Administration and Control System;

Rural Development Measures and Cross Compliance, EU: Maastricht, The Netherlands, 2014; pp. 7272–7286.
8. Campinas, M.; Rosa, M.J. Assessing PAC Contribution to the NOM Fouling Control in PAC/UF Systems. Water Res. 2010, 44,

1636–1644. [CrossRef]
9. Loudjani, P. G-Tech Supports a Common Agriculture Policy in Europe. Geospat. World 2013, 4, 38–40.
10. Sarvia, F.; Xausa, E.; Petris, S.D.; Cantamessa, G.; Borgogno-Mondino, E. A Possible Role of Copernicus Sentinel-2 Data to Support

Common Agricultural Policy Controls in Agriculture. Agronomy 2021, 11, 110. [CrossRef]
11. Frison, P.-L.; Lardeux, C. Vegetation Cartography from Sentinel-1 Radar Images. QGIS Appl. Agric. For. 2018, 2, 181–213.
12. Denize, J.; Hubert-Moy, L.; Betbeder, J.; Corgne, S.; Baudry, J.; Pottier, E. Evaluation of Using Sentinel-1 and-2 Time-Series to

Identify Winter Land Use in Agricultural Landscapes. Remote Sens. 2018, 11, 37. [CrossRef]
13. Borgogno-Mondino, E.; Lessio, A.; Gomarasca, M.A. A Fast Operative Method for NDVI Uncertainty Estimation and Its Role in

Vegetation Analysis. Eur. J. Remote Sens. 2016, 49, 137–156. [CrossRef]
14. Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features

and Applications. Agronomy 2020, 10, 641. [CrossRef]
15. Leprieur, C.; Verstraete, M.M.; Pinty, B. Evaluation of the Performance of Various Vegetation Indices to Retrieve Vegetation Cover

from AVHRR Data. Remote Sens. Rev. 1994, 10, 265–284. [CrossRef]
16. Filgueiras, R.; Mantovani, E.C.; Althoff, D.; Fernandes Filho, E.I.; Cunha, F.F. da Crop NDVI Monitoring Based on Sentinel 1.

Remote Sens. 2019, 11, 1441. [CrossRef]
17. Boori, M.S.; Choudhary, K.; Paringer, R.; Sharma, A.K.; Kupriyanov, A.; Corgne, S. Monitoring Crop Phenology Using NDVI Time

Series from Sentinel 2 Satellite Data. In Proceedings of the 2019 5th International Conference on Frontiers of Signal Processing
(ICFSP), Marseille, France, 18–20 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 62–66.

18. Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data:
The Piemonte Region Case Study in the Period 2001–2019. Agronomy 2021, 11, 555. [CrossRef]

19. Lambert, M.-J.; Traoré, P.C.S.; Blaes, X.; Baret, P.; Defourny, P. Estimating Smallholder Crops Production at Village Level from
Sentinel-2 Time Series in Mali’s Cotton Belt. Remote Sens. Environ. 2018, 216, 647–657. [CrossRef]

20. Sharifi, A. Using Sentinel-2 Data to Predict Nitrogen Uptake in Maize Crop. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020,
13, 2656–2662. [CrossRef]

21. Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-
Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [CrossRef]

22. De Petris, S.; Sarvia, F.; Borgogno-Mondino, E. RPAS-Based Photogrammetry to Support Tree Stability Assessment: Longing for
Precision Arboriculture. Urban For. Urban Green. 2020, 55, 126862. [CrossRef]

23. Peters, A.J.; Griffin, S.C.; Viña, A.; Ji, L. Use of Remotely Sensed Data for Assessing Crop Hail Damage. PERS Photogramm. Eng.
Remote Sens. 2000, 66, 1349–1355.

24. Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Multi-Scale Remote Sensing to Support Insurance Policies in Agriculture: From
Mid-Term to Instantaneous Deductions. GISci. Remote Sens. 2020, 57, 770–784. [CrossRef]

25. Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Sánchez-Ruíz, S.; Gilabert, M.A. A Copernicus Sentinel-1 and Sentinel-2
Classification Framework for the 2020+ European Common Agricultural Policy: A Case Study in València (Spain). Agronomy
2019, 9, 556. [CrossRef]

26. Schmedtmann, J.; Campagnolo, M.L. Reliable Crop Identification with Satellite Imagery in the Context of Common Agriculture
Policy Subsidy Control. Remote Sens. 2015, 7, 9325–9346. [CrossRef]

http://doi.org/10.1111/1746-692X.12219
http://doi.org/10.1080/00343400601142795
http://doi.org/10.1016/j.watres.2009.11.012
http://doi.org/10.3390/agronomy11010110
http://doi.org/10.3390/rs11010037
http://doi.org/10.5721/EuJRS20164908
http://doi.org/10.3390/agronomy10050641
http://doi.org/10.1080/02757259409532250
http://doi.org/10.3390/rs11121441
http://doi.org/10.3390/agronomy11030555
http://doi.org/10.1016/j.rse.2018.06.036
http://doi.org/10.1109/JSTARS.2020.2998638
http://doi.org/10.3390/rs12061024
http://doi.org/10.1016/j.ufug.2020.126862
http://doi.org/10.1080/15481603.2020.1798600
http://doi.org/10.3390/agronomy9090556
http://doi.org/10.3390/rs70709325


Agronomy 2022, 12, 1228 19 of 20

27. Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M. Feature Selection of Time Series MODIS Data for Early Crop Classification Using
Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369. [CrossRef]

28. Lebrini, Y.; Boudhar, A.; Htitiou, A.; Hadria, R.; Lionboui, H.; Bounoua, L.; Benabdelouahab, T. Remote Monitoring of Agricultural
Systems Using NDVI Time Series and Machine Learning Methods: A Tool for an Adaptive Agricultural Policy. Arab. J. Geosci.
2020, 13, 796. [CrossRef]

29. Bannerjee, G.; Sarkar, U.; Das, S.; Ghosh, I. Artificial Intelligence in Agriculture: A Literature Survey. Int. J. Sci. Res. Comput. Sci.
Appl. Manag. Stud. 2018, 7, 1–6.

30. Kim, N.; Ha, K.-J.; Park, N.-W.; Cho, J.; Hong, S.; Lee, Y.-W. A Comparison between Major Artificial Intelligence Models for Crop
Yield Prediction: Case Study of the Midwestern United States, 2006–2015. ISPRS Int. J. Geo-Inf. 2019, 8, 240. [CrossRef]

31. Tian, H.; Huang, N.; Niu, Z.; Qin, Y.; Pei, J.; Wang, J. Mapping Winter Crops in China with Multi-Source Satellite Imagery and
Phenology-Based Algorithm. Remote Sens. 2019, 11, 820. [CrossRef]

32. Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the Temporal Behavior
of Crops Using Sentinel-1 and Sentinel-2-like Data for Agricultural Applications. Remote Sens. Environ. 2017, 199, 415–426.
[CrossRef]

33. Chakhar, A.; Ortega-Terol, D.; Hernández-López, D.; Ballesteros, R.; Ortega, J.F.; Moreno, M.A. Assessing the Accuracy of
Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data. Remote Sens. 2020, 12, 1735.
[CrossRef]

34. Sun, R.; Chen, S.; Su, H.; Mi, C.; Jin, N. The Effect of NDVI Time Series Density Derived from Spatiotemporal Fusion of Multisource
Remote Sensing Data on Crop Classification Accuracy. ISPRS Int. J. Geo-Inf. 2019, 8, 502. [CrossRef]

35. Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central
Europe. Remote Sens. 2016, 8, 166. [CrossRef]

36. Laborte, A.G.; Maunahan, A.A.; Hijmans, R.J. Spectral Signature Generalization and Expansion Can Improve the Accuracy of
Satellite Image Classification. PLoS ONE 2010, 5, e10516. [CrossRef] [PubMed]

37. Rauf, U.; Qureshi, W.S.; Jabbar, H.; Zeb, A.; Mirza, A.; Alanazi, E.; Khan, U.S.; Rashid, N. A New Method for Pixel Classification
for Rice Variety Identification Using Spectral and Time Series Data from Sentinel-2 Satellite Imagery. Comput. Electron. Agric.
2022, 193, 106731. [CrossRef]

38. Boccardo, P.; Mondino, E.B.; Tonolo, F.G. High Resolution Satellite Images Position Accuracy Tests. In Proceedings of the IGARSS
2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France,
21–25 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 4, pp. 2320–2322.

39. Delwart, S. SENTINEL-2 User Handbook; European Space Agency: Paris, France, 2015. Available online: https://earth.esa.int/
documents (accessed on 14 February 2022).

40. Hodgson, M.E. On the Accuracy of Low-Cost Dual-Frequency GNSS Network Receivers and Reference Data. GISci. Remote Sens.
2020, 57, 907–923. [CrossRef]

41. Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691.
[CrossRef]

42. Khanal, S.; KC, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and
Opportunities. Remote Sens. 2020, 12, 3783. [CrossRef]

43. Gomarasca, M.A.; Tornato, A.; Spizzichino, D.; Valentini, E.; Taramelli, A.; Satalino, G.; Vincini, M.; Boschetti, M.; Colombo, R.;
Rossi, L. Sentinel for Applications in Agriculture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3/W6, 91–98.

44. Vajsová, B.; Fasbender, D.; Wirnhardt, C.; Lemajic, S.; Devos, W. Assessing Spatial Limits of Sentinel-2 Data on Arable Crops in
the Context of Checks by Monitoring. Remote Sens. 2020, 12, 2195. [CrossRef]

45. Mondino, E.B.; Corvino, G. Land Tessellation Effects in Mapping Agricultural Areas by Remote Sensing at Field Level.
Int. J. Remote Sens. 2019, 40, 7272–7286. [CrossRef]

46. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated
Geoscientific Analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 2015, 8, 1991–2007. [CrossRef]

47. Forman, R.T. Some General Principles of Landscape and Regional Ecology. Landsc. Ecol. 1995, 10, 133–142. [CrossRef]
48. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green

Wave Effect) of Natural Vegetation; NASA/GSFC Type III Final Report; US Government Public, Greenbelt, MD, USA, 1974;
Volume 371.

49. Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A Simple Method for Reconstructing a High-Quality NDVI
Time-Series Data Set Based on the Savitzky–Golay Filter. Remote Sens. Environ. 2004, 91, 332–344. [CrossRef]

50. Mishra, A.; Lu, Y.; Meng, J.; Anderson, A.W.; Ding, Z. Unified Framework for Anisotropic Interpolation and Smoothing of
Diffusion Tensor Images. NeuroImage 2006, 31, 1525–1535. [CrossRef] [PubMed]

51. Corvino, G.; Lessio, A.; Borgogno-Mondino, E. Monitoring Rice Crops in Piemonte (Italy): Towards an Operational Service Based
on Free Satellite Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 9070–9073.

52. Pageot, Y.; Baup, F.; Inglada, J.; Baghdadi, N.; Demarez, V. Detection of Irrigated and Rainfed Crops in Temperate Areas Using
Sentinel-1 and Sentinel-2 Time Series. Remote Sens. 2020, 12, 3044. [CrossRef]

http://doi.org/10.3390/rs70505347
http://doi.org/10.1007/s12517-020-05789-7
http://doi.org/10.3390/ijgi8050240
http://doi.org/10.3390/rs11070820
http://doi.org/10.1016/j.rse.2017.07.015
http://doi.org/10.3390/rs12111735
http://doi.org/10.3390/ijgi8110502
http://doi.org/10.3390/rs8030166
http://doi.org/10.1371/journal.pone.0010516
http://www.ncbi.nlm.nih.gov/pubmed/20463895
http://doi.org/10.1016/j.compag.2022.106731
https://earth.esa.int/documents
https://earth.esa.int/documents
http://doi.org/10.1080/15481603.2020.1822588
http://doi.org/10.1155/2017/1353691
http://doi.org/10.3390/rs12223783
http://doi.org/10.3390/rs12142195
http://doi.org/10.1080/01431161.2019.1601287
http://doi.org/10.5194/gmd-8-1991-2015
http://doi.org/10.1007/BF00133027
http://doi.org/10.1016/j.rse.2004.03.014
http://doi.org/10.1016/j.neuroimage.2006.02.031
http://www.ncbi.nlm.nih.gov/pubmed/16624586
http://doi.org/10.3390/rs12183044


Agronomy 2022, 12, 1228 20 of 20

53. Solano-Correa, Y.T.; Bovolo, F.; Bruzzone, L.; Fernández-Prieto, D. Spatio-Temporal Evolution of Crop Fields in Sentinel-2 Satellite
Image Time Series. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing
Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4.

54. Akbari, M.; Mamanpoush, A.r.; Gieske, A.; Miranzadeh, M.; Torabi, M.; Salemi, H.R. Crop and Land Cover Classification in Iran
Using Landsat 7 Imagery. Int. J. Remote Sens. 2006, 27, 4117–4135. [CrossRef]

55. Ok, A.O.; Akar, O.; Gungor, O. Evaluation of Random Forest Method for Agricultural Crop Classification. Eur. J. Remote Sens.
2012, 45, 421–432. [CrossRef]

56. Ustuner, M.; Esetlili, M.T.; Sanli, F.B.; Abdikan, S.; Kurucu, Y. Comparison of Crop Classification Methods for the Sustainable
Agriculture Management. J. Environ. Prot. Ecol 2016, 17, 648–655.

57. Tian, X.; Chen, E.; Li, Z.; Su, Z.B.; Ling, F.; Bai, L.; Wang, F. Comparison of Crop Classification Capabilities of Spaceborne
Multi-Parameter SAR Data. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu,
HI, USA, 25–30 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 359–362.

58. Shi, Y.; Li, J.; Ma, D.; Zhang, T.; Li, Q. Method for Crop Classification Based on Multi-Source Remote Sensing Data. In Proceedings
of the IOP Conference Series: Materials Science and Engineering, Wuhan, China, 14–16 June 2019; IOP Publishing: Bristol, UK,
2019; Volume 592, p. 012192.

59. Zhu, L.; Tateishi, R. Application of Linear Mixture Model to Time Series AVHRR NDVI Data. In Proceedings of the 22nd Asian
Conference on Remote Sensing, Singapore, 5–9 November 2001; pp. 5–9.

60. Wacker, A.G.; Landgrebe, D.A. Minimum Distance Classification in Remote Sensing. LARS Tech. Rep. 1972, 25.
61. Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
62. Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22.
63. Kaul, H.A.; Sopan, I. Land Use Land Cover Classification and Change Detection Using High Resolution Temporal Satellite Data.

J. Environ. 2012, 1, 146–152.
64. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote

Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]
65. Nguyen, T.T.; Hoang, T.D.; Pham, M.T.; Vu, T.T.; Nguyen, T.H.; Huynh, Q.-T.; Jo, J. Monitoring Agriculture Areas with Satellite

Images and Deep Learning. Appl. Soft Comput. 2020, 95, 106565. [CrossRef]
66. Lucas, R.; Rowlands, A.; Brown, A.; Keyworth, S.; Bunting, P. Rule-Based Classification of Multi-Temporal Satellite Imagery for

Habitat and Agricultural Land Cover Mapping. ISPRS J. Photogramm. Remote Sens. 2007, 62, 165–185. [CrossRef]
67. Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q. Global Crop Monitoring: A

Satellite-Based Hierarchical Approach. Remote Sens. 2015, 7, 3907–3933. [CrossRef]
68. Kolecka, N.; Ginzler, C.; Pazur, R.; Price, B.; Verburg, P.H. Regional Scale Mapping of Grassland Mowing Frequency with

Sentinel-2 Time Series. Remote Sens. 2018, 10, 1221. [CrossRef]
69. Weber, D.; Schaepman-Strub, G.; Ecker, K. Predicting Habitat Quality of Protected Dry Grasslands Using Landsat NDVI Phenology.

Ecol. Indic. 2018, 91, 447–460. [CrossRef]
70. Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Mapping Ecological Focus Areas within the EU CAP Controls Framework by

Copernicus Sentinel-2 Data. Agronomy 2022, 12, 406. [CrossRef]
71. De Petris, S.; Squillacioti, G.; Bono, R.; Borgogno-Mondino, E. Geomatics and Epidemiology: Associating Oxidative Stress and

Greenness in Urban Areas. Environ. Res. 2021, 197, 110999. [CrossRef] [PubMed]
72. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
73. Araújo, G.K.; Rocha, J.V.; Lamparelli, R.A.; Rocha, A.M. Mapping of Summer Crops in the State of Paraná, Brazil, through the

10-Day Spot Vegetation NDVI Composites. Eng. Agrícola 2011, 31, 760–770. [CrossRef]
74. Hay, A.M. The Derivation of Global Estimates from a Confusion Matrix. Int. J. Remote Sens. 1988, 9, 1395–1398. [CrossRef]
75. Saganeiti, L.; Pilogallo, A.; Faruolo, G.; Scorza, F.; Murgante, B. Territorial Fragmentation and Renewable Energy Source Plants:

Which Relationship? Sustainability 2020, 12, 1828. [CrossRef]
76. Gascon, F.; Ramoino, F. Sentinel-2 Data Exploitation with ESA’s Sentinel-2 Toolbox. In Proceedings of the EGU General Assembly

Conference Abstracts, Vienna, Austria, 23–28 April 2017; p. 19548.
77. Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop Type Mapping Using Spectral–Temporal Profiles and Phenological

Information. Comput. Electron. Agric. 2012, 89, 30–40. [CrossRef]
78. Li, H.; Zhang, C.; Zhang, S.; Ding, X.; Atkinson, P.M. Iterative Deep Learning (IDL) for Agricultural Landscape Classification

Using Fine Spatial Resolution Remotely Sensed Imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102437. [CrossRef]
79. Papoutsis, I.; Kontoes, H.; Karathanassi, V.; Koukos, A.; Drivas, T.; Sitokonstantinou, V.; Koutroumpas, A. A Sentinel Based

Agriculture Monitoring Scheme for the Control of the CAP and Food Security. Sci. Prepr. 2021, 11524, 1152407.
80. Beriaux, E.; Jago, A.; Lucau-Danila, C.; Planchon, V.; Defourny, P. Sentinel-1 Time Series for Crop Identification in the Framework

of the Future CAP Monitoring. Remote Sens. 2021, 13, 2785. [CrossRef]

http://doi.org/10.1080/01431160600784192
http://doi.org/10.5721/EuJRS20124535
http://doi.org/10.1080/01431160412331269698
http://doi.org/10.1109/LGRS.2017.2681128
http://doi.org/10.1016/j.asoc.2020.106565
http://doi.org/10.1016/j.isprsjprs.2007.03.003
http://doi.org/10.3390/rs70403907
http://doi.org/10.3390/rs10081221
http://doi.org/10.1016/j.ecolind.2018.03.081
http://doi.org/10.3390/agronomy12020406
http://doi.org/10.1016/j.envres.2021.110999
http://www.ncbi.nlm.nih.gov/pubmed/33713710
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1590/S0100-69162011000400014
http://doi.org/10.1080/01431168808954945
http://doi.org/10.3390/su12051828
http://doi.org/10.1016/j.compag.2012.07.015
http://doi.org/10.1016/j.jag.2021.102437
http://doi.org/10.3390/rs13142785

	Introduction 
	EU CAP 
	Supporting CAP Controls by Copernicus Satellite Data 

	Materials and Methods 
	Study Area 
	Crops of Interest 
	Copernicus Satellite Data 
	Farmers’ GSAA 
	Ground Data 
	Data Processing 
	Compliance of GSAA with S2 Data 
	NDVI Image Time Series 
	Minimum Distance and Random Forest Classification of Crops 

	Rule-Based Hierarchical Classification 
	Meadow Detection 
	Wheat Detection 
	Corn Detection 
	Soya and Rice Detection 
	Comparing HI with MDC and RF 

	Results and Discussion 
	Compliance of GSAA Geometry with S2 Data 
	MDC and RF Classification 
	Rule-Based Hierarchical Classification 
	Meadow Detection 
	Wheat Detection 
	Corn Detection 
	Soya and Rice Detection 

	Comparing HI with MDC and RF 

	Conclusions 
	References

