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Abstract: Climate change models predict increased drought frequencies. Maintaining yield stability
necessitates drought-tolerant crops. However, their breeding is challenging; drought tolerance is
a multigene trait with significant environment interaction. Thus, the training of genomic selection
models requires phenotyping a large genotype population under arid conditions. We aimed to identify
phenotypic tolerance traits that facilitate the screening of large populations in the field. We performed
three trials on 20 tetraploid Solanum tuberosum ssp. tuberosum genotypes with significant drought
tolerance variation. Plants were subjected to early, late and long-term drought under variable climate
conditions. For each stress scenario, the drought tolerance index DRYMp was calculated from the
relative tuber starch yield. A laser scanner system measured canopy development continuously over
the crop’s lifecycle and provided estimates of leaf movement and canopy growth features. Growth
curves were evaluated by logistic regression. Different multiple regression approaches were compared
for their ability to predict tolerance from phenotype data of optimally watered or stressed plants. We
established that early short-term stress can be used as a proxy for long-term stress in the absence of
genetic variation for drought stress recovery or memory. The gen-otypes varied significantly in most
canopy features. Leaf-area-based features combined significant genotype effects with environmental
stability. Multiple regression models based on single-day data outperformed those based on the
regression curve parameter. The models included leaf area and leaf position parameters and partially
reproduced prior findings on siblings in a genetically more diverse population.

Keywords: abiotic stress; water stress; phenotyping; LIDAR; phenotypic markers; multiple
regression models

1. Introduction

Climate change models predict an increased likelihood of extreme weather conditions,
including prolonged drought periods and higher air temperatures [1,2]. Thus, reduced
water supply will meet increased demand as a result of higher evapotranspiration. In addi-
tion, drought enhances the adverse effect of heat, as the cooling effect of water evaporation
dwindles, when soil surfaces are dry and plants reduce transpiration. As a consequence,
crop yields will decline more frequently as a result of drought or drought plus heat [3].
Drought and heat effects can be mitigated by irrigation. However, water availability for
irrigation will decrease in many parts of the world, including regions of the US, China, and
West, South, and Central Asia [4]. Altered precipitation patterns, increased evapotranspira-
tion, and land-use change also reduce the refilling of ground water reserves [5]. In addition,
agriculture competes with industry and a growing domestic demand for declining water
reserves [6]. A solution is to breed drought-tolerant crop varieties that maintain yield at
reduced water supply.

Drought tolerance is a challenging trait to breed for; it is controlled by many genes and
is highly dependent on the drought pattern in the target environment and the management
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practices employed by the farmers [7,8]. Yield-based selection in arid environments has
produced varieties with high yield stability, but the process took decades [9]. Marker-
assisted selection could speed up the process. However, the development of genomic
selection models for polygenic traits is challenging, as it requires drought tolerance data
for a large genotype population. While costs of genotyping have decreased substantially
in the last two decades, the phenotyping aspect of marker development remains a bottle-
neck [10,11]. Typically, the tolerance measurement is conducted by yield determination in
multisite/multiyear trials in the target environment. This is logistically challenging and
very labor-intensive due to the relatively high number of replicates required to obtain a
stable tolerance estimate [12,13].

It has been suggested to replace yield determination in agro-environments by the
measurement of secondary traits in controlled environments. However, these proxy meth-
ods suffer from a low correlation between the tolerance ranking obtained in controlled
environments with the performance in agro-environments [1,13–15]. Secondary traits can
be used to obtain a tolerance classification, if they are highly heritable and genetically
correlated with yield [16,17]. Canopy development parameters, the stay-green trait, and
canopy temperature depression are associated with yield and drought tolerance in crops
such as maize, wheat, rice and potato [16–22]. The third prerequisite for a good secondary
trait is being ‘easy to measure’ [16,17]. With the advancement of phenotyping technologies,
‘easy to measure’ translates to measurable automatically by remote sensing [23]. Sensors
that take hyperspectral images or detect selected wavelength signals are mounted on pheno-
typing platforms, on unmanned aerial vehicles (UAV), or even on satellites [15,24]. Infrared
and microwave sensors on satellites provide data for the assessment of vegetation cover
and standardized vegetation index for drought prediction [25,26]. In spite of improved
spatial resolution, the correlation between remotely measured vegetation indices and yield
remains weak [26,27]. Thus, close-range measurements are still on the agenda for the devel-
opment of phenotyping techniques, to gain ground-truth data for satellite monitoring, and
as stand-alone techniques in decision support systems, for precision agriculture and for the
phenotyping of breeding material [27,28]. Multispectral cameras on UAV were employed
to monitor rust in turf grass or wheat [29,30]. The crop nitrogen content is assessed on
the basis of vegetation indices that are related to the canopy cover and to the pigment
or chlorophyll content; the respective information is derived from hyperspectral or RGB
images. A sensor that combines measurements of vegetation cover and canopy nitrogen
content has been commercialized in decision support systems for precision farming [31].

While nitrogen deficiency and many fungal diseases cause a change in canopy color,
only severe drought stress causes leaf yellowing or necrosis. This stress range, in which
survival rather than yield is at stake, is beyond the range for irrigation management, which
has to prevent the crop from entering this stage. For breeders, the crop’s response to yield-
reducing rather than lethal stress is in focus [32]. The drought monitoring tools for irrigation
management have used vegetation indices and canopy temperature measurements [28].
However, the relationship between canopy temperature and established drought indicators
such as plant water potential, stomatal aperture, and water content strongly depends
on leaf age, crop maturity, and plant genotype [28]. Timing of the measurement in the
diurnal cycle is critical for the measurement of vegetation indices and canopy temperature
depression [33,34]. Furthermore, growth stage obviously impacts the measurement as it
affects the degree of ground cover, the self-shading of the plant and the intermingling of
adjacent plants. In addition, the weather conditions affect canopy reflectance, leaf position,
and stomatal aperture. This is a problem especially for UAV measurements. In contrast to
satellite data or data from phenotyping platforms, which produce time series, UAV-based
measurements are restricted to a small number of data collection events. Thus, getting
the timing right is pivotal when moving from continuous measurements on phenotyping
platforms to applications in breeders’ fields.

This manuscript focuses on phenotypic biomarkers for drought tolerance in potato.
Potato is an important food crop for subsistence farmers on marginal land, as well as a
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stable crop for agroindustry [35]. Potato has a high water productivity, but low drought
stress tolerance [18]. Breeding drought-tolerant potatoes is, thus, important to maintain
both food security for smallholders and economic perspectives in the agroindustry. Gen-
otyping data and genomic selection models for potato are increasingly available [36–38].
The bottleneck is the phenotyping of the training population, as phenotyping for drought
tolerance is laboriously conducted by yield measurements in field trials under optimal
and restricted water supply [18,35,39,40]. There are also attempts to find secondary traits
for drought tolerance in potato. Field phenotyping of morphological features in a highly
variable potato population found an association between stolone and stolone root numbers
and drought tolerance [41]. Khan et al. [42] modeled the canopy cover dynamics in a
population segregating for maturity and found strong positive correlations among the
duration of maximum canopy cover, the area under the growth curve A(sum), and the
maximum canopy cover [42]. However, the correlation between A(sum) and radiation-use
efficiency of tuber dry matter was negative, suggesting that there is a sweet spot in the
relationship between drought tolerance and canopy development [43].

In a previous study, we analyzed the relationship between canopy feature dynam-
ics and drought tolerance in a population of siblings that segregated for drought toler-
ance [21,44]. Canopy growth was analyzed by laser scanner measurement of plant height
(PH), total leaf area (A3), and projected leaf area (A2) in long-term drought tolerance trials
under variable climate conditions. Growth curves were analyzed by logistic regression
on right-censored data. We found that tolerant genotypes increased leaf area for longer
and achieved a higher maximum of A2 than sensitive genotypes. Additionally, tolerant
genotypes had a lower maximum of plant height than sensitive genotypes and maintained
the leaf movement pattern typical for optimally watered plants under stress [21]. These
features were derived from time-series analysis on a genetically uniform population. Before
we can employ the system to select for drought tolerance in breeding populations under
field conditions, we like to address the below questions.

First, to be applicable in plant breeding, we have to find out whether the prediction
model works for a population that is genetically different from the training population.
To answer this question, we repeated the phenotyping with a population that contained
six genotypes from a different gene pool in addition to the 14 genotypes from the first
population. The second question was whether we can replace long-term drought stress
trials by short-term drought stress experiments to save time. Third, we wanted to know
whether additional phenotypic features such as leaf area index or light penetration depth
provide a better prediction than the restricted set of features employed in the first study.
The final question was whether we really need continuous measurements and a subsequent
growth curve fitting to predict tolerance or whether measurements on single days—ideally
early in development—would also provide a good tolerance estimate.

2. Materials and Methods
2.1. Potato Drought Trials

The drought stress trials on 20 Solanum tuberosum ssp. tuberosum (L.) genotypes were
performed in 2017, 2018, and 2019 (Supplementary Table S1) under naturally variable
climate conditions in a polytunnel screenhouse (52◦23′55′ ′ N, 13◦3′56′ ′ E). We used a
previously established system [13]: chitted tubers were planted in 30 L bags filled with peat
substrate and fertilized with 30 g Novatec classic per bag. The experimental design was a
randomized block design with the treatments as blocks. The number of replicate plants
per genotype and treatment was eight (2017 and 2018) or six (2019), with one tuber per
replicate bag. The spatial design is shown in Supplementary Figure S1. Climate data (air
temperature, humidity, and photosynthetically available radiation) were measure adjacent
to the experiment as described in [44] and are available at e!DAL [45].

Drought stress was applied by reducing the volume of the irrigation water to 50% of the
volume given to the optimally irrigated control. The reduction was achieved by increasing
the time between irrigations rather than by reducing the volume at an irrigation event.
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The cumulative irrigation volume is displayed in Figure 1A. Thus, the drought treatment
mimics the situation in the field where drought stress results from reduced precipitation,
as discussed in [13]. Irrigation was performed with a magnetic valve-controlled drip
irrigation system [21]. For the long-term drought stress treatment, named ‘ss’, plants were
subjected to reduced watering from BBCH15 (Treatd1, Table S1) to harvest. At flowering
time (Treatd3), long-term drought stress plants received an additional irrigation to increase
the soil water content transiently to approximately 50% of field capacity. For early drought
stress, named ‘sc’, watering was reduced from BBCH15 (Treatd2 = Treatd1) to flowering
(Treatd3). For late drought stress, named ‘cs’, irrigation was reduced to 50% of control
irrigation from flowering (Treatd3) to harvest. Soil water content and soil temperature were
measured with Plantcare soil sensors (Plantcare, Russikon, Switzerland) in 32 pots (eight
per treatment) every 60 min. The cumulative thermal sum was calculated as described
in [13,44]. At a cumulative thermal sum of approximately 1400 ◦C·day, when control plants
reached a BBCH of >89, the haulm was removed, and the tubers were harvested manually.
Tuber number, size grading (diameter: S < 35 mm, M 35–60 mm, L > 60 mm), weight, and
starch content were measured as described in [13].
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Figure 1. Cumulative irrigation volume (A) and distribution of daily median of soil water content
(B) for optimal water supply (cc), late stress (cs), early stress (sc), and long-term (ss) drought stress in
experiments in 2017, 2018 and 2019. Interval 1: before stress, interval 2: early stress before flowering,
interval 3: late stress after flowering. Symbols indicate data points outside the 1.5fold interquartile
range indicated by the box-and-whisker plot.
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The population of 20 potato genotypes (Supplementary Table S2) comprised 10 sibling
lines selected from two crosses between one drought-tolerant and two drought-sensitive
starch potato cultivars (details in [44] and Supplementary Figure S1 in [13]). The popula-
tion furthermore contained the three parent cultivars, the check cultivar Desirée, and six
additional cultivars from a panel of potato cultivars that had been previously characterized
for drought tolerance in field trials [40]. These cultivars were selected for a contrasting
response to early and late drought stress based on the previously published data [40].

2.2. Evaluation of Yield Data

Data evaluation was performed in SAS 9.4 (SAS institute, Cary, NC, USA). Starch
yield SY was calculated for each plant as a product of tuber yield TY and tuber starch
content. Relative SY was calculated as SY divided by the cultivar’s mean starch yield under
optimal water supply in the given experiment. The drought tolerance index DRYMp was
calculated for all three drought treatments (cs, sc, and ss) as the relative starch yield of
a plant minus the median relative starch yield of the parent cultivars in the respective
experiment and treatment [44]. DRYMp is positive for tolerant, but negative for drought-
sensitive genotypes. The water-use efficiency of TY (WUE_TY) and SY (WUE_TY) of a plant
is equal to the TY or SY of the plant divided by the volume of irrigation water received by
the plant.

An analysis of variance (ANOVA) (Proc Glm, SS3) tested the effects of genotype,
treatment, their interaction, and the year of the experiment on TY, starch content, SY,
WUE_TY, WUE_SY, tuber number in the three fractions, and DRYMp. A comparison of the
means was performed using the Ryan–Einot–Gabriel–Welch (REGW) test, which corrects
for multiple testing (α = 0.05).

2.3. Phenotyping
2.3.1. Measurements and Quality Control

Shoot development was phenotyped with two IR laser scanners (PlantEye Model F400,
Phenospex, Heerlen, The Netherlands) mounted on an automobile Fieldscan (Phenospex)
system. The Fieldscan moved the PlantEyes with a speed of 35 mm/s over the plant canopy
every 4 h, thus yielding six images per plant and day. Details on the measurement period
for each experiment are provided in Supplementary Tables S1 and S3. From the images,
the Hortcontrol software estimated the features plant height (PH), total leaf area (A3),
projected leaf area (A2), leaf area index (LAI), digital biomass (DB), leaf inclination (LI), leaf
angle (LA), and light penetration depth (LPD) for each plant and each timepoint. Image
data were linked to plant metadata based on the spatial design information uploaded
to Hortcontrol. In the metadata, the unique identifier of the plant cultivation database
was entered to link to the genetic and treatment information [46]. For quality control, we
downloaded the data as csv files, uploaded them to SAS, and joined the phenotype data
with the treatment and pedigree information. The combined data of identifier, pedigree
ID, treatment, and extracted feature are available at e!DAL [45]. Plant age (dfp_days) at
a measurement was calculated as the difference between the date of the measurement
timestamp and the tuber planting date. All features were plotted against the measurement
time to define the time window for valid measurements [21], identify criteria for the outliers
exclusion, and detect the time ranges, in which data were missing for treatment subsets.
The exclusion criteria are listed in Supplementary Table S3. After quality control, median
values (md) of all features were calculated for each plant and day. The effects of genotype,
treatment interval, treatment, age, and their interaction were tested by analysis of variance
(ANOVA) with Proc Glm, method SS3. Differences in means were tested using the REGW
test. Genotypic medians (mdg) were calculated for each day and treatment on the basis of
the median values of the individual plants of a genotype in a given treatment. In addition,
we calculated genotypic median values of leaf angle, leaf inclination, and light penetration
depth within six time intervals of the diurnal cycle [21]. Interval 2DW spanned the time of
sunrise, while interval 5DK spanned the time of sunset. Interval 1DW and 6EN contained
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the last and first halves of the night, while 3AM and 4PM were day intervals before and
after midday. The effects of age, diurnal interval, ge-notype, treatment interval, and their
interaction on the genotypic median of LI, LA, and LPD was tested using Proc Glm; a
comparison of the means was performed using the REGW test (α = 0.05).

2.3.2. Nonlinear Regression

We tested several approaches to model the growth curves of the features PH, DB, A2,
A3, and LAI, which show a saturation curve-like relationship with plant age. The challenge
is that, for short-term stress treatments, different growth responses are expected in the
two different time intervals. Separate linear regression within each interval yielded large
deviation from the predicted value at the beginning and end of each interval. Therefore,
we modeled the growth curves over both intervals by nonlinear regression. We compared
two methods, Gompertz function [47] and logistic regression [48]:

md(x) = max(X)× e(−tm(X)× e
(

d f pdays ×−k(X)
)

,

md(X) = max(X)/(1 + e
(
−k(X)×

(
d f pdays − tm(X)

))
,

where X is feature X, max is the maximum value (upper asymptote), k is the initial slope,
and tm is the turning point of the curve.

The values of max and tm that were predicted using the Gompertz model for the dataset
from the 2017 experiment deviated considerably from the expected values gained from
visual inspection of the curves. We, therefore, decided to continue using the established
logistic regression approach. Logistic curves were separately fitted for the age effect on the
daily median of each feature for each plant. We separately tested the effect of ge-notype
and treatment of the three curve parameters for each feature and each experiment. We
visualized the treatment effect on the growth curve of X (X = PH, A2, A3, DB, and LAI)
by calculating the feature Xmod for each day on the basis of the median growth curve
parameters for each treatment.

2.3.3. Correlation Analysis

For the correlation analysis on growth curve parameters, we calculated the genotypic
median (mdg) of the parameters P = k, tm, and max for each plantline G, treatment E, and
year Y from the values gained for the r replicate plants of each treatment. Thus, for each
treatment and year, we obtained i = 20 values for k, tm, and max for

mdg(P)GiEjYk = median(Pn = 1 to r)GiEiYk.

For the correlation analysis on leaf movement features, we calculated the genotypic
median of LA, LI, and LPD in the six diurnal intervals separately for each treatment
interval (mmd) and each experiment. Thus, for each treatment, year, and diurnal interval,
we obtained 20 median values, one for each genotype. The median rather than the mean
was chosen as it is less affected by outliers. Subsequently, we calculated the Spearman
correlation between these parameters and the genotypic median of DRYMp for all three
stress scenarios and starch yield SY for all treatment and all three experiments. The resulting
dataset was filtered for those entries, in which at least one of the seven correlations with
either DRYMp or SY was significant (α = 0.05).

2.3.4. Multiple Regression Analysis

We tested two multiple regression approaches to predict tolerance to the three stress
scenarios from phenotypic data. In both models, the median drought tolerance DRYMp
was calculated for each stress scenario as a function of the starch yield data from all three
experiments. For the modeling, we calculated the genotypic median of each phenotypic
feature and each day, as well as the genotypic median of the nonlinear regression para-
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meters for each experiment and treatment. Tolerance, yield, and phenotyping data were
z-transformed prior to the regression analysis.

In the first ‘fixed’ approach, we performed the variable selection using Proc Glmselect
on the genotypic median of the regression parameters of the nonlinear regression (k, tm,
and max) of A3, A2, LAI, PH, and DB plus the daily median for each genotype, treatment,
and experiment for all phenotyping features on three selected days of each experiment.
These days were selected on the basis of the plant phenology and the treatment intervals:
d = 1 is 7 days after the start date of interval 2, d = 2 is two days before the start date
of interval 3, and d = 3 is 12 days after the start date of interval 3. We performed a step-
wise regression analysis using Proc Glmselect, with the predicted residual sum of squares
(PRESS) as the stop criterion to select a subset of variables on the basis of a significance
threshold of 0.15 (Supplementary Figures S6 and S7). The identified subset was then used
in Proc Reg to perform a stepwise variable selection and calculate the regression weights
for the prediction of the drought tolerance parameter DRYMp. For each of the three stress
scenarios (ss, sc, and cs), we calculated two models. The modeling performed for features
measured under the same stress as the tolerance determination yielded three ‘fixed models
for stress phenotype’ for each experiment. The modeling performed on features mea-
sured under optimal water supply yielded three ‘fixed models for control phenotype’ for
each experiment.

In the second, ‘random’ approach, the variable selection using Proc Glmselect was
performed on all daily median features between the start day of the first drought stress
interval and day 59. The variables selected by Proc Glmsselect were then used to determine
the weights by Proc Reg as described for the fixed model. This approach was performed
for phenotypic features measured under the same stress as the tolerance assessment and
for phenotypic features measured under control conditions. This resulted again in a total
of six models, two for each stress, for each experiment.

3. Results
3.1. Tolerance to Different Drought Scenarios

Drought stress was applied as long-term drought stress, named ss, from the early
vegetative phase to harvest, early drought stress, named sc, from the early vegetative phase
to flowering (interval 2), and late drought stress, named cs, from flowering to harvest
(interval 3). During the stress treatment, plants frequently showed signs of wilting already
a few hours after sunrise, while control plants received additional irrigation as soon as
they showed signs of reduced turgor in the afternoon. During the stress treatment, the
irrigation was performed with half the frequency (every second irrigation) compared to the
optimal water supply (Figure 1A). In 2017, the late stress treatment was not different from
the long-term drought stress treatment because of the very low water evaporation during
interval 2. In the other years, plants from treatment cs received a higher volume of water
during interval 2 than those from treatment sc and ss. The total irrigation water volume
was higher in treatment sc than in treatment cs. Soil water contents (Figure 1B) in interval 2
were higher in cc and cs than in sc and ss. In interval 3, treatment cc and sc had similar
soil water contents, while water contents were lower in cs and ss. This indicated that the
irrigation pattern resulted in the intended change in soil water status.

The fundamental prerequisite for identifying a biomarker for drought tolerance is
genetic variation in drought tolerance within the training population in the experimental
setup. This means that we have to test whether there is a significant effect of the treatment
and a significant treatment× genotype interaction on the target trait starch yield. In the three
experiments, the irrigation treatment indeed significantly affected tuber fresh weight (TY),
starch content, and starch yield (SY) (Table 1, Figure 2A, and Supplementary Figure S2A,C).
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Table 1. ANOVA F values for the effect of genotype, treatment, their interaction (G × E), and experi-
ment on the yield parameters tuber starch yield (SY), water-use efficiency (WUE) of SY (WUE(SY)),
tuber yield (TY), WUE of TY, tuber starch content, tuber number in the size classes S, M, and L, and
drought tolerance index DRYMp. Degrees of freedom (DF): genotype, 19; treatment, 3 (DRYMp 2);
G × T, 57 (DRYMp 38). Bold type I error probability p < 0.0001; italic type I error probability p < 0.05.

Parameter. DF (Error) Genotype Treatment G × E Year

SY 1619 66.3 818.6 1.86 703.6
WUE(SY) 1619 69.9 143.2 1.38 2030.3

TY 1619 74.7 675.4 1.59 333.5
WUE (TY) 1619 78.5 96.7 1.35 1372.0

Starch content 1619 53.0 61.5 1.26 280.9
Tuber number (S) 1587 27.8 53.2 2.21 3.0
Tuber number (M) 1585 40.1 435.8 1.61 92.1
Tuber number (L) 1585 24.3 31.0 3.27 52.1

DRYMp 1201 6.0 7.1 1.02 7.5
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Figure 2. (A) Distribution of tuber starch yield in 20 potato genotypes cultivated at optimal water
supply (cc), late drought (cs), early drought (sc), and long-term drought in experiments in 2017, 2018,
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different water regimes (for color code, see (A)). (C) Average tuber numbers per plants in different
size classes (see Section 2) in 20 potato cultivars grown at different water regimes. (D) Distribution of
drought tolerance index DRYMp for potato cultivars grown under different water regimes (for color
code, see (A) and (B)) in experiments in 2017, 2018, and 2019. The statistical evaluation is presented
in Table 1. For the distribution of tuber yield and starch content data, see Supplementary Figure S2.
For the meaning of the box and whiskers plot and symbols see Figure 1.



Agronomy 2023, 13, 1457 9 of 23

In all three experiments, well-watered control (cc) plants had the highest tuber fresh
weight, starch content, and SY. Plants on long-term drought stress consistently produced
the lowest SY. Early-stress plants produced higher SY than late-stress plants. The difference
in SY between ss and cc resulted predominantly from differences in tuber mass, while
starch content was less affected by long-term drought stress (Supplementary Figure S2A,C).
The effect of short-term drought stress on starch content differed between years. While
starch contents were similar in cc, sc, and ss in 2017, starch contents were significantly lower
in sc and cs compared to both cc and ss in 2018 (Figure S2C). As the treatment contrast
on irrigation volumes was different in the three experiments (Figure 1A), we calculated
the tuber yield and starch yield per volume irrigation water as the water-use efficiency of
tuber yield WUE_TY (Supplementary Figure S2B) and water-use efficiency of starch yield
WUE_SY (Figure 2B). The effect of the year on these two parameters was even higher than
the effect of the year on TY and SY (Table 1).

In 2017, WUE_SY was about twice as high as in 2018 and in 2019. WUE_TY and
WUE_SY were significantly affected by the treatment, with highest values in cc and lowest
values in ss. The difference between WUE_SY(cs) and WUE_SY(sc) was much smaller
than the difference between SY(cs) and SY(sc), suggesting that the difference in water
supply explained most of the yield differences. The water supply also significantly affected
tuber number and grading (Figure 2C and Table 1). Plants on optimal water supply
consistently produced the highest number of tubers, whereas those on ss produced the
lowest number. Treatments sc and cs differed predominantly in tuber grading. Plants on sc
treatment produced more medium and large tubers, whereas plants on cs produced more
small tubers. The difference in total number between cs and sc depended on the year; sc
produced more tubers than cs in 2017, but less in 2018.

The potato genotype significantly (p < 0.0001) affected all yield parameters (starch
content, TY, SY, and tuber numbers); the interaction between genotype and treatment was
weakly significant (p < 0.05) (Table 1). To estimate the genotypic differences in drought
tolerance, we calculated the drought tolerance index DRYMp based on SY separately for
each stress pattern. We performed the normalization to the experimental median of rel-
ative starch yield median of the check cultivars for each year separately. Subsequently,
we calculated the mean DRYMp for all three experiments together, as previous studies
revealed a minimum number of three experiments for a reliable tolerance estimates [13].
The tolerance indices are shown for each genotype and each stress treatment in Figure 2D;
the ANOVA results are shown in Table 1. The genotype affected the DRYMp signifi-
cantly. The significantly lowest tolerance was observed in line 866309, and the significantly
highest tolerance was observed in lines 899522 and 899486. Both tolerant lines were iden-
tified as tolerant in a previous study [44]. Between the extremes, the DRYMp values
were evenly distributed, thus providing a sound basis for linear regression analysis of
tolerance prediction.

3.2. Phenotyping

Shoot development was monitored continuously over several weeks using a laser
scanner system, which produced six surface images for each plant in a dial. Image analysis,
thus, yielded information on the diurnal leaf movement and growth curves of the plant
features plant height (PH), total (A3) and projected (A2) leaf area, digital biomass (DM), leaf
area index (LAI), light penetration depth (LPD), leaf inclination (LI), and leaf angle (LA).
Supplementary Figure S3A–H shows the time-course of the different features by depicting
the 90th percentile, 10th percentile, and median of the daily median of each feature for
each genotype and day, thus illustrating the biological variation for all features over the
plant growth period. LI and LA estimate the diurnal leaf movement of potato plants; both
features changed during the dial (Supplementary Figures S3I and S4 and Supplementary
Table S4). To remove the effect of leaf movement on the growth curve estimates, we used
the daily median of all features for each plant for the growth analysis.
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The medians of LI, LA, and LPD changed approximately linearly with plant age
(Figure 3). LPD was significantly higher after flowering than before flowering (Figure 3,
upper panels) as the canopy opened up due to the lodging of the shoot basis. The effect of
the treatment on LPD was small and inconsistent between years. While LPD was higher in
ss and sc plants than in cc plants in 2017, cc plants had higher LPD than ss and sc in 2018 and
2019. For LA (Figure 3 middle panel) and LI (Figure 3 lower panel), the difference between
the treatment medians was small compared to the day-to-day change, unless the plants
were wilting as on day 50 and 54 for cs and ss plants in 2018, and on day 54 for cs plants
in 2019. Both LI and LA were significantly affected by the time of the day, as indicated by
the significant effect of the diurnal time class (CT) (Supplementary Table S4 and Figure S4).
Furthermore, the effect of CT interacted significantly with both the treatment and the
treatment interval (Table S4: CT × E and CT × I). Before flowering, leaf angles in intervals
3AM, 4PM, and 5DK were lower in treatment SC and SS than under control conditions
(Figure S4). After flowering, leaf angles in these time intervals were much lower in CS
plants than in CC plants in all years and in SS plants in 2017 and 2018. Acute stress, thus,
affected the leaf position predominantly in the second half of the light period, when the
evaporative demand was highest.

Agronomy 2023, 13, x FOR PEER REVIEW 10 of 24 
 

 

plants; both features changed during the dial (Supplementary Figures S3I and S4 and Sup-
plementary Table S5). To remove the effect of leaf movement on the growth curve esti-
mates, we used the daily median of all features for each plant for the growth analysis. 

The medians of LI, LA, and LPD changed approximately linearly with plant age (Fig-
ure 3). LPD was significantly higher after flowering than before flowering (Figure 3, upper 
panels) as the canopy opened up due to the lodging of the shoot basis. The effect of the 
treatment on LPD was small and inconsistent between years. While LPD was higher in ss 
and sc plants than in cc plants in 2017, cc plants had higher LPD than ss and sc in 2018 
and 2019. For LA (Figure 3 middle panel) and LI (Figure 3 lower panel), the difference 
between the treatment medians was small compared to the day-to-day change, unless the 
plants were wilting as on day 50 and 54 for cs and ss plants in 2018, and on day 54 for cs 
plants in 2019. Both LI and LA were significantly affected by the time of the day, as indi-
cated by the significant effect of the diurnal time class (CT) (Supplementary Table S5 and 
Figure S4). Furthermore, the effect of CT interacted significantly with both the treatment 
and the treatment interval (Table S5: CT × E and CT × I). Before flowering, leaf angles in 
intervals 3AM, 4PM, and 5DK were lower in treatment SC and SS than under control con-
ditions (Figure S4). After flowering, leaf angles in these time intervals were much lower in 
CS plants than in CC plants in all years and in SS plants in 2017 and 2018. Acute stress, 
thus, affected the leaf position predominantly in the second half of the light period, when 
the evaporative demand was highest. 

 
Figure 3. Distribution of the genotypic median of daily median of light penetration depth (A,D,G), 
leaf angle (B,E,H), and leaf inclination (C,F,I) by treatment (legend see (A,D,G)) against plant age 
in year 2017 (A,B,C), 2018 (D,E,F), and 2019 (G,H,I). The line indicates the median; the bands 

Figure 3. Distribution of the genotypic median of daily median of light penetration depth (A,D,G),
leaf angle (B,E,H), and leaf inclination (C,F,I) by treatment (legend see (A,D,G)) against plant age in
year 2017 (A,B,C), 2018 (D,E,F), and 2019 (G,H,I). The line indicates the median; the bands indicate
the 10th percentile and 90th percentile. The gray reference line indicates the start of the third interval.
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The other five features, PH, DB, A2, A3, and LAI, increased to maximum val-
ues during the first treatment interval 2 and declined after flowering in interval 3
(Supplementary Figure S3A–E). The median md(PH) was strongly affected by the water
supply; md(PH)sc was similar to md(PH)ss in the first treatment interval and approached
md(PH)cc in the second interval, when the stress was released for the early stress plants.
In contrast, irrigation treatments affected the leaf area parameters (A2, A3, and LAI) only
during the first interval. The time courses of the different growth parameters were ap-
proximated by logistic regression. For each of these features and each plant, we estimated
the parameters initial slope (k), inflection point (tm), and maximum (max) of the logistic
regression curve. Figure 4 shows the modeled values PHmod (Figure 4D), A2mod (B), DB-
mod (C), and LAImod (A), which were calculated from the median values of the estimated
values of k, tm, and max for each treatment and for all four features. The modeled curves
illustrate how the growth of plant height, leaf area, and digital biomass responded to the
treatment. The three drought stress treatments altered the shapes of the growth curves
in a similar way in all 3 years (Figure 4A–D). To find out how reproducible the treatment
effects were between experiments, we plotted the distribution of the parameters k, tm, and
max separately for each year and treatment (Figure 4E–P). The effects of year, treatment,
and genotype on the parameters were tested by ANOVA (Table 2). The effect of genotypes
indicated whether there was genotypic variance for the feature, which is a prerequisite
for it being a marker candidate. The result of the F test for year and treatment tells us,
how much the features were affected by the environmental conditions (year) and the water
supply (treatment). For example, drought stress affected the growth curve of plant height
and digital biomass more than the curves of A2, A3 (not shown), or LAI. Concurrently, the
F values for the treatment effects were much higher for the regression parameters of PH
and DB than for the parameters of A2, A3, and LAI (Table 2).

Table 2. ANOVA F values for the effect of year (Y), genotype (G), treatment (E), and their interaction
on the logistic regression parameters k, max, and tm. Logistic regression of daily plant median of
features A2, A3, DB, PH, and LAI against plant age. Bold: p < 0.01.

Parameter Y G Y×G E Y × E G × E Y × E × G

a2k 349.26 8.64 2.88 167.69 27.74 1.54 1.30
a2max 924.69 27.13 4.85 75.50 13.21 1.10 0.94
a2tm 2285.4 20.63 7.08 5.76 1.16 1.01 0.75
a3k 362.7 10.04 2.81 182.86 22.59 1.53 1.21

a3max 1027.4 27.27 4.28 52.00 9.19 1.09 0.97
a3tm 2257.98 22.67 6.63 4.27 1.02 1.04 0.79
dbk 291.82 8.22 3.39 691.40 94.25 1.49 0.98

dbmax 90.52 5.05 1.71 305.74 11.35 1.28 0.88
dbtm 2003.5 19.58 6.06 203.44 11.21 1.78 0.84
phk 267.25 12.42 2.93 726.15 133.89 1.56 1.20

phmax 122.67 5.55 2.24 462.98 34.76 1.86 1.31
phtm 861.25 17.11 6.77 354.99 51.82 2.32 1.41
LAIk 356.81 9.99 2.96 172.61 22.97 1.45 1.32

LAImax 523.95 25.78 4.12 50.20 9.38 1.17 0.98
LAItm 2288.79 22.37 6.25 4.02 1.07 0.97 0.77

Early stress delayed the increase in plant height and digital biomass, as illustrated
by the significantly higher turning points tm(PH)sc and tm (DB)sc compared to control
plants in 2018 and 2019 (Figure 4L,K). Early stress plants achieved a maximum plant
height and a maximum digital biomass comparable to that of the control plants when
they were well watered in interval 3 (Figure 4P,O). In contrast, late stress resulted in a
significantly earlier turning point of the PH and DB growth curves than under control
conditions (Figure 4L,K). In consequence, the max(PH) was significantly lower for late
stress than for all other treatments (Figure 4P). Max(DB)cs was similar to max(DB)ss. In
contrast, the drought stress affected the growth curves of both leaf area features much less
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than those of DB and PH. Both the turning point and the maximum value of A2 and A3
were remarkably similar between treatments (Figure 4J and Supplementary Figure S3D,G).
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Figure 4. Effect of the treatment on the growth curve (A–D) and the logistic regression parameters
(E–P) of canopy features. Model growth curves calculated from median regression parameters of the
2019 experiment for LAI (A), A2 (B), DB (C), and PH (D). Distribution of the regression parameters
k, tm, and max by treatment (for color code, see panel (M)) and year for LAI, A2, DB, and PH.
A2mod_E3= A2mod/103, DBmod_E6 = DBmod/106; A2_E3= A2/103, DB_E6 = DB/106.

Interestingly, max(A2), max(A3), tm(A2), and tm(A3) had the highest F values for the
genotype effect combined with very low G × E and Y × E × G effects (Table 2). Thus,
genotypic differences between leaf area parameters were stable over environments. In
Figure 4, the length of the box and whiskers indicates the genotypic variability. The
genotypic variability for tm(DB) (Figure 4K), max(DB) (Figure 4O), tm(PH) (Figure 4L),
and max(PH) (Figure 4P) was higher in the early stress treatment than in the control and
long-term stress treatment. In contrast, these parameters showed a low variability in the
late-stress treatment.
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3.3. Relationship between Phenotype and Tolerance

The correlations between phenotypic features and drought tolerance are depicted
as heatmaps in Figure 5 for growth parameters and in Supplementary Figure S5 for leaf
movement parameters. The drought tolerance indices for each genotype were determined
from data of three trials. The phenotypic data were analyzed separately for each year to
gain insights into the reproducibility of the correlations.
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Figure 5. Heatmap of Spearman correlation coefficients for the correlations between growth parame-
ters and drought tolerance. Growth parameters are the genotype medians of the growth parameters
slope (k), turning point (tm), and maximum (max) of the features leaf area index (LAI), leaf area
(A3), projected leaf area (A2), digital biomass (DB), and plant height (PH) determined under control
(cc), late stress (cs), early stress (sc), and long-term stress (ss). For details on the calculation for
drought tolerance index DRYMp for the three stress variants and filtering of the results, see Section 2.
The color visualizes the correlation coefficients as a heatmap with red for positive and blue for
negative correlations.

The correlation analysis between drought tolerance and the growth parameters (Figure 5)
was strongly affected by the year in which the measurement was performed. In 2018, more
significant correlations were found for tolerance under early stress and long-term stress than
in the other two years. The correlations between phenotypic parameters and tolerance to a
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stress type were only weakly affected by the treatment, in which the phenotypic measure-
ments were performed. However, there were only a few significant correlations between
stress tolerance and phenotypic parameters under control conditions. The turning points tm
of the growth curves for LAI, A2, A3, and DB were positively correlated with long-term stress
tolerance and showed a positive trend with tolerance to early and late stress. This correlation
was independent of the condition under which the measurements were performed.

The initial slope of the growth curves for LAI, A2, and A3 correlated negatively with
long-term drought tolerance. There were only a few significant correlations with tolerance to late
stress; max(LAI) and max(A2) correlated positively with DRYMp(cs). The correlation pattern for
early stress resembled the pattern for long-term stress. This means that, if we were to predict
tolerance to long-term stress tolerance from short-term stress experiments, we should impose the
stress before flowering. Alternatively, this could mean that, in our long-term stress experiments,
the decisive phase for the genotypic contrasts in tolerance was before flowering.

The correlations between drought tolerance and leaf movement parameters and light
penetration depth (Supplementary Figure S5) were predominantly positive for leaf angle
and predominantly negative for leaf inclination. As for growth parameters, the correlations
differed considerably between years. Nocturnal leaf inclination (LI(1LN), LI(6EN)) was
negatively correlated with drought tolerance even when the phenotyping was performed
under control conditions. However, the correlations were stronger when the LI was
measured on stressed plant, e.g., in treatment ss and sc in interval 2 before flowering.
After flowering, leaf inclination correlated negatively with drought tolerance in all stress
treatments in 2017 and 2018. In contrast, the correlations between drought tolerance and
leaf inclination were positive for long-term-stressed plants in 2019. This year differed from
the two previous experiments by the high number of days with heat stress, which interfered
with the drought response of the plants. Significant correlations between stress tolerance
and light penetration depth (LPD) were negative and mainly found after flowering. Light
penetration depth measured on long-term stress plant correlated negatively with tolerance
to early and late stress in 2017 and 2018 and to long-term stress in 2018, while no significant
correlations were found in 2019. The environmental conditions, thus, seem to have a strong
effect on the relationship between light penetration depth and tolerance. Thus, LPD is less
suitable as a tolerance trait. In contrast, the more stable correlation between tolerance and
nocturnal leaf inclination rendered the trait a marker candidate.

3.4. Multiple Regression Analysis

In the next step, we embarked on answering the question whether drought tolerance pre-
diction from phenotypic markers can be improved by measuring several features and combining
them in multiple regression analysis. In addition, we wanted to know whether we really need a
full growth curve or whether measurements on single days may also yield a good prediction.
Therefore, we performed two regression approaches, the fixed approach based on growth curve
parameters and the random approach based on single-day data (see Section 2.3.4).

In the ‘fixed’ approach, multiple regression analysis was based on the three parameters
k, tm, and max of the logistic regressions and on median features that were measured on
three fixed days. These fixed days were early (d1) and late (d2) in the first stress interval
and in the middle of the second stress interval (d3). The variable selection process and R2

values for the prediction of drought tolerance to the three stress scenarios by this approach
are shown in Supplementary Figures S6 and S7.

Figure S6 shows the prediction from phenotypic features measured under stress. The
R2 values were higher for the prediction of long-term stress tolerance than of early or late
stress tolerance, for which no or only weak models were found in two out of three years.
The overlap between the variables selected into the different prediction models between
years was poor. The only variables selected in the two models were leaf inclination and
leaf angle on d1, which were predictive for DRYMp(ss) and DRYMp(cs) in 2017. LAI at d3
and max(LAI) were selected in the 2019 and the 2017 prediction models for DRYMp(ss).
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Supplementary Figure S7 shows the selection process and R2 for the prediction of
drought tolerance from the phenotype measured under optimal water supply. The quality
of prediction differed between years, being highest for 2017 and lowest for 2019. For
short-term stress scenarios (sc and cs), prediction from phenotyping optimally watered
plants was better than the prediction from stressed plants. The most frequently selected
parameters for tolerance prediction were leaf angle and leaf inclination. In 2017, leaf
inclination had a negative weight (on d1) and a positive weight on d2 for all three stress
scenarios. Most models also contained leaf angle at d2 and d3. Plant height at d2 was
selected with a negative weight in three of the models.

Figure 6 shows the regression weights obtained for the ‘random’ regression models. In
the random regression models, drought tolerance was predicted from selected genotypic
daily median values of all phenotypic features. The values on the x-axis code the median
by the day of measurement dd and the parameter XX as ddXX. The length of the arrow
indicates the weight of feature, the direction indicates whether it has a negative or a positive
weight, and the symbol indicates the feature. As an example, in Figure 6A, in the 2017 model
(black needle), leaf inclination measured on day 25 dfp and day 36 dfp had negative weights,
and digital biomass measured on day 50 dfp had a positive weight, resulting in a regression
equation of DRYMpss = −0.8 × 25LIss − 0.3 × 36LIss + 0.1 × 50DBss. Table 3 displays the
respective R2 values and the number of independent variables included in the full model. To
address the question of overfitting, we added the R2 values for a model with≤4 independent
variables. For each of three tolerance indices (DRYMp(i) mit i = ss, sc, and cs) we calculated a
regression from parameters measured under the same stress condition i and a model from
parameters measured under control conditions, resulting in six models per year.
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drought stress (sc: B,E), or late drought stress (cs: C,F) from randomly selected daily medians of
features measured under stress (A–C) or measured under optimal conditions (D–F) in experiments
in 2017 (black needle), 2018 (dark-gray needle), and 2019 (light-gray needle). Symbols indicate that
parameters differed across the six subfigures. The day on which the feature was measured is indicated
by the first two numbers of the value names on the x-axis. For R2 values, see Table 3. LP = LPD,
A2D = A2, and A3D = A3.
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Table 3. R2 for multiple regression with tolerance index DRYMp for long-term (ss), early (sc), and
late (cs) stress as the dependent and N independent variables selected among the daily genotype
median of features LA, LI, LPD, A2, A3, DB, PH, and LAI. The features were measured under the
conditions given in the ‘phenotype’ column in the respective year. R2 (N ≤ 4) is the R2 for a model
with the first four variables. Details of the modeling are described in Section 2.3.4.

Tolerance Phenotype Year R2 (Full Model) N (Full Model) R2 (n ≤ 4)

DRYMp(ss) cc 2017 0.98 6 0.95
2018 0.87 6 0.79
2019 0.75 4 0.75

ss 2017 0.88 3 0.88
2018 0.96 6 0.88
2019 0.82 5 0.78

DRYMP(sc) cc 2017 0.98 7 0.88
2018 0.89 4 0.89
2019 0.89 6 0.78

sc 2017 0.79 4 0.79
2018 0.39 2 0.39
2019 0.997 10 0.86

DRYMP(cs) cc 2017 0.78 5 0.75
2018 0.94 7 0.85
2019 0.98 8 0.83

cs 2017 0.999 12 0.89
2018 0.999 14 0.73
2019 0.44 2 0.44

Figure 6A–C summarize the models for the prediction of drought tolerance from
parameters measured under the same stress condition as the tolerance assessment. For
example, panel A shows the significant weights of features measured under long-term stress
(Feature(ss)) in the regression model that predicts long-term stress tolerance (DRYMp(ss)).
In contrast, Figure 6D–F show the significant weights for features measured on optimally
watered plants (Feature(cc)). The more crowded x-axis of Figure 6C,F indicates that a much
higher number of features were selected into the models that predicted the tolerance to late
stress than for the prediction of tolerance to long-term stress or early stress. The models for
the prediction of drought tolerance to short-term stress frequently selected more than six
features, indicating a risk of overfitting. However, even when the number of parameters
was restricted to four, all but two models had acceptable R2 values of ≥0.73.

When we compared at which times the selected features were measured, we noticed
that the prediction model for long-term stress tolerance contained more features that were
measured before flowering than the models for early or late stress tolerance. The models
for long-term drought tolerance repeatedly included leaf inclination under stress and
control conditions with a negative weight, while light penetration depth under stress had a
positive weight (Figure 6A,D). The models for the prediction of tolerance to early stress
contained early leaf inclination under stress and early leaf area under stress with negative
weights in 2 years. Leaf area at 29 dfp under control conditions had a positive weight in
tolerance prediction. The highest positive weight was found for plant height 52 dfp under
stress conditions and 56 dfp under control conditions. The multiple regression models
for late stress tolerance repeatedly selected digital biomass under stress with a negative
weight. Leaf inclination and plant height under optimal conditions were included with
negative weight.

Among the features measured under stress, digital biomass and light penetration
depth were most frequently included into the regression models. The models based on
features measured under control conditions most frequently contained digital biomass, leaf
angle, and leaf inclination.
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4. Discussion
4.1. Short-Term Stress Versus Long-Term Stress

In this study, we subjected plants to three types of stress scenarios: long-term stress
from early vegetative phase until harvest or short-term stress, either before or after flower-
ing. The first stress phase coincides with the canopy development and the tuber initiation,
whereas the second coincides with the tuber filling [20,49]. Accordingly, early stress mainly
affected tuber numbers, while late stress mainly affected tuber size (Figure 2C). Late stress
reduced tuber starch yield more than early stress. This pattern was previously found in our
own field trials [40], which also included several of the genotypes of this study. The two
most tolerant lines, 899522 and 899486, were selected from a segregating population into
the tolerant subpopulation S1 or S1 and S2, respectively [44]. The present study confirmed
their classification as tolerant. The tuber filling phase is deemed to be the phase that is
most sensitive to drought, as discussed in [40]. The soil moisture data indicate that, in our
experiment, late stress plants suffered lower soil humidity than long-term stress plants
in the phase after flowering in experiment 2017 and 2019. The substantial stress during
this phase was also discernible in the phenotyping data; the local minima in leaf angle
indicated wilting in the time after flowering in year 2018 and 2019. Late stress plants and
long-term plants received the same volume of water between flowering and harvest. Late
stress plants, however, had a larger shoot (Figure 4C) at flowering than long-term stress
plants. They adjusted to decreased water supply by reducing further canopy growth, thus
achieving similar max(PH) and max(DB) as long-term stressed plants (Figure 4O,P). The
water-use efficiency of late stress starch yield was similar to long-term stress yield. The
water supply, thus, seems to have a direct effect on the starch storage, independent of the
timing. Altogether, there are no indications that late stress hitting an unprepared plant
is more detrimental than long-term stress. Thus, we found no indication that the potato
genotypes in this study varied in their stress priming response (see below).

We compared the response of potato to early stress with that to long-term stress to find
out whether early stress response is a good proxy for long-term stress response. Studying
early stress response avoids the potential interaction with differences in developmental
speed when the study population segregates for maturity. The Spearman correlation
between median genotype tolerance to long-term stress was similar for early stress tolerance
(0.75) and late stress tolerance (0.71). The interaction of treatment and genotype was not
significant (p = 0.44), indicating that the tolerance ranking is not affected by the stress
pattern. Thus, we conclude that there is no genetic variation for drought recovery in the
gene pool of our study population. This contrasts the findings published for maize and
peanut [50,51]. The ability to recover from drought events is more important for seedling
growth in maize and final yield in peanut then the response during the actual drought
treatment. In both species, genetic variability for drought recovery was established. Our
data also showed no genetic variability in the memory response of drought tolerance,
which would result in higher DRYMp values of a genotype for long-term stress compared
to late stress. The stress memory response to low temperature is also known as cold-
hardening [52]. Memory has also been postulated for drought stress [53,54]. When potato
cultivar Atlantic was exposed either to two stress periods (drought hardening) or to a single,
late stress period (contrast), the former variant had higher leaf polyamine and abscisic acid
contents and a higher net photosynthesis/transpiration ratio than the latter [55]. The final
biomass of the hardening variant was higher, whereas the leaf area was lower than in the
contrast plants. Thus, it is not entirely clear if the hardening process is of advantage to
the cultivar. In our study, the genotypic variability was higher for DRYMp(sc) than for
DRYMp(ss), suggesting an effect of emergence time or early vigor on response to early
drought. Nevertheless, early stress treatment is a good proxy for long-term stress treatment.
It also allows managing the co-occurrence of drought and heat stress by adjusting the
planting date in the polytunnel screenhouse. Early planting increases the likelihood of a
combination of early drought stress with low to optimal temperatures. Late planting makes
the co-occurrence of drought with high temperatures or heat stress more likely.
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4.2. Drought Tolerance Prediction from Phenotypic Traits

Tolerance prediction from secondary phenotypic traits requires genetic variability for
the phenotypic marker in the population of interest and a low effect of the environment
on the trait [16]. The analysis of variance on the growth curve parameters suggested that
the maximum and the turning point of the leaf area and of the leaf area index meet these
criteria. The maxima of A2 and LAI were very similar in 2018 and 2019 and much less
affected by the water supply than the maxima of PH and DB. The turning points tm(A2)
and tm(LAI) were not affected by the treatment. Both turning points were higher in 2017
than in 2018 and 2019. However, when we convert the calendric age into the thermal
time (method described in [44]), the tm was at 290 ◦C·day in 2017, at 340 ◦C·day in 2018,
and at 345 ◦C·day in 2019. The best time to measure LAI, A2, or A3 would, thus, be just
after 350 ◦C·day, when the contrasts between genotypes should be highest. Shortly after
the median tm, the leaf area contrast between genotypes with low and high tm would be
highest; genotypes with a low tm would have already slowed down growth, while those
with a high tm would have further increased their leaf area.

The correlation analysis found positive correlations predominantly for the turning
point of LAI and A2, which correlated with drought tolerance independent of the treatment
in which it was determined. This reproduces the finding for a population of 60 potato
siblings [21]. In this population, highly tolerant genotypes had a later turning point than
sensitive lines [21]. The finding could, thus, be reproduced for a population with additional
genotypes that were genetically different from the parents of the segregating population
(see genetic similarity tree in [56]). In the earlier study, we also found a significantly positive
correlation between maximum leaf area and drought tolerance. Similar correlations were
also reported for peanut, where leaf area explained a major portion of genotypic variation
in yield under drought stress [50]. However, the correlation between leaf area and drought
tolerance was much weaker for the population in this study. Likewise, we could only
partially reproduce the negative correlation between maximum plant height and drought
tolerance. The main difference between the segregating population and the population
of this study is the higher genetic variability of the second population. In addition to the
10 genotypes from the segregating population that were included in both populations, the
population studied in 2017 to 2019 also contained six cultivars of varying growth types.
Thus, it seems as if the quality of the prediction model decreased when used on a population
genetically different from the training population. We observed a similar problem for the
metabolite/transcript marker model [44], for which the prediction quality also declined
when the population was changed. Barbedo also reported that regression models for
the prediction of drought stress from thermal images were affected by the genotype and
depended on the conditions under which the measurements were performed [28].

To find out whether stable predictions can be gained from multiple regression models,
we compared ‘fixed’ models based on regression parameters to ‘random’ models based
on randomly selected parameters measured on single days. Both approaches used the
PRESS criterion in the selection method to avoid overfitting (see Section 2.3.4). To our
surprise, the random models based on single-day data outperformed the fixed models
based on logistic regression parameters. This was especially true for the models based
on phenotypic measurements under short-term stress conditions, which failed to fit in
two out of three years. Our first hypothesis was that the logistic fit failed to capture the
response of the plant to changing water supply. The increase in the growth in sc after
rewatering and the transient collapse of the plant after the onset of late stress resulted
in marked deviation between the observed and the modeled growth. However, even
the fits on the control plants, for which the growth curve was very similar to a logistic
curve, failed to deliver reliable estimates for drought tolerance. In contrast, we obtained
significant models for the prediction of tolerance to all three stress scenarios in the random
approach. This was the case for both data measured on stressed plants and data on
control plants. Significant models were even obtained when the number of independent
variables was restricted to four to avoid overfitting. The possibility to obtain predictions
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from data on control plants is good news, as this would remove the necessity to subject
the plant to drought. Furthermore, measurements performed on control plants were less
affected by wilting and lodging of plants. The main problem, however, was the lack of
reproducibility between years. There were distinct features selected in models for different
years, such as leaf area under control conditions on day 29 in the early stress model,
or leaf angle under control conditions on day 53 in the long-term stress model. Both
features are closely related to those features that were selected in the decision tree model
published for the segregating population [21]. Furthermore, the models contained many
features that were measured before flowering, which would help with a rapid assessment
of genotypes by an early stress treatment. However, altogether, the multiple regression
models are insufficiently robust to be employed in field screens under variable weather
conditions. Barbedo reported a similar lack of robustness in multiple regression models
and suggested machine learning methods to obtain more robust solutions [28]. John et al.
performed a systematic comparison of linear models to machine learning methods for
phenotype prediction from genomic data. They found no superiority of machine learning
methods over linear regression with sparsity constraints and Bayes B when analyzing
synthetic data [57]. However, they cautioned against an extrapolation to real-world data.
Montesinos-Lopez et al. systematically compared different models to predict maize yield
from single-wavelength data of hyperspectral images [58]. The found the best prediction
by Bayesian and Fourier functional regression models and concluded that there are many
challenges for future research. We agree and will look into machine learning methods.

5. Conclusions

Altogether, we found that early stress treatments can be a proxy for long-term stress
in drought tolerance screens if there is no genetic variation for stress memory or recovery
in the study population. Among the phenotypic features, leaf area growth parameters com-
bined significant genotypic variability with high environmental stability. The previously
established relationship between leaf area growth and drought tolerance was reproduced
in a distinct population. When comparing multiple regression analyses based on logistic
regression parameters (fixed) with those on single-day data (random), the random model
outperformed the fixed model.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/agronomy13061457/s1. Table S1. Experimental design for drought
stress trials in bigbags in a poly-tunnel (52◦23′55′ ′ N 13◦3′56′ ′ E). Trial-Id = Trial-Identifier. Culture Id
= experiment reference Id in the plant database [46]. Four treatments per experiment. n = number of
replicate plants per treatment. Plantd = date of planting. Treat1 = start of drought stress treatment SS,
Treatd2 = start of treatment SC, Treatd3 start of treatment CS, Harvestd = date of haulm destruction.
Table S2. Pedigree for lines that were used in phenotyping experiments B2017 to B2019. Plant line
reference Id in the MPI-MP plant database [46] (Sample_id), Genotype name of the crossings and
cultivar names. Table S3. QC for laser scanner measurements. Measurement period, interruptions
(break) due to power outage and QC criteria that lead to the exclusion of observation. Days 30 and 23
were excluded in 2018 as data were collected only for part of the diurnal cycle. Table S4. Result of
an ANOVA on the effect of genotype (G), treatment interval (I), the diurnal time interval classtime
(CT), treatment (E) and their interaction on leaf angle (LA), leaf inclination (LI) and light penetration
depth (LPD). Bold: p < 0.001. Figure S1. Spatial design of the bigbag system that was used for
phenotyping potato genotypes. The image shows one of eight subplots that consist of eight columns
(left to right) and nine rows. Each column in a subplot is identified by the barcodes at the beginning
and end of the column. Each treatment block consisted of two of these subplots. The green arrow
indicates the direction, in which the laser scanner is moved. Figure S2. (A) Distribution of tuber fresh
weight per plant in 20 potato genotypes cultivated at optimal water supply (cc), late drought (cs),
early drought (sc) and long-term drought in experiments 2017, 2018 and 2019. (B) Distribution of
water use efficiency of tuber fresh weight yield in 20 potato genotypes cultivated in different water
regimes (see A). (C) Distribution of tuber starch content in 20 potato cultivars grown at different
water regimes (see A). Result of ANOVA see Table 1. Figure S3. Effect of plant age, treatment and
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treatment interval on phenotypic features. Distribution of daily genotypic median of (A) leaf area
index (mdLAI), (D)projected leaf area (mdA2_E3 = mdA2/103), (G) leaf area (mdA3_E3 = mdA3/103),
(B) digital biomass (mdDB_E6 = mdDB/106), (E) plant height (mdPH), (H) light penetration depth
(mdLPD), (C) leaf inclination (mdLI) and (F) leaf angle (mdLA) is plotted against plant age (DFP) for
the experiment 2019. The left reference line in image A to H indicates the start of the first treatment
interval (phase 2), the right reference line the start of the second treatment interval (phase 3). Image
(I) shows the diurnal course of the leaf angle distribution for day 31. The line plot indicates the
median, the shaded area between percentile10 and percentile90. Figure S4. Distribution of genotypic
median of leaf angles in different diurnal time classes (classtime CT). Interval 2 is the first treatment
period before flowering, interval 3 the second treatment period after flowering. (A) experiment 2017,
(B) experiment 2018, (C) experiment 2019. The box indicates the interquartile range IQR, the whiskers
the mean and +/− 1.5 IQR. Figure S5. Correlation between leaf position parameters measured before
(left) and after (right) flowering and drought tolerance index for late (DRYMpcs), early (DRYMpsc)
and long-term stress (DRYMpss). The tolerance index was determined from all three experiments.
The number below the DRYMp value indicates the year, in which the phenotyping was performed.
Only those variables are shown, for which at least one correlation was significant. Figure S6. Fixed
model prediction of drought tolerance from regression parameters and phenotypes measured on
fixed single day. Tolerance and phenotype measured under the same stress scenario. Long-term
stress tolerance (A,B,E), early stress (C,F), late stress (D,G). R2 values in section (H). Figure S7. Fixed
model prediction of drought tolerance from regression parameters and phenotypes measured on
fixed single day. Phenotypes were measured under optimal water supply. Inset legend: First four
digits indicate year of phenotyping, decimal number indicates R2. No significant model was found
for the prediction of early stress tolerance from 2019 data.
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