
Citation: Wang, Y.; Tan, S.; Jia, X.; Qi,

L.; Liu, S.; Lu, H.; Wang, C.; Liu, W.;

Zhao, X.; He, L.; et al. Estimating

Relative Chlorophyll Content in Rice

Leaves Using Unmanned Aerial

Vehicle Multi-Spectral Images and

Spectral–Textural Analysis. Agronomy

2023, 13, 1541. https://doi.org/

10.3390/agronomy13061541

Academic Editor: Baohua Zhang

Received: 29 March 2023

Revised: 25 May 2023

Accepted: 28 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Estimating Relative Chlorophyll Content in Rice Leaves Using
Unmanned Aerial Vehicle Multi-Spectral Images and
Spectral–Textural Analysis
Yuwei Wang 1, Suiyan Tan 3,*, Xingna Jia 4, Long Qi 1,2, Saisai Liu 1,2, Henghui Lu 3, Chengen Wang 1,
Weiwen Liu 1,2, Xu Zhao 1, Longxin He 5, Jiongtao Chen 1, Chuanyi Yang 1, Xicheng Wang 1,2, Jiaying Chen 1,
Yijuan Qin 1, Jie Yu 3 and Xu Ma 1,2,*

1 College of Engineering, South China Agricultural University, Guangzhou 510642, China;
wangyuwei@stu.scau.edu.cn (Y.W.); qilong@scau.edu.cn (L.Q.); 3500765715@stu.scau.edu.cn (S.L.);
wg121415@gmail.com (C.W.); 13787920032@stu.scau.edu.cn (W.L.); zhao@stu.scau.edu.cn (X.Z.);
chenjt01@stu.scau.edu.cn (J.C.); ycy3140079@stu.scau.edu.cn (C.Y.); wang0105@stu.scau.edu.cn (X.W.);
jyiang@stu.scau.edu.cn (J.C.); 843008544@stu.scau.edu.cn (Y.Q.)

2 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
3 College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China;

lhh619899573@gmail.com (H.L.); yujie@stu.scau.edu.cn (J.Y.)
4 Zhaoqing Institute of Agricultural Science, Zhaoqing 526070, China; alicecora3577@gmail.com
5 College of Agricultural, South China Agricultural University, Guangzhou 510642, China;

helx@stu.scau.edu.cn
* Correspondence: tansuiyan@scau.edu.cn (S.T.); maxu1959@scau.edu.cn (X.M.); Tel.: +86-135-3352-2850 (S.T.);

+86-135-6000-8927 (X.M.)

Abstract: Leaf chlorophyll content is crucial for monitoring plant growth and photosynthetic capacity.
The Soil and Plant Analysis Development (SPAD) values are widely utilized as a relative chlorophyll
content index in ecological agricultural surveys and vegetation remote sensing applications. Multi-
spectral cameras are a cost-effective alternative to hyperspectral cameras for agricultural monitoring.
However, the limited spectral bands of multi-spectral cameras restrict the number of vegetation in-
dices (VIs) that can be synthesized, necessitating the exploration of other options for SPAD estimation.
This study evaluated the impact of using texture indices (TIs) and VIs, alone or in combination, for
estimating rice SPAD values during different growth stages. A multi-spectral camera was attached to
an unmanned aerial vehicle (UAV) to collect remote sensing images of the rice canopy, with manual
SPAD measurements taken immediately after each flight. Random forest (RF) was employed as the
regression method, and evaluation metrics included coefficient of determination (R2) and root mean
squared error (RMSE). The study found that textural information extracted from multi-spectral
images could effectively assess the SPAD values of rice. Constructing TIs by combining two textural
feature values (TFVs) further improved the correlation of textural information with SPAD. Utilizing
both VIs and TIs demonstrated superior performance throughout all growth stages. The model works
well in estimating the rice SPAD in an independent experiment in 2022, proving that the model has
good generalization ability. The results suggest that incorporating both spectral and textural data
can enhance the precision of rice SPAD estimation throughout all growth stages, compared to using
spectral data alone. These findings are of significant importance in the fields of precision agriculture
and environmental protection.

Keywords: SPAD; UAV multi-spectral images; vegetation indices; texture indices; rice

1. Introduction

Chlorophyll is the primary pigment responsible for photosynthesis, a vital process
that enables plants to absorb light energy and assimilate CO2, ultimately producing dry
matter [1,2]. Hence, monitoring chlorophyll content is a critical index for assessing plant
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growth. The conventional method of measuring chlorophyll content involves direct labo-
ratory chemical analysis, which is highly accurate but time-consuming, destructive, and
expensive [3–5]. In addition, chlorophyll content can be indirectly measured using a
portable chlorophyll meter such as the SPAD-502. Many studies have shown a strong
correlation (R2 > 0.85) between Soil and Plant Analysis Development (SPAD) values and
laboratory-measured chlorophyll content. Therefore, SPAD values are widely utilized
as a relative chlorophyll content index in ecological agricultural surveys and vegetation
remote sensing applications [6,7]. Rice production is critical to global food security and
sustainable development [8]. The chlorophyll content is closely related to nitrogen uptake
and utilization, so obtaining rice SPAD values at the field scale can help guide the appropri-
ate use of nitrogen fertilizer during rice production. This can help avoid soil, water, and
atmospheric pollution caused by excessive nitrogen application [9,10]. In summary, it is
highly significant to obtain the SPAD distribution at the field level quickly and precisely, as
it can help monitor the growth of rice and guide field management effectively.

Remote sensing is an effective and non-destructive method for monitoring plant
growth, as it can rapidly and efficiently acquire target components [11]. With the continuous
reduction of sensor size and advancements in unmanned aerial vehicle (UAV) technology,
UAVs are increasingly being employed for remote sensing data acquisition [12–16]. UAV
platforms possess distinct advantages over other remote sensing platforms as they offer
cost-effective and adaptable remote sensing imaging capabilities with high temporal and
spatial resolutions [17–19]. Research on monitoring plant SPAD using UAV platforms has
been reported. Zhang Suming et al. [20] utilized a combination of satellite, drone, and
ground-based methods to construct a drone inversion model using SPAD values and UAV
multi-spectral images. By performing satellite image reflection correction and obtaining
inversion results of SPAD values, they achieved fast and accurate multi-scale monitoring of
chlorophyll content during the winter wheat reviving stage. X. Yang et al. [21] utilized the
K-means clustering method in conjunction with ensemble learning algorithms to estimate
SPAD values in winter wheat. The research findings revealed that the cluster XGBoost
model had the most optimal performance and emphasized the essential role of soil organic
matter and total nitrogen in enhancing the accuracy of the SPAD estimation model. Jiang
et al. [22] used hyperspectral remote sensing technology to develop a three-band vegetation
index (VIs) for assessing chlorophyll content in mangrove forests under pest stress. The
vegetation index was able to effectively capture changes in chlorophyll content in mangrove
leaves and could aid in pest warning for mangrove forests. In a study by Zhang et al. [11],
an equation was utilized by the researchers to convert SPAD values into leaf chlorophyll
content, and an approach for monitoring leaf chlorophyll content in winter wheat using
transfer learning and hyperspectral imaging was proposed. This method reduces the
need for on-site measurements and labeled samples of chlorophyll content. The model
demonstrated high accuracy and generalization ability, allowing for effective estimation
of leaf chlorophyll content in winter wheat. However, most related studies only use
spectral information to evaluate plant SPAD, and few have discussed the utility of texture
information in estimating SPAD.

The texture is essential to image information that measures the change in pixel values
between adjacent pixels. Texture can increase the data dimensionality of multi-spectral
images, which helps to improve classification accuracy [23]. In addition, textural informa-
tion has been proven to improve forest biomass and accumulation estimates using satellite
imagery [18,24]. Conventional satellite images are limited by the lower ground sampling
distance (GSD) from which crop canopy structures cannot be extracted [25]. Therefore,
few reports discuss crop growth using textures from remote sensing images with low to
medium spatial resolution. This drawback is compensated by the UAV platform, which can
efficiently acquire remote sensing images with high spatial and temporal resolution [26].
The application of textural information extracted from remote sensing images in precision
agriculture has been gradually explored. Yue et al. [25] conducted a study on winter wheat
by utilizing remote sensing data acquired through UAV-RGB and ground-based hyper-
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spectral instruments. The study aimed to collect aboveground biomass (AGB) data of the
winter wheat and determine the most suitable GSD for estimating its AGB. Additionally,
the study combined texture and VIs to achieve the highest accuracy in estimating the AGB.
Zheng et al. [27] proposed a normalized difference texture indices composed of two textural
feature values (TFVs) combined with VIs to estimate AGB. The results showed increased
rice AGB accuracy compared with only used VIs. The method was especially significant in
solving the saturation of VIs due to the high canopy coverage in the post-heading stages of
rice. According to Kaili Yang et al. [21], incorporating both spectral information and texture
could enhance the accuracy of leaf area index estimation in rice. The studies indicate that
the morphological and structural characteristics of crops can be estimated using textural
information obtained from remote sensing images. However, few studies have estimated
crop component parameters (e.g., pigment content) using texture and few studies have dis-
cussed the generalization performance of feature fusion models across years and different
test locations. To our knowledge, little research work combining VIs and texture indices
(TIs) to estimate the SPAD of rice has been discussed.

This study makes the following main contributions: (i) evaluating the potential of
textural information extracted from UAV-based multi-spectral remote sensing imagery for
estimating rice SPAD; (ii) investigating the effectiveness of combining spectral and textural
information from multi-spectral imagery to improve rice SPAD estimation; and (iii) testing
the generalizability of the models incorporating spectral and texture information by using
data from different years and fields.

2. Materials and Methods
2.1. Experimental Design

The study was conducted at the experimental station of the National Rice Industrial
Technology System in the city of Zhaoqing, Guangdong, China (122◦66′ E, 23◦14′ N)
(Figure 1a). The predominant soil type at the site is sandy loam, with 20.3 g/kg organic
matter, 1.34 g/kg total nitrogen, 136 mg/kg available phosphorus, and 61.8 mg/kg available
potassium. The previous crop was rice. The area has a tropical monsoon climate, with an
average annual sunshine duration of 1815.72 h, an average temperature of 21.93 ◦C, and an
average annual precipitation of 1637 mm.

This study conducted three different experiments, designated as Exp. 1, Exp. 2, and
Exp. 3, respectively. All three experiments are located at various locations, more than 200 m
from each other. The experimental design scheme is shown in Table 1. In Exp. 1, three rice
cultivars were used. Rice seeds were sown on 10 March 2021 and transplanted on 30 March.
Each cultivar was planted at two different densities with row and plant spacings of 30 cm
× 14 cm and 30 cm × 21 cm, respectively. Five N application levels were designed and
replicated three times, with pure N contents of 0 kg/ha (N0), 45 kg/ha (N1), 90 kg/ha (N2),
180 kg/ha (N3), and 270 kg/ha (N4), with a total of 90 experimental plots. Each plot had an
area of 37.8 square meters, with dimensions of 10.8 m by 3.5 m. N fertilizers were applied
at the stages before transplanting, early tillering (7 days after transplanting), and booting at
40%, 30%, and 30%. In addition, 130 kg/ha phosphorus fertilizer (P2O5) and 180 kg/ha
potassium fertilizer (K2O) were applied before transplanting. The experiment fertilizers
were urea (including 46% pure N), calcium superphosphate (including 12% P2O5), and
potassium chloride (including 60% K2O). The ridges were built and covered with plastic
wrap between test plots with different N fertilizer application levels. During the trial,
the field management measures of pests, diseases, and weeds were consistent with local
high-yield cultivation. The field of Exp. 1 is shown in Figure 1c, and the plot layout is
shown in Figure 1b. In Exp. 2, three rice cultivars were used. Rice seeds were sown on
25 July 2021 and transplanted on 10 August. Five N application levels were designed and
replicated three times, with pure N contents of 0 kg/ha (N0), 90 kg/ha (N1), 180 kg/ha
(N2), 270 kg/ha (N3), and 360 kg/ha (N4). Other arrangements were the same as in Exp. 1.
A total of 90 experimental plots, and the field of Exp. 2 is shown in Figure 1d. In Exp. 3,
two rice cultivars were used. Rice seeds were sown on 20 July 2022 and transplanted on 3
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August. Other arrangements were the same as in Exp. 1. A total of 60 experimental plots,
with the field of Exp. 3 is shown in Figure 1e.
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Figure 1. The geographical location of the base (a), the field of Exp. 1 (c), Exp. 2 (d), Exp. 3 (e), and
the layout of the experimental plots (b).

Table 1. Experimental design of the three experiments conducted in 2021 and 2022.

Experiment Date (y/m) Cultivars Plant Spacing (cm× cm) N Application Rate (kg·ha−1)

1 March 2021–July 2021
Huahang 57
Huahang 51

Guang 8 you 2156

30 × 14
30 × 21 0/45/90/180/270

2 July 2021–November 2021
Huahang 57

Y liangyou 3089
Guang 8 you 2156

30 × 14
30 × 21 0/90/180/270/360

3 July 2022–November 2022 Guang 8 you jinzhan
Guang 8 you 2156

30 × 14
30 × 21 0/45/90/180/270

2.2. Data Acquisition

Throughout the entire growing season, both UAV remote sensing data and field data
collection were performed at five different growth stages in each of the three experiments
(Figure 2) (Table 2).
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Table 2. Data collection dates for the three experiments conducted in 2021 and 2022.

Growth Stage
Data Collection Dates (y/m/d)

Exp. 1 Exp. 2 Exp. 3

Tillering 9 May 2021 13 September 2021 16 September 2021
Jointing 23 May 2021 26 September 2021 28 September 2021
Booting 6 June 2021 9 October 2021 10 October 2021
Heading 17 June 2021 18 October 2021 21 October 2021
Filling 28 June 2021 26 October 2021 27 October 2021

The pre-heading stages consist of three stages: tillering, jointing, and booting. The post-heading stages consist of
two stages: heading and filling.

2.2.1. Remote Sensing Data Collection and Pre-Processing

The DJI Phantom 4 Multi-spectral (P4M) (DJI Technology Co., Shenzhen, China) was
used in this study. The multi-spectral camera model is the P4 Multi-spectral Camera,
which incorporates one visible and five multi-spectral lenses responsible for visual and
multi-spectral imaging. All cameras are equipped with a global shutter, and the imaging
system is mounted on a three-axis gimbal to ensure clear and stable imaging. The camera
parameters are shown in Table 3. The P4M integrated real-time kinematic (RTK) positioning
module and the DJI TimeSync system (DJI Technology Co., Shenzhen, China) can provide
real-time centimeter-level positioning data for UAVs, so we do not need to set ground
control points. Rice fields typically have large cultivation areas and higher flight altitudes
can bring higher operational efficiency. To ensure consistency between the data acquisition
method and field applications, in this study, the flight altitude and speed were set to
100 m and 6.9 m/s. The forward and lateral overlap was 80%, respectively. The camera
direction is along the heading, and the photo mode is isochronous, with an interval of
2 s. It is important to note that although a single image at 100 m altitude can cover the
experimental area, manual control is required to ensure complete coverage. Data collection
needs to be conducted at multiple rice growth stages, which may introduce operational
errors. Additionally, single images may exhibit distortion, leading to deviations in the
image information. Therefore, we adopted a planned flight path and employed image-
stitching techniques to improve geometric accuracy and spatial resolution. This approach
ensures image quality and data comparability during remote sensing data collection. All
missions were flown between 10:00 and 14:00 in steady sunlight and light winds. Each flight
operation was completed within 90 s. Images are captured and stored on a secure digital
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memory card. The total size of all collected multi-spectral data in this study was 8.64 GB.
We performed dark current correction on the multi-spectral camera using the dark current
correction coefficients provided by DJI. Radiometric calibration was conducted using an
empirical linear correction method. A calibration target with a standard reflectance of 50%
(sized 0.5 × 0.5) was placed adjacent to the measurement area. Images of the calibration
target were captured immediately after each flight at a shooting height of 7 times the length
of the calibration target’s side. Radiometric calibration converted the DN (digital number)
values in the original images to reflectance data measured on the ground. Pix4D4.5.6
software was utilized in this study to stitch the acquired UAV multi-spectral images.

Table 3. P4 Multi-spectral camera parameters.

Parameter Band (nm) Bandwidth
(nm)

Resolution
(Pixels)

GSD at 100 m
High (cm)

Parameter value 450 560 650 730 840 ±16 1600 × 1300 5.4

2.2.2. Field Data Collection

The rice SPAD was manually sampled immediately after each flight. In this study, the
SPAD-502 Plus (Konica-Minolta, Tokyo, Japan) was used to measure the SPAD value of
functional rice leaves at different positions, including the base, middle, and top parts of
the leaf. The mean value was taken as the SPAD value of the rice plant. Eight rice plants
with uniform growth and representative characteristics were selected at intervals along
the diagonal direction of each plot. The average value was taken as the SPAD value of the
plot. To mitigate the effects of boundary influence, the sampling range did not include the
border area of each plot.

2.3. Extracting Feature Information from UAV Images
2.3.1. Calculation of Spectral VIs

In this study, 12 VIs were utilized (Table 4). The vegetation index images were
computed by combining reflectance images from different bands. These vegetation index
images were imported into ArcGIS software and the vector files of regions of interest (ROI)
of each plot were drawn and assigned attribute numbers. It is worth noting that, to avoid
edge effects, we avoid selecting the peripheral parts of the plots when delineating ROI
for each plot. Subsequently, the plot vector files and vegetation index images were read
and processed using the partition statistics tool of ArcGIS. We then calculated the mean
vegetation index value of each plot, which was used as the vegetation index value of
the plot.

Table 4. The VIs used in the study.

VIs Formula Reference

NDVI (RNIR − RRED)/(RNIR + RRED) [28]
GNDVI (RNIR − RGRE)/(RNIR + RGRE) [29]
NDRE (RNIR − RREG)/(RNIR + RREG) [30]

LCI (RNIR − RREG)/(RNIR + RRED) [31]
OSAVI (1 + 0.16)(RNIR − RRED)/(RNIR + RRED + 0.16) [32]

DVI RNIR − RRED [33]
RVI RNIR/RRED [34]

ARVI (RNIR − (2RRED − RBLUE))/(RNIR + (2RRED − RBLUE)) [35]
EVI 2.5((RNIR − RRED)/(RNIR + 6RRED − 7.5RBLUE + 1)) [36]

CIRE RNIR/RREG − 1 [37]
RDVI (RNIR − RRED)/

√
RNIR + RRED [38]

SAVI (1 + 0.5)(RNIR − RRED)/(RNIR + RRED + 0.5) [39]
RBLUE, RGRE, RRED , RREG , and RNIR are the reflectance of the blue band (B), green band (G), red band (R),
red-edge band (E), and NIR band (N), respectively.
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2.3.2. Calculation of TFVs

The gray-level co-occurrence matrix (GLCM) is a widely used method for textural
analysis. It is a statistical representation of the joint occurrence of gray levels of two pixels
in an image and can effectively capture the correlation between texture gray levels [40].
Haralick defined fourteen TFVs based on GLCM. We chose eight commonly used TFVs
(Table 5). The P4 Multi-spectral Camera has five bands so that we can acquire forty
TFVs. The naming method is band + texture. First, the reflectance image was masked
and extracted in ArcGIS software using an ROI vector file, resulting in the generation of
90 individual plot images, and the background pixels were filled with zero values (Figure 3).
Similar to vegetation index extraction, our ROI does not include the border regions of the
plots. Then, the TFVs were extracted from the plot images with the following parameter
settings. Kernel size is an essential parameter for GLCM and the kernel size that is too small
or too large could affect the final result of textural analysis from the image [41]. We selected
ten kernel sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17, 19 × 19, and
21 × 21 pixels) and investigated the impact of kernel size on the accuracy of rice SPAD
estimation. Moreover, the gray level was 64, and the pixel spacing was 1. The average value
of the characteristic values in the four directions of 0◦, 45◦, 90◦, and 135◦ is taken as the
value of the central pixel of the kernel. The kernel is shifted to obtain the textural feature
image. Boundary values are removed because they are disturbed by background values
during the calculation. The mean value of the plot TFV image (excluding the background
and boundary values) is taken as the TFV of the plot (Figure 4). This study performs
multi-spectral textural information extraction using a self-developed Python program.

Table 5. The TFVs used in the study.

TFVs Formula

Mean (MEA) ∑
i

∑
j

i ∗ p(i, j)

Variance (VAR) ∑
i

∑
j
(i− µ)2 p(i, j)

Homogeneity (HOM) ∑
i

∑
j

1
1+(i−j)2 p(i, j)

Contrast (CON) ∑
i

∑
j

p(i, j)(i− j)2

Dissimilarity (DIS) ∑
i

∑
j

p(i, j)|i− j|

Entropy (ENT) −∑
i

∑
j

p(i, j) log(p(i, j))

Correlation (COR)
∑
i

∑
j
(ij)p(i,j)−µxµy

σxσy

Second Moment (SEC) ∑
i

∑
j
{p(i, j)}2

∑
i

and ∑
j

,
Ng−1

∑
i=0

and
Ng−1

∑
j=0

, respectively. i is the row number, and j is the column number. Ng is the number

of distinct gray levels in the quantized image. p(i, j) is the (i, j)th entry in a normalized gray-tone spatial-
dependence matrix. px(i) is the ith entry in the marginal-probability matrix obtained by summing the rows of

p(i, j), =
Ng−1

∑
j=0

p(i, j). px(i) is the ith entry in the marginal-probability matrix obtained by summing the columns of

p(i, j), =
Ng−1

∑
i=0

p(i, j). µx , µy, σx and σy are the means and standard deviations of px and py [40,42].
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2.3.3. Calculation of TIs

Referring to the VIs formula, several TIs were proposed in related studies (Table 6).
The renormalized difference texture index (RDTI), which integrates the strengths of both
the normalized difference texture index (NDTI) and the difference texture index (DTI) [43],
was utilized in this study for rice SPAD estimation.

Table 6. The TIs covered in this article, their abbreviations, and equations.

TIs Formula

NDTI (T1 − T2)/(T1 + T2)
DTI T1 − T2

RDTI (T1 − T2)/
√
(T1 + T2)

T1 and T2 represent two random TFVs (i.e., we tested each possible combination of textural features here).

2.4. Response Association Analysis Metrics

VIs and TIs were generated by calculating linear or non-linear combination formulas.
To analyze the relationship between features and assess and screen features, the maximal
information coefficient (MIC) was employed in this study. MIC considers not only the
linear correlation but also captures the non-linear correlation between features [44,45]. The
closer the MIC score is to 1, the better the correlation.

2.5. Model Establishment and Evaluation

The flowchart of this study is shown in Figure 5. Table 7 presents the statistics of the
SPAD measurements. The data obtained from Exp. 3 was separated from the rest of the
data for the purpose of testing the model’s robustness. The data from Exp. 1 and Exp. 2
were mixed as the datasets, which comprised 900 samples, with 540 samples taken during
the pre-heading stages and 360 samples taken during the post-heading stages. The datasets
were split into training and testing sets with an 8:2 ratio. To prevent any information
leakage into the testing set, we performed feature selection using only the training set. The
regression model used in this study is random forest (RF), which is a machine learning
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method based on decision tree algorithms. In RF, multiple decision trees are built on a
random subset of training data, and the final prediction is obtained by aggregating the
predictions of these individual trees [46,47]. The hyperparameters considered in the model
include the number of trees, maximum tree depth, and a minimum number of samples for
internal node splitting. Use grid search and cross-validation technology to obtain the best
combination of hyperparameters to optimize the model’s performance. The model was
evaluated using two metrics: the coefficient of determination (R2) and root mean squared
error (RMSE). When the value of R2 is larger or the value of RMSE is smaller, it can be
considered that the model performs better. Formulae are as follows (1) to (2). This study
uses Python and Visual Studio Code for model construction and evaluation.

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
(1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

In the formula, yi represents the measured value, ŷi represents the predicted value, yi
represents the average of the measured values, and n represents the number of test samples.
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Table 7. Statistics of rice SPAD measurements.

Datasets Stages Samples Min Max Mean Standard
Deviation

Coefficient of
Variation (%)

Train Pre-heading 432 30.02 47.4 38.57 3.91 10.14
Post-heading 288 30.88 45.67 38.85 3.30 8.50

Whole growth 720 29.40 47.52 38.71 3.78 9.76
Test Pre-heading 108 29.40 47.52 38.58 4.56 11.81

Post-heading 72 30.75 44.83 39.00 3.56 9.14
Whole growth 180 30.49 46.58 38.63 3.84 9.31

Exp. 3 Pre-heading 180 32.07 45.77 38.51 3.39 8.80
Post-heading 120 30.32 46.80 39.68 3.95 9.96

Whole growth 300 30.32 46.80 38.98 3.67 9.41

3. Results
3.1. Estimation of SPAD in Rice with the Spectral VIs

We assessed the MIC between 12 VIs and SPAD values in rice (Figure 6). Previous
research has suggested that combining multiple VIs can improve model accuracy. Still, too
many input features can increase model complexity. Therefore, we aimed to reduce the
number of input features as much as possible without significantly affecting model accuracy.
Moreover, we observed strong correlations between certain VIs, which can result in feature
redundancy. To balance estimation accuracy and model simplification, we selected two VIs
from each dataset.
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Figure 6. Correlation matrix (MIC) of VIs for the pre-heading (a), post-heading (b), and whole growth
stages (c).

Ultimately, the combination of ARVI and OSAVI provided the best estimation accuracy
for the pre-heading stages. The combination of CIRE and RDVI provided the best estimation
accuracy for the post-heading stages. The combination of NDRE and ARVI provided the
best estimation accuracy for the whole growth stages. The results of rice SPAD estimation
using VIs and RF are presented in Table 8.
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Table 8. The results obtained in this study.

Dataset Pre-Heading Stages Post-Heading Stages Whole Growth Stages

Feature (num) Metrics Train Test Train Test Train Test

VIs (3) R2 0.78 0.73 0.81 0.64 0.72 0.70
RMSE 1.8388 2.3630 1.4504 2.1443 1.9978 2.1010

TIs (3) R2 0.65 0.51 0.55 0.42 0.42 0.36
RMSE 2.3149 3.1783 2.2155 2.7190 2.8687 3.0764

VIs (3) + TIs (3) R2 0.84 0.79 0.84 0.72 0.86 0.77
RMSE 1.5544 2.0870 1.3384 1.8875 1.3929 1.8462

3.2. Estimation of SPAD in Rice with Textural Information

We examined the correlation between 40 TFVs and SPAD values at various kernel
sizes (Figure 7). In the pre-heading stages, the MIC of TFVs in the red-edge and NIR bands
was significantly better than that in the visible bands. The best TFV was E_diss (7 × 7) with
a MIC of 0.39 (Figure 7a). In the post-heading stages, the MIC of TFVs in visible bands
was better than that in the red-edge and NIR bands, and the best TFV was B_vari (17 × 17)
with a MIC of 0.39 (Figure 7b). However, in the whole growth stages, the TFVs performed
poorly in each band, and the best TFV was N_cont (7 × 7) with MIC of 0.27 (Figure 7c).
Compared with VIs, the correlation between TFVs and SPAD was poor, and the MICs of
the same TFV at different kernel sizes were less distinguishable.
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Figure 7. Analysis of the MIC of TFVs and SPAD in different kernel sizes for the pre-heading (a),
post-heading (b), and whole growth stages (c). Eight TFVs are extracted for each band in the same
order as in Table 5. The order of the bands is blue (B), green (G), red (R), red-edge (E), and NIR (N)
bands, with a total of 40 TFVs, and the order is numbered 1–40. The RDTI and SPAD of MIC for
different kernel sizes were analyzed during the pre-heading, post-heading, and the whole growth
stage, represented by lines 1, 2, and 3, respectively (d).

To enhance the correlation between textural information and SPAD, we attempted
to construct TIs (RDTIs). We compared the maximum MIC between RDTIs and SPAD
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for different kernel sizes (Figure 7d). Across all datasets, the trend of curve change was
relatively consistent. As the kernel size increased, MIC rapidly increased and became
stable when the kernel size reached 7 × 7. We observed that the MIC was close to the
best performance in all growth stages when the kernel size was 9 × 9 and 15 × 15. We
chose a kernel size of 15 × 15 in all growth stages for this study. During the pre-heading
stages, RDTI (N_entr, G_corr) showed the best performance with MIC of 0.48, 23.08%
higher than the best TFV. In the post-heading stages, RDTI (B_vari, R_mean) performed the
best with a MIC of 0.43, which was 10.26% higher than the best TFV. In the whole growth
stages, RDTI (N_entr, G_corr) performed the best with MIC of 0.36, which was 33.33%
higher than the best TFV (Figure 8). Our results demonstrate that incorporating TFVs to
create RDTIs can effectively enhance the relationship between image texture features and
SPAD measurements.
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Figure 8. Any element in the figure represents the MIC of RDTI and SPAD for the pre-heading
(a), post-heading (b), and whole growth stages (c). RDTIs were calculated from the two TFVs
corresponding to their horizontal and vertical coordinates. For interpretation of the labels of the x
and y axes, please refer to Figure 7.

We assessed the MIC between the highest-performing 12 RDTIs and rice SPAD. During
the pre-heading, post-heading, and whole growth stages, the MIC values ranged from 0.40
to 0.48, 0.38 to 0.43, and 0.30 to 0.36, respectively. Similar to the process of selecting VIs,
we selected two TIs from each dataset and identified the Tis’ combination with the best
evaluation index through testing.

The best estimation accuracy for the pre-heading stages was achieved by combin-
ing RDTI (N_entr, G_corr) and RDTI (E_entr, G_corr). For the post-heading stages, the
combination of RDTI (B_vari, R_mean) and RDTI (B_vari, G_mean) provided the best
estimation accuracy. Finally, the combination of RDTI (N_entr, G_corr) and RDTI (B_vari,
N_diss) provided the best estimation accuracy for the whole growth stages. The rice SPAD
estimation results using TIs and RF are presented in Table 8.

3.3. Combination of VIs and TIs for Estimating SPAD in Rice

The combination of the previously used VIs and TIs was used to build a regression
model with RF, and this method yielded the best performance in all growth stages (Table 8)
(Figure 9). Compared to using vegetation indices alone, the incorporation of RDTIs resulted
in significant improvements in accuracy during testing on datasets. Specifically, during the
pre-heading stages, the R2 increased by 8.22% and the RMSE decreased by 11.68%. During
the post-heading stages, there was an increase of 12.50% in R2 and a decrease of 11.98% in
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RMSE. In the whole growth stages, there was an increase of 10.00% in R2 and a decrease
of 12.13% in RMSE. In summary, the combination of VIs and TIs can effectively improve
the accuracy of SPAD estimation in rice. We tested the model’s generalizability with the
data from Exp. 3, which was conducted in different years and locations; Figure 10 depicts
the results obtained from this analysis.
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Figure 9. Test results of SPAD estimation in test datasets using the combined VIs and TIs with the RF
model for the pre-heading (a), post-heading (b), and whole growth stages (c), with the red line as a
1:1 straight line.
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Figure 10. Test results of SPAD estimation in Exp. 3 datasets using the combined VIs and TIs, and RF
model for the pre-heading (a), post-heading (b), and whole growth stages (c), with the red line as a
1:1 straight line.

4. Discussion

The 12 VIs we selected in this study showed a moderate correlation with SPAD
(Figure 6). We found that VIs constructed from NIR and red-edge spectral bands achieved
superior performance compared to others, likely due to their higher sensitivity towards
SPAD values. As shown in Table 8, the accuracy of SPAD estimation was observed to
be lower during the post-heading stages as compared to the pre-heading stages. This
is because VIs tend to saturate under dense vegetation [48,49], and the presence of rice
ears can disturb the canopy leaves, leading to inaccurate SPAD estimates. In agriculture,
multi-spectral cameras typically have a limited number of bands, which limits the number
of VIs that can be synthesized for SPAD estimation. We found that a small number of bands
combined into VIs strongly correlated with each other (Figure 6). However, when using
multiple features in combination, highly correlated features can provide less information
and may even have a negative impact due to multicollinearity. Therefore, we avoided
selecting highly correlated features for combination, which further reduced the available
information from the spectrum. In summary, it is important to extract additional details
from multi-spectral images to enhance the accuracy of SPAD estimation.

The high-resolution images of the rice canopy contain rich textural information. The
images mainly consist of complex soils, water, leaves, and stems during the pre-heading
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stages. During the post-heading stages, the rice canopy coverage increases, and the soil and
water become invisible. While rice ears emerge, the canopy structure becomes complex.
TFVs in the red-edge and NIR bands performed better for the pre-heading and whole
growth stages, while TFVs in the visible bands performed better for the post-heading stages
(Figure 7). This indicates that the TFV-sensitive bands changed due to the changes in the
canopy structure. Most TFVs showed poor correlation with rice SPAD and were consis-
tent with previous studies on using TFVs to estimate other indicators such as AGB [43].
However, we found that combining two TFVs to construct RDTIs improved the accuracy
of rice SPAD estimation compared to using TFVs alone. RDTIs can smooth the canopy
structure and reduce the effects of background and solar altitude angles, resulting in a more
accurate estimation of various vegetation indicators. This has been demonstrated through
research [25,50,51].

The choice of kernel size significantly impacts the accuracy of texture analysis re-
sults [52]. A small kernel size can preserve high spatial resolution but may exaggerate
intra-kernel variations. Conversely, a large kernel size may not efficiently extract texture
information because texture variations are over smoothed [51]. The MICs of the same
TFV at different kernel sizes were not significantly different. We compared the maximum
MIC between RDTIs and SPAD for different kernel sizes (Figure 7d) and found that the
improvement in estimation accuracy was greater in the pre-heading stages as the kernel
size increased compared to the 3 × 3 kernel size, possibly because soil and shadows are
more distributed among rice plants at this growth stage. A larger kernel can reduce random
errors and lead to more accurate estimates of distributions [52]. Canopy cover increases
with rice growth, which results in more vegetation being included in the run kernel, so the
MIC fluctuated relatively less with increasing kernel size in the post-heading stages.

Chlorophyll and plant photosynthesis are strongly correlated, as plants with higher
chlorophyll have a greater photosynthetic capacity and accumulate more photosynthetic
products. Previous studies have demonstrated that textural information can effectively
estimate rice biomass [27], which is involved in driving SPAD estimation. Moreover, leaves
with higher chlorophyll content tend to have a darker color, while leaves with lower
chlorophyll content tend to have a lighter color. The combination of these factors results
in rice plants with different SPAD values exhibiting distinguishable texture differences in
remote sensing images.

VIs provide spectral information on rice canopy, while TIs provide spatial structural
information. By combining multiple VIs and TIs, relevant information on rice plant SPAD
can be extracted from different perspectives to improve the model’s accuracy. However,
although the three experiments were conducted in different fields in this study, the natural
conditions were relatively similar. To further verify and improve the model’s generalization
performance, it is necessary to include more data from multiple ecological locations and
years in future studies. In addition, due to the relatively small amount of data, we did not
use deep learning techniques in this study. Future studies will collect more data to explore
the performance of deep learning models.

5. Conclusions

This study utilized UAV multi-spectral images to estimate the SPAD values of rice. The
main conclusions are as follows: textural information extracted from multi-spectral images
can effectively assess the SPAD values of rice. Combining two TFVs to construct RDTIs can
further improve the correlation between textural information and SPAD. Compared with
using only VIs, incorporating both VIs and TIs to build the model can further improve the
accuracy of SPAD estimation across all growth stages. The model also demonstrated good
generalizability for calculating rice SPAD in different years and locations. These results
have potential applications in precision agriculture and environmental protection.
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