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Abstract: Wild common wheat species represent a significant pool of resistance genes to various
environmental stresses. In this study, we examined several physiological traits and the activity of
three antioxidant enzymes—namely, catalase (CAT), superoxide dismutase (SOD), and ascorbate per-
oxidase (APX)—as well as the expression patterns of their encoding genes in three neglected Aegilops
species with alien genomes (including Ae. triuncialis (UUCC-genome), Ae. neglecta (UUMM-genome)
and Ae. umbellulata (UU-genome)) under two control (0 mM NaCl) and salinity (250 mM NaCl)
conditions. The results of the analysis of variance (ANOVA) showed highly significant effects of
salinity stress, accessions, and their interaction on most physio-biochemical traits, root and shoot dry
biomasses, and antioxidant-related gene expression level. As a result of comparison between Aegilops
species and a bread wheat cultivar (cv. Narin as a salt-tolerant reference variety), Ae. triuncialis
responded well to salinity stress, maintaining both ionic homeostasis capability and biochemical
ability. Moreover, transcriptional data revealed the prominence of Ae. triuncialis over other Aegilops
species and salt-tolerant bread wheat [cv. Narin] in terms of the level of expression of antioxidant
genes (APX, SOD, and CAT). This result was further supported by a biplot rendered based on prin-
cipal component analysis (PCA), where this wild relative showed a positive association with most
measured traits under salinity stress. Moreover, we speculate that this accession can be subjected to
physiological and molecular studies, and that it can provide new insights into the use of the alien
genomes in future wheat breeding programs.

Keywords: ancestor species; wheat; salt tolerance; biochemical markers; gene expression

1. Introduction

Among edaphic stresses, soil salinity is considered one of the global threats that
drastically limits agriculture production. Near 20% of arable land and 33% of irrigated land
are affected by salinity, leading to a severe reduction in crop yield and quality [1]. As a
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consequence of the green revolution, the use of fertilizer-responsive high-yielding cultivars
of main staple crops, such as wheat, increased worldwide [2]. It has been reported that
around 1128 Mha of area worldwide is affected by salinity and soil sodicity. The areas
most affected by salt are in the Middle East (189 Mha), followed by Australia (169 Mha),
North Africa (144 Mha), and South Asia (52 Mha) [3]. According to the literature, the area
of saline-affected soil on the planet is increasing over time, and the current area affected by
salinity stress will be nearly tripled by 2050 [3,4].

Salinity tolerance is a complex treatment, and it is controlled by several processes
and pathways [5]. As has been proved, two important regulatory pathways are involved
in inducing the salt tolerance mechanism: (i) the osmotic pathway, which consists of an-
tioxidant metabolism, osmoprotectant biosynthesis, ion homeostasis adjustment, hormone
signaling, and photosynthesis regulation, and (ii) water uptake [6]. Since sodium chloride
(NaCl) is one of the main salts of the various soil layers, most tolerance mechanisms focus
on the transportation and partitioning of sodium ions (Na+). Increasing the concentration
of Na+ around the roots induces both ionic and osmotic toxicity [7]. Therefore, maintaining
a low Na+ content is one of the important mechanisms for plant survival under salinity
stress [8]. Munns et al. [9] classified the plant response to salinity stress into two main
phases. The first phase is called the osmotic or ion-independent one, which begins as soon
as the salt concentration around plant roots increases, which, in turn, leads to restrictions in
the transfer of water from the soil to the roots, a reduction in the flow of ions from the roots
to the shoots, closure of the stomatal apparatuses, and, ultimately, a reduction in the rate of
shoot growth [10]. Ion toxicity or ion dependency is the second phase associated with the
accumulation of cytotoxic ions and occurs over several days, and it causes an imbalance in
metabolic processes, thereby increasing leaf senescence and ultimately plant death [11].

One of the important changes that occurs at the cellular level during salinity stress is
the increase in the level of reactive oxygen species (ROS). A partial decrease in atmospheric
oxygen results in the creation of ROSs, and the accumulation of this type of oxygen finally
leads to oxidative stress [12]. It has been shown that ROSs can be divided into four types:
single oxygen (1O2), superoxide radical (O2

−), hydrogen peroxide (H2O2), and hydrogen
radical (HO•) [13]. Excessive accumulation of any type of these ROS can cause various
damage at molecular and cellular levels. When plants are subjected to stressful conditions,
several defense mechanisms enable them to overcome excessive ROS accumulation. One
of the most important defense mechanisms is the scavenging system, which is divided
into two main types: enzymatic and non-enzymatic antioxidant systems. The enzymatic
system consists of the activity of several enzymes, such as catalase (CAT), ascorbate per-
oxidase (APX), superoxidase dismutase (SOD), peroxidase (POD), glutathione reductase
(GR), and malondialdehyte (MDA). Tocopherols, carotenoids, ascorbate acid (AsA), and
glutathions (GSH) are grouped in the non-enzymatic system. Both antioxidant systems
have critical roles in improving the tolerance of plants coping with various environmental
stresses, and they can also be used as useful biomarkers for the selection of tolerant plant
materials [14–19]. Hence, the regulation of antioxidant-related genes could increase plant
tolerance to salinity stress [20].

In wheat, numerous studies have demonstrated alternations in the activity of the
antioxidant system to decrease the effects of oxidative stress that are induced by abiotic
stresses. For instance, Barakat [21] reported an increasing trend for APX and CAT activities
in wheat plants treated with high levels of salinity stress. Suneja et al. [18] reported that
among antioxidant enzymes, SOD is one of the most important biochemical indicators that
can serve as an indirect selection criteria for screening and selecting salt-tolerant wheat
genotypes at the seedling stage. Moreover, Sharma et al. [22] highlighted the role of APX
activity in increasing the tolerance of wheat and other cereals to various environmental
stresses. In another study, SOD, CAT, and APX enzymes in some wild relatives of bread
wheat revealed greater activities in response to drought stress coditions [23]. It has been
reported that an increase in the SOD transcript in response to heat treatment resulted in
the enhancement of tolerance to the high levels of heat stress in wheat [24]. Moreover, as
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mentioned by Matsumura et al. [25], the wheat’s CAT gene expressed in transgenic rice
increases tolerance against cold stress. Zhai et al. [26] showed that GPX genes play key
roles in increasing salt tolerance and ABA-signaling cascades in wheat plants when they
were faced with high levels of salt concentrations.

Numerous studies have revealed that the wild relatives of wheat can be used as a
significant gene pool for the improvement of the tolerance of common wheats against
various environmental stresses [27–35]. Indeed, these germplasm resources, due to their
adaptation to various environmental conditions over a long period of time, are interesting
genes for the improvement of wheat [36]. Wheat germ consists of two main genera: Aegilops
and Triticum. Of these, the genus Aegilops includes several species with diverse genomic
structures, and can be donor genes that confer valuable agronomic traits [36]. Despite many
physiological and biochemical studies on salinity stress in wild wheat species (see [36]),
antioxidants and the expression patterns of their coding genes have not been thoroughly
investigated in neglected species, such as Ae. neglecta, Ae. triuncialis, and Ae. umbellulata.
Therefore, this study aimed to compare the three mentioned Aegilops species along with a
cultivated bread wheat cultivar (cv. Narin as salt tolerant) in terms of several physiological
and biochemical markers under two conditions of control and salinity stress.

2. Materials and Methods
2.1. Genetic Materials and Experimental Setup

In this investigation, three neglected Aegilops species, including Ae. triuncialis (UUCC-
genome; accession code: IUGB-00318), Ae. neglecta (UUMM-genome; accession code:
IUGB-00387), and Ae. umbellulata (UU-genome; accession code: IUGB-00966), along with a
salt-tolerant bread wheat cultivar (cv. Narin as a salt-tolerant reference), were evaluated
under optimal glasshouse conditions. Five seeds of each genetic material were planted in
plastic pots with a 20 cm diameter and a 50 cm height that were filled with sand. All pots
were kept under optimal photoperiod and temperature conditions. All greened seeds were
irrigated with Hoagland medium at half strength [37]. After the seedlings germinated and
the second leaf appeared, full-power medium was applied three times a week. Two weeks
after germination, all pots were arranged in a factorial experiment based on a randomized
complete block design with three replicates. Stress included control consisted (0 mM NaCl)
and severe salinity stress (250 mM NaCl). The non-stressed and stressed seedlings were
irrigated with medium without NaCl and with NaCl, respectively. Salinity was applied
gradually, and it eventually reached 250 mM after five steps. After two weeks of cultivation
under salinity stress, the seedlings were sampled, and their leaves were harvested and
stored at –80 ◦C.

2.2. Determination of Root and Shoot Dry Weight

First, root and shoot tissues of healthy seedlings were cut in order to determine the
dry biomasses of roots and shoots. The collected root and shoot tissues were dried for 72 h at
70 ◦C, and then their dry weight was recorded as root and shoot dry biomasses, respectively.

2.3. Determine of Root and Shoot Na+ and K+ Contents

To determine the Na+ and K+ content of roots and shoots, 10 mg of dried samples were
digested with 10 mL 0.5 N nitric acid. All samples were then incubated in a water bath for
2 h at 85 ◦C. The digested solutions were then filtered, and their supernatant phases were
subjected to determination of Na+ and K+ content (mmol g−1 dry weight) using a flame
photometry device (Sherwood Scientific Flame Photometer 420, Cambridge, UK) [38].

2.4. Determination of Antioxidant Enzyme Activities

To determine the activity of some antioxidant enzymes (superoxide dismutase—SOD;
ascorbate peroxidase—APX; and catalase—CAT), crude enzymes were extracted from
young leaves [39]. A total of 50 mg of fresh leaves were digested in 1 mL extraction
buffer containing 3 mM MgCl2, 1 mM EDTA, 1.5% w/v polyvinylpyrrolidone (PVP), and
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0.05 M Tris-HCl buffer (pH 7.5). For the APX assay, 0.2 mM ascorbate was added to
the extraction buffer. The extracted solution was filtered and centrifuged for 20 min at
12,000 RPM, and the separated supernatant was used to determine the activity of the
mentioned enzymes. In the next step, the activity of APX, CAT, and SOD were determined
based on the manuals developed by Nakano and Asada [40], Chance and Maehly [41], and
Dhindsa et al. [42], respectively.

2.5. Estimation of Gene Expression Patterns

Based on previous studies, we identified some antioxidant-related genes in wheat.
To estimate the relative expression of APX (Forward: 5′-GCAGCTGCTGAAGGAGAAGT-
3′/Reverse: 5′-CACTGGGGCCACTCACTAAT-3′ [43]), CAT (Forward: 5′-CCATGAGATCA-
AGGCCATCT-3′/Reverse: 5′-ATCTTACATGCTCGGCTTGG-3′ [43]), and SOD (Forward:
5′-CAGAGGGTGCTGCTTTACAA-3′/Reverse: 5′-GGTCACAAGAGGGTCCTGAT-3′ [43])
genes and compare their patterns under two control and salinity stress conditions, total
RNAs were extracted from 100 mg of leaf using a RNX-PlusTM kit (DENAZIST ASIA,
Tehran, Iran) according to the manufacturer’s guidelines. A Nano-Drop Spectrophotome-
ters (Thermo Scientific-2000C, Waltham, MA, USA) was used to test the concentration of
extracted RNA. In the next step, the cDNAs were synthesized using EasyTM cDNA Synthe-
sis Kit (Parstos, Tehran, Iran). Real-time PCR was performed in a 20 µL volume containing
10 µL of 2× RealQ Plus 2× Master Mix Green (Ampliqon, Odense, Denmark), 4 µL of
RNAse-free water, 4 µL of cDNA (50 ng µL−1), and 1 µL of forward and reverse primers.
All amplifications were run in a MiniOpticon™ Real-Time PCR device (Bio-Rad, Hercules,
CA, USA). In addition, the a-tubulin gene (forward: 5′-AGTGTCCTGTCCACCCACTC-
3′/reverse: 5′-ATTCAGAGCACCGTCAAACC-3′ [44]) was used to normalize the expres-
sion of the tested genes under both growth conditions. The obtained CTs were used to
calculate the relative expression of each gene, as described by Pfaffl [45].

2.6. Data Analysis

An analysis of variance (ANOVA) was performed to test the effects of salinity stress,
accessions, and their interaction based on the measured traits and the gene expression data
using SAS software [46]. The means comparisons were conducted using Dancan’s test at the
level of probability of significance (p < 0.05 and p < 0.01) for each effect. Interrelationships
among the experimental data were determined through a biplot rendered from a principal
component analysis (PCA).

3. Results
3.1. Root and Shoot Biomass and Their Ion Concentrations

ANOVA showed that the main effects of salinity treatment (S) and accessions (A)
were significant for root dry weight (Figure 1A). The main effect of stress and accession
interaction (SA) was not statistically significant (Figure 1A). Overall, for all species, RDW
was higher for the controls than for salinity. The highest RDW values were observed for
Ae. triuncialis, and Ae. umbellulata, both for the control (0.347 g plant−1) and salinity (0.253
and 0.246 g plant−1, respectively) conditions. The lowest RDW values were observed for
T. aestivum, and they were 0.270 and 0.176 g plant−1 for control and salinity, respectively.
ANOVA indicated that the main effects of stress treatment, stress, and accession interaction
were not significant for shoot dry weight (Figure 1B). However, the main effect of accession
was statistically significant (Figure 1B). Overall, for all species (except Ae. umbellulata), SDW
was higher for the controls than for salinity. The highest SDW values were observed for T.
aestivum, both for control (0.377 g plant−1) and salinity (0.356 g plant−1). The lowest SDW
value for control was observed for Ae. umbellulata (0.283 g plant−1), while for salinity the
lowest value was for Ae. neglecta (0.273 g plant−1).
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as well as among investigated accessions in terms of (A) root dry weight (RDW) and (B) shoot dry
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significant, significant differences at p < 0.05 and p < 0.01, respectively. The different letters show
significant differences among species under the control conditions. The different letters with a star (*)
show significant differences among species under salinity conditions. The different capital letters
show significant differences among the control and salinity stress conditions.

ANOVA indicated that the main effect of salinity stress (S) was significant for the
root Na+, root K+, and root K+:Na+ ratio, as well as the shoot Na+, shoot K+, and shoot
K+:Na+ ratio (Figure 2). The main effect of accession (A) was statistically significant only
for the root Na+ (Figure 2A), root, and shoot K+:Na+ ratio (Figure 2E,F). No significant
SA interaction was observed for any of the ion concentrations (Figure 2A–E). Root Na+

were always higher in salinity than in the control (Figure 2A). Under the control conditions,
root Na+ ranged from 221 mmol g DW−1 (for Ae. triuncialis) to 241 mmol g DW−1 (for
Ae. umbellulata), but for salinity, ranged from 268.33 mmol g DW−1 (for Ae. triuncialis) to
316.33 mmol g DW−1 (for Ae. umbellulata). In terms of shoot Na+, significant differences
were observed only for overall averages (Figure 2B). A significantly higher mean value was
observed for salinity (296.42 mmol g DW−1) than for the control (233.42 mmol g DW−1).
In terms of root K+ (Figure 2C) and shoot K+ (Figure 2D), significant differences were
observed only for overall averages. In both cases, higher values were observed with control
conditions than for salinity. Larger values of root K+:Na+ ratio and shoot K+:Na+ ratio were
observed for the control than for salinity (Figure 2E,F). Root K+:Na+ ratio for the control
ranged from 0.33 (for Ae. neglecta) to 0.37 (for Ae. triuncialis). However, for salinity, the root
K+:Na+ ratio ranged from 0.15 (for Ae. umbellulata) to 0.23 (for Ae. triuncialis). Shoot K+:Na+

ratio under control conditions ranged from 0.71 (for T. aestivum) to 1.09 (for Ae. triuncialis).
However, for salinity, shoot K+:Na+ ratio ranged from 0.48 (for T. aestivum) to 0.61 (for
Ae. triuncialis).

3.2. Biochemical Activities in Studied Species

ANOVA showed that the main effect of accession (A) was significant for APX activity,
CAT activity, and SOD activity (Figure 3). The main effect of stress treatment (S) was
significant for CAT activity (Figure 3B) and for SOD activity (Figure 3C). The SA interaction
was significant for APX activity (Figure 3A) and for SOD activity (Figure 3C).
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(C) Root K+ content, (D) shoot K+ content, (E) root K+:Na+ ratio, and (F) shoot K+:Na+ ratio traits. S,
A, and SA indicate accessions main, salinity stress treatments, and interaction between accessions and
salinity stress treatment effects, respectively. ns, * and ** indicate not significant, significant differences
at p < 0.05 and p < 0.01, respectively. The different letters show significant differences among species
under control conditions. The different letters with a star (*) show significant differences among
species under salinity conditions. The different capital letters show significant differences among
control and salinity stress conditions.

APX activity for the control ranged from 0.15 Unit mg protein−1 (for Ae. umbellulata
and Ae. neglecta) to 0.24 unit/mg protein−1 (for Ae. triuncialis). However, for salinity, APX
activity ranged from 0.11 unit/mg protein−1 (for T. aestivum) to 0.28 unit/mg protein−1

(for Ae. triuncialis) (Figure 3A). CAT activity under control conditions ranged from
0.16 Unit mg protein−1 (for T. aestivum) to 0.36 unit/mg protein−1 (for Ae. triuncialis).
However, for salinity CAT activity ranged from 0.29 unit/mg protein−1 (for T. aestivum) to
0.66 unit/mg protein−1 (for Ae. triuncialis) (Figure 3B). SOD activity under control condi-
tions ranged from 18.94 unit/mg protein−1 (for Ae. triuncialis) to 26.65 unit/mg protein−1

(for Ae. umbellulata). However, for salinity SOD activity ranged from 11.61 (for T. aestivum)
to 16.1 (for Ae. triuncialis) (Figure 3C).
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Figure 3. Means comparison between control (0 mM NaCl) and salinity (250 mM NaCl) conditions
as well as among investigated accessions in terms of APX (A), CAT (B), and SOD (C) activity. S, A,
and SA indicate accessions main, salinity stress treatments, and interaction between accessions and
salinity stress treatment effects, respectively. ns, * and ** indicate not significant, significant differences
at p < 0.05 and p < 0.01, respectively. The different letters show significant differences among species
under control conditions. The different letters with a star (*) show significant differences among
species under salinity conditions. The different capital letters with show significant differences among
control and salinity stress conditions.

3.3. Gene Expression Evaluation in Studied Accessions

The result of ANOVA for the relative expression of studied genes indicated that the
main effects of stress treatment (S) and accession (A) were significant for relative expression
for the APX gene, the CAT gene, and the SOD gene (Figure 4). SA interaction was significant
for relative expression for the CAT (Figure 4B) and the SOD (Figure 4C) genes.

The relative expression for the APX gene under control conditions varied between 0.95
(for T. aestivum) and 3.13 (for Ae. triuncialis) (Figure 4A), while under salinity conditions,
it ranged from 15.67 (for T. aestivum) to 15.10 (for Ae. triuncialis). The relative expression
for the CAT gene under control conditions ranged from 1.04 (Ae. triuncialis) to 2.29 (for
Ae. umbellulata). However, for salinity conditions, the relative expression for the CAT gene
ranged from 6.62 (for T. aestivum) to 11.38 (for Ae. triuncialis) (Figure 4B). The relative
expression for the SOD gene under control conditions ranged from 1.29 (for Ae. triuncialis)
to 2.85 (for Ae. triuncialis). However, for salinity relative expression for SOD gene ranged
from 15.66 (for Ae. umbellulata) to 31.93 (for Ae. triuncialis) (Figure 4C).

3.4. Association among Measured Trait under Control and Salinity Conditions

The PCA was used to assess the relationships among various measured traits under
both the control and salinity stress conditions (Figure 5). The results showed that the first
two PCs explained 78.44% (PC1: 48.86% and PC: 29.58%) of the total variation. In the
PCA loading plot, PC1 was strongly and positively associated with SK, SKN, RKN, RDW,
SDW, APX, and CAT activities, as well as the relative expression of the APX and SOD
genes. On the other hand, PC2 was strongly affected by RDW, SDW, and APX activity. The
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angle between the trait vectors showed the relationship patterns among them. The angle
between the vectors for SDW, APX activity, and RKN was less than 90◦, so they correlated
with each other positively. Moreover, association among SK, SKN, RDW, and CAT activity
and the relative expression of the SOD and APX genes was positive. The association
among SN, RK, RN, and SOD activity and the relative expression of the CAT gene was
positive. A 180◦ angle shows a negative association between two traits. For example, SN
and RN negatively correlated with SKN and RKN, respectively. Other relationships among
measured traits are shown in Figure 5. Another result of this biplot was that there was
exploration of the association between the studied accessions and the measured traits. T.
aestivum positively associated with SDW and SN. Ae. umbellulata and Ae. neglecta showed
the positive correlation with RK, RN, SN, and SOD activity and the relative expression
of the CAT gene. As a superior accession, Ae. triuncialis showed a positive association
with RDW, SDW, RKN, SKN, and SK activity of the APX and CAT enzymes, and relative
expression of the APX and SOD genes.
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4. Discussion

Soil salinity represents a significant challenge to global agriculture, impacting both
crop productivity and quality. Recently, there has been an increased interest in studying
physio-biochemical responses and gene expression profiling associated with antioxidants
in neglected Aegilops species under salt stress conditions [16,27,28,47,48]. Studying these
species can provide valuable insights into the mechanisms by which plants adapt to extreme
environments, and can serve as a basis for developing breeding strategies to increase salt
tolerance in crops [15,17,33,34,36]. This study comparatively revealed the response of three
neglected Aegilops species (Ae. neglecta, Ae. triuncialis, and Ae. umbellulate) along with a
bread wheat cultivar (T. aestivum cv. Narin) to salt stress at physiological and molecular
levels. Our results showed that the physiological and the transcriptional pattern of changes
is significantly associated with growth conditions. On the other hand, the tested cultivars
showed different responses to salinity stress compared to the control conditions for most
of the measured traits and transcriptional tests (Figures 1–4). The analysis of the physio-
biochemical responses reveals distinct variations among neglected Aegilops species in their
capacity to withstand salt stress [27,29,49–51].

In response to this stress, plants deploy various defense mechanisms aimed at mitigat-
ing the detrimental effects of excessive salt concentration in the soil. An essential indicator
of salt stress is the intracellular accumulation of salt ions. The studied Aegilops species have
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exhibited the ability to accumulate salt ions, suggesting the presence of specific mechanisms
for salt ion transport [29]. Elucidating these mechanisms can provide valuable insights into
ion homeostasis regulation and its implications for salt tolerance [52]. In the present study,
the lowest Na+ content and the highest K+ content in root and shoot tissues, as well as the
highest K+:Na+ ratio values in roots and shoots, were recorded for Ae. triuncialis (Figure 2).
In accordance with our results, Ahmadi et al. [16] also reported the good capability of this
species in response to a high level of salinity stress (350 mM NaCl). Another critical aspect
of the physio-biochemical response is the maintenance of water homeostasis within plant
cells [18]. Salt stress disrupts the water balance, leading to water loss and desiccation. The
investigated Aegilops species have demonstrated regulatory mechanisms to uphold water
economy under salt stress conditions, which contributes to their resilience and survival.
These mechanisms encompass reduced transpiration rates through stomatal closure [53,54]
as well as the accumulation of osmolytes [48,54], such as proline and salt components,
which aid in maintaining water balance [32,55].

Plants activate various defense mechanisms in response to salt stress, including the
synthesis of antioxidants and increased activity of antioxidant enzymes [56]. Salt stress
induces an increase in the production of reactive oxygen species in plant cells, leading to
structural and metabolic disorders. Plants employ antioxidant enzymes such as superoxide
peroxidase (POD), dismutase (SOD), and catalase (CAT) [57], as well as antioxidants such
as polyphenols and flavonoids, to neutralize and eliminate these reactive oxygen species. In
this study, salinity stress significantly increased the activity of CAT, APX, and SOD activities
(Figure 3). As a result of a comparison of studied species, the mentioned antioxidants
were more active in Ae. triuncialis compared to other species and to salt-tolerant species.
Indeed, analysis of the antioxidant enzyme activity and accumulation of antioxidants in the
examined Aegilops species has revealed their efficacy at combating oxidative stress induced
by salinity, which, in turn, accords with the previous studies [27,58,59]. Precise regulation
of gene expression associated with antioxidant production and antioxidant enzyme activity
plays a pivotal role in determining salt tolerance in cultivated plants [60,61].

Gene expression profiling constitutes a powerful tool in deciphering salt tolerance
mechanisms [62,63]. Analysis of gene expression provides insights into differential gene
regulation among distinct Aegilops species and different accessions within the same species
in response to salt stress. Differential gene expression highlights the pivotal role of cer-
tain genes in modulating salt tolerance [30,64]. Identification of these genes can yield
valuable information regarding the molecular mechanisms governing plant adaptation
to salt stress. Gene expression analysis can also unravel key metabolic and regulatory
pathways that are implicated in salt tolerance [16]. It also enables the identification of
genes involved in antioxidant synthesis, the regulation of antioxidant enzyme activity, and
salt ion transport [6]. A comprehensive understanding of these metabolic and regulatory
pathways enhances our comprehension of plant adaptation strategies to salt stress, and
it facilitates the development of breeding strategies aimed at improving salt tolerance in
cultivated plants [65,66]. In the present study, the results of transcriptional data supported
the biochemical analysis, where Ae. triuncialis showed a significant potential to cope with
salinity stress compared to bread wheat and other Aegilops species.

The findings derived from the analysis of physio-biochemical responses and gene
expression profiling offer substantial implications for plant breeding programs and sus-
tainable agriculture. The identified genes associated with antioxidant production [52],
antioxidant enzyme activity [17,58], and salt ion transport [46] can serve as valuable genetic
resources for breeding programs aimed at developing novel crop varieties with enhanced
salt tolerance. Enhancing salt tolerance is of utmost importance for sustainable agriculture,
particularly in regions that are characterized by limited access to fresh water. The utilization
of neglected Aegilops species in plant breeding endeavors can contribute significantly to
mitigating the adverse effects of salt stress on agricultural productivity and enhancing re-
silience in the face of changing environmental conditions [67,68]. The activity of SOD, GPX,
APX, catalase, and GR is very often studied in wheat [69–72] as well as in other species,
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such as lettuce [73], tobacco [74], rice [75], barley [76], common bean [77], Arabidopsis [78],
tomato [79], Salvinia [80], maize [81], and Brassica juncea [82].

5. Conclusions

The investigation of the physio-biochemical responses and the gene expression profil-
ing that are related to antioxidants in neglected Aegilops species under salt stress conditions
provides invaluable insights into the adaptive mechanisms of these plants to extreme envi-
ronmental conditions. The physio-biochemical responses highlight the capacity of these
species, especially Ae. triuncialis, to regulate ion balance and water homeostasis, and to
mount effective defenses against oxidative stress. The acquired knowledge holds significant
potential for the development of innovative breeding strategies targeting enhanced salt
tolerance in cultivated crops. The outcomes of these studies have crucial implications for
sustainable agriculture, particularly in the context of evolving climatic conditions and the
escalating threat of soil salinity.
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