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Abstract: Balanced nutrients are essential for healthy plant growth, but there is no sensor available to
monitor essential nutrients such as N and K. Electrical conductivity (EC) is one of the key parameters
that could be adopted to monitor nutrient contents because soil EC is influenced by the available
nutrients. Therefore, the main objective of this study was to examine the effects of different basal
fertilizers, including inorganic, organic, and compost fertilizers, and the application ratio of basal
and additional fertilizers on nutrient contents with an EC sensor. The applied basal and additional
fertilizer ratios were N 30:70, K 40:60, and N 20:80, K 20:80, respectively, for each fertilizer treatment.
The results showed that the EC sensor value was positively associated with water content. The soil
EC response increased with inorganic fertilizer and fertigation, and it was positively correlated with
soluble nutrients and exchangeable ammonium. The correlation coefficients between sensor EC
and soluble nutrients, nitrate, and ammonium nitrogen were 0.87, 0.86, and 0.65, respectively. The
principal component analysis (PCA) also elucidated that inorganic fertilizer was positively associated
with sensor EC, soluble Na, Ca, Mg, and nitrate among variables. This work suggests that soil
available nutrients, especially N, could be monitored with an EC sensor, and the soil nutrient status
could be regulated to promote better plant growth.

Keywords: smart farm; electrical conductivity; fertigation; nutrient management; correlation

1. Introduction

Crop development and productivity are hampered without sufficient nutrients, but
60% of cultivated soils globally have issues with insufficient or excess mineral nutrients
that restrain growth [1]. Stunted roots and leaves, brown or yellow patches on leaves,
and decreased yields are all signs of nutritional deficiencies in crops. There are two main
challenges in the agriculture sector: Farmers face productivity issues in the agricultural
sector of developing countries; and climate change, pollution, and pest infestations pose
the farmers’ second obstacle because they significantly harm crops [2]. Spring onion is a
valuable crop as it possesses therapeutic properties due to the presence of various bioactive
compounds, like vitamins C and A, flavonoids, and quercetin [3]. For the optimum yield,
spring onions with their shallow, branching root structure need a profound supply of
nitrogen (N), phosphorus (P), and potassium (K) [4]. The worldwide population growth
will necessitate a greater than 70% increase in food production [5]. As a result, the farmers’
preferred strategy for successfully raising yield is the prolonged use of agrochemicals and
nutrient fertilizers [6]. This has worsened because of ongoing agricultural practices without
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adequate knowledge [7]. Chemical and organic fertilizers have both positive and negative
effects on plants and soil. Chemical fertilizers are readily absorbed by plants, are often
affordable, and have high nutritional levels. However, excess usage of fertilizers can lead
to a variety of issues, including nutrient loss, ground and surface water contamination,
eutrophication, acidification or basification of the soil, and declines in beneficial microbial
populations [8].

A balanced nutrient supply and increased physicochemical (porosity, soil organic
carbon, water-holding capacity) and biological properties of the soil (soil respiration and
enzyme activity) can be achieved by organic manure [9]. It is now commonly accepted
that organic residues, like crop leftovers, animal manure, or compost, are essential sources
of agricultural fertilizer that can be used to boost agricultural yield and soil health. Nev-
ertheless, the adequate quantity of basal fertilizer may not be enough when plants are in
different growth phases, which results in several symptoms, like reduced plant growth,
decreased chlorophyll content, browned leaves, and curled leaf tips [10]. Therefore, the
application of fertilizer at various phases of plant growth needs to be considered. However,
applying fertilizers without monitoring soil nutrients could severely affect the plant, soil,
and surrounding environment in conventional farming [11].

Excess nutrients are not necessarily beneficial for crop yield. Previously, it was reported
that cucumber yield rose with increasing fertilizer rate up to a threshold, but it started
to decline once the usage was beyond the threshold [12]. Therefore, balanced nutrients
are essential for optimum plant growth, which can be accomplished with smart-farming
technology [13]. The agricultural sector needs to adopt high-tech technologies to meet the
food demand while reducing the detrimental impact on the environment caused by over
and inappropriate fertilization management [6,14]. One of the sectors where the number
of smart-sensor technology has grown prevalently is agriculture [15]. This technology
enables farmers to reduce resource input and increase crop yield by providing accurate
nutrient information [16]. The yield of bitter gourd was enhanced by providing a sufficient
amount of fertilizers with smart-farming technology compared to conventional farming [17].
Ma et al., demonstrated that wheat yield was enhanced under frost conditions by applying
an appropriate amount of potassium (K) [18]. Similarly, adequate N fertilizer treatment also
encourages flower bud differentiation, speeds up fruit ripening, and raises crop yield [19].

Therefore, over the last few decades, developing countries have taken the initiative
to integrate information technology into agriculture to monitor real-time nutrients [20].
Different techniques are available to measure soil nutrients, including the random grid sam-
ple, visible near-infrared spectroscopy (Vis–NIR), attenuated total reflectance (ATR) spec-
troscopy, Raman, and electrochemical sensor-ion selective electrode (ISE) and ion-selective
field effect transistor (ISFET) [16]. One of the key difficulties that must be considered while
adopting smart systems for agriculture is the shortage of energy resources [21]. As a result,
both data collection and management typically use compact, low-power consumption
smart devices. Similarly, security systems can be implemented in precision agriculture that
deal with sensitive data to prevent unauthorized parties from accessing the obtained data.
In addition, sensors are not available to directly monitor soil essential nutrients such as N
and K. Instead, the EC sensor can be used to monitor available nutrients in soil indirectly
because a higher EC denotes a higher number of ions in the soil solution [22]. However,
in order to properly monitor soil nutrient status, it is crucial to identify the variables that
influence sensor EC.

Therefore, the main objective of this study is to evaluate the possibility of employing
an EC sensor to monitor the nutrient status of different fertilizers applied to soil and factors
related to EC sensor values. The physicochemical characteristics of the soils treated with
various fertilizers were assessed in this study. Additionally, principal component analysis
(PCA) was performed to evaluate the relationship among variables.
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2. Materials and Methods
2.1. Fertilizer Treatment of Spring Onion Field

The experimental site was located in Mungwang-myeon, Goesan-gun, Republic of
Korea (Figure S1). Before planting spring onions (Allium fistulosum), the soil was sampled
and tested for soil texture, pH, electrical conductivity (EC), and available nutrients. The
soil texture was analyzed using a micropipette method, and the pH and EC of the soil
were measured using pH and EC electrodes (Orion Star A215, ThermoFisher Scientific,
Waltham, MA, USA), respectively. The available nutrients were analyzed using inductively
coupled plasma optical emission spectroscopy (ICP–OES, Avio 500, Perkin Elmer, Waltham,
MA, USA) after extracting 2 g of soil with 20 mL 1 M ammonium acetate (NH4OAC)
solution for 30 min. The analyzed soil was silt loam, and the initial pH and EC were
4.9 and 0.8 dS/m, respectively. According to the soil test results, the recommended dose
of CaCO3·MgCO3 (300 kg/10a) and manure compost (460 kg/10a) was added to the
experimental area. The experimental area was divided into six different parts (3 × 4 m in
each part), and different basal fertilizers were applied on 15 April 2021 as inorganic, organic
(mixed oilcake, N-P2O5-K2O = 4-2-1%), and manure compost (N-P2O5-K2O = 1.8-1.9-1.3%).
The recommended doses of K, P2O5, and K2O were 15.2, 3.0, and 13.7 kg/10a, respectively
(Table S1) [23]. Phosphate was supplied uniformly as basal fertilizer with organic or
manure compost and supplemented with fused phosphate. The spring onion seedlings
were transplanted on 23 April 2021 and cultivated by applying additional fertilizer with
an automatic fertigation system to supply N and K as urea and KCl, respectively. During
the spring onion cultivation, the water potential was set at −33 kPa for irrigation control.
The water potential was controlled by the mean value of two soil water potential sensors
(Teros 21, Meter Group, Pullman, WA, USA) connected to a datalogger (CR1000, Campbell
Scientific, Logan, UT, USA) in the experimental area. For each basal fertilizer treatment,
the applied basal and additional fertilizer ratios were N 30:70, K 40:60, and N 20:80, K
20:80, respectively (Table S1). Additional fertigation (five times) was supplied 30 days after
transplanting (DAT) and every two weeks from June to July 2021 [23].

2.2. Monitoring of Soil EC Using a Sensor

During the cultivation, an EC sensor (Teros 12, Meter Group, Pullman, WA, USA) was
inserted into each soil with a different fertilizer treatment to monitor the water content and
changes in the soil bulk EC. The soil sensor was buried approximately 10 cm from the soil
surface between two spring onions in a furrow in the middle of the treated plot. The soil
sensors were connected to a data logger (Zn6, Meter Group, Pullman, WA, USA), and the
water content, soil temperature, and bulk EC were recorded every 15 min from 28 June to
5 August 2021. For correlation analysis, the sensor was calibrated for 20% water content
because the sensor EC linearly increased with the water content in the soil.

2.3. Analysis of Soil Chemical Properties

Spring onion plants were harvested on 6 August 2021 (105 DAT), and the soils were
collected to a 10 cm depth from the different fertilizer-treated plots at 32 DAT, 66 DAT,
and 102 DAT. The composite soil samples were mixed properly and air-dried at room
temperature for 2 days. After air drying, the soil was passed through a 2 mm stainless
steel sieve and stored in an airtight polythene bag until further use. For analyzing pH
and EC, 5 g of soil was placed into a 50 mL conical centrifuge tube with 25 mL of distilled
water and shaken at 120 rpm for 30 min, and the pH and EC of the supernatant were
measured using pH and EC electrodes, respectively. The water-soluble soil nutrient contents
were determined with ICP–OES after extracting 5 g soil with 25 mL distilled water in
a 50 mL conical centrifuge tube at 120 rpm for 30 min. The available nutrient concentrations
in the soil were analyzed with ICP–OES after extracting 2 g of soil with 20 mL 1 M
ammonium acetate solution for 30 min. The exchangeable ammonium nitrogen (NH4

+-N)
and nitrate nitrogen (NO3

−-N) in the soil were extracted with 2 M KCl and analyzed using



Agronomy 2023, 13, 2156 4 of 12

the indophenol-blue method and vanadium (III) reduction method, respectively, using a
microplate photometer (MultiskanTM FC, ThermoFisher Scientific, Waltham, MA, USA).

2.4. Statistical Analysis

The statistical analysis of the experimental data was performed using Statistical Pack-
ages for Social Sciences (SPSS Statistics 27, IBM, Armonk, NY, USA). Analysis of variance
(ANOVA) followed by Duncan’s multiple range test was used for mean comparison among
the treatment groups at p-value < 0.05. The correlation analysis among the soil proper-
ties under different fertilizer treatments and principal component analysis (PCA) was
conducted using XLSTAT software (2022, Lumivero, Denver, CO, USA).

3. Results and Discussion
3.1. Effect of Different Basal Fertilizers on Soil Chemical Properties

The soil pH was moderately affected by the treatment of various basal fertilizers
(Table 1). The results revealed that the soil applied with organic fertilizer (N80, K80)
exhibited a lower pH, but a lower amount of basal compost (N80, K80) showed a relatively
higher pH (Table 1). The release of a hydrogen ion from the quick degradation of biomass
by microbial flora may be the cause of the lower soil pH following the application of organic
fertilizer. According to earlier studies, the initial soil pH decreased from 6.4 to 4.6 with
the application of organic fertilizer and quick degradation of the biomass into dissolved
organic acids [24]. The soil pH decreased as organic fertilizer was applied more frequently
or in a higher dose, which is analogous to prior studies [25]. Another cause of the reduction
of the soil pH could also be the rapid nitrification of NH4-N in the soil [26]. The pH was
inversely related to the nitrate concentration because nitrification releases protons and
reduces soil pH (Table 2) [27].

Table 1. Chemical properties of the soil applied with different fertilizers.

pH EC
(mS/cm)

NO3-N
(mg/kg)

Ex. K
(mg/kg)

Ex. Ca
(mg/kg)

Ex. Mg
(mg/kg)

Inorganic fertilizer
(N70, K60) 5.64 ± 0.05 ab 1.15 ± 0.04 c 32.7 ± 5.2 b 0.81 ± 0.01 b 5.53 ± 0.02 b 1.91 ± 0.01 a

Organic fertilizer
(N70, K60) 5.51 ± 0.23 bc 0.8 ± 0.01 d 19.7 ± 5 c 0.65 ± 0.02 c 5.23 ± 0.02 c 1.67 ± 0.01 b

Compost
(N70, K60) 5.44 ± 0.04 c 1.67 ± 0.06 a 56.2 ± 7.7 a 1.28 ± 0.00 a 5.97 ± 0.07 a 1.92 ± 0.03 a

Inorganic fertilizer
(N80, K80) 5.50 ± 0.06 abc 1.36 ± 0.03 b 31.2 ± 4.9 b 0.64 ± 0.01 c 4.5 ± 0.09 d 1.55 ± 0.01 c

Organic fertilizer
(N80, K80) 5.39 ± 0.04 c 0.77 ± 0.01 d 39.6 ± 2.5 b 0.45 ± 0.01 d 4.23 ± 0.07 e 1.36 ± 0.01 d

Compost
(N80, K80) 5.73 ± 0.01 a 0.66 ± 0.01 e 20.3 ± 1.5 c 0.33 ± 0.02 e 4.52 ± 0.05 d 1.43 ± 0.01 d

The different letters indicate a statistically significant difference in the same column at p < 0.05.
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Table 2. Correlation matrix of sensor EC value, pH, soil EC (1:5 (soil:water extract)), soluble elements, and exchangeable elements.

Variables Sensor EC pH Soil EC Sol. Ca Sol. K Sol. Mg Sol. Na Sol. P Sol. S NO3−N Sum of Sol.
Nutrients Ex. Ca Ex. K Ex. Mg Ex. Na Ex.

NH4−N
Sum of Ex.
Nutrients

Sensor EC 1
pH −0.307 1

Soil EC 0.927 −0.431 1
Sol. Ca 0.883 −0.496 0.972 1
Sol. K 0.582 −0.305 0.512 0.559 1

Sol. Mg 0.858 −0.603 0.972 0.974 0.487 1
Sol. Na 0.918 −0.417 0.885 0.901 0.647 0.844 1
Sol. P −0.639 0.430 −0.519 −0.599 −0.552 −0.572 −0.653 1
Sol. S 0.703 −0.559 0.906 0.888 0.321 0.934 0.693 −0.264 1

NO3-N 0.855 −0.512 0.921 0.977 0.603 0.937 0.911 −0.714 0.804 1
Sum of sol. nutrients 0.868 −0.551 0.972 0.993 0.592 0.984 0.887 −0.581 0.911 0.968 1

Ex. Ca −0.375 0.265 −0.598 −0.510 0.201 −0.601 −0.375 −0.102 −0.759 −0.412 −0.525 1
Ex. K −0.318 0.072 −0.514 −0.416 0.302 −0.485 −0.299 −0.169 −0.650 −0.298 −0.411 0.932 1

Ex. Mg 0.302 0.111 0.243 0.345 0.501 0.184 0.426 −0.274 0.045 0.424 0.306 0.245 0.291 1
Ex. Na 0.597 −0.576 0.511 0.599 0.762 0.531 0.798 −0.637 0.347 0.677 0.608 0.077 0.192 0.477 1

Ex. NH4-N 0.645 −0.451 0.776 0.800 0.314 0.802 0.537 −0.315 0.798 0.725 0.794 −0.358 −0.249 0.237 0.269 1
Sum of ex. nutrients −0.281 0.199 −0.494 −0.390 0.308 −0.494 −0.264 −0.171 −0.671 −0.281 −0.405 0.980 0.962 0.398 0.185 −0.240 1

Values in bold indicate a significant correlation at the p-value < 0.05.
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The EC response of the soil treated with various fertilizers varied in accordance with
the type of basal fertilizer and dose. The average EC of the inorganic fertilizer-treated soil
was relatively higher than that of the other treatments. The increase in soil EC might be
attributed to the easy release of nutrients from the applied fertilizers [28]. Compared with
organic fertilizer, the soil treated with compost fertilizer exhibited a greater EC response,
possibly due to the greater amount of organic matter present in the compost [29]. Earlier
findings demonstrated that the EC response is strongly associated with the amount of
organic matter present in compost and manure [29]. The EC response of compost was
augmented as the dose of basal fertilizer application increased (Table 1). Manure compost
has several soluble salts, including Mg, Ca, and HCO3

−, which lead to an increased
EC [30,31]. A similar result was also noticed by Lakshmi, who found that soil treated with
farmyard manure (FYM) had a larger EC response than the inorganic-treatment group
because FYM released more electrolytes [32].

The amount of nitrate in the soil was substantially higher after a high amount of
compost application (compost (N70, K60)) over the other treatment groups, and it was
highly correlated to the soil EC (Table 1). The higher nitrate concentration in the soil
treated with compost might be a result of greater mineralization of N by microbial activity.
A previous study also reported that applying organic manure raised soil nitrate levels,
which is identical to our findings [33,34]. Similarly, Wang et al., described that the nitrate
concentration in the soil profile of a vegetable field increased substantially because of
excessive manure application [35].

Although several processes, including plant uptake, soil organisms, atmospheric N2
fixation, mineralization, deposition, volatilization, and denitrification, affect nitrate levels
in the soil, nitrate concentration was related to the soil EC (Table 1) [36]. These results
suggested that a high nitrate content in the compost-fertilized soil could be one of the
factors contributing to a rise in the soil EC. Exchangeable K, Ca, and Mg contents showed a
similar trend to EC and nitrate in relation to different fertilizer treatments. A higher amount
of the basal fertilizer treatment showed higher exchangeable cations, and compost fertilizer
elucidated relatively higher exchangeable cations than the other basal fertilizers (Table 1).

After two times of fertigation (66 DAT), the inorganic fertilizer-treated plot showed
higher water-soluble nutrients; however, exchangeable nutrients did not show consistent
results according to the different fertilizer applications (Tables S2 and S3). The EC, nitrate,
and water-soluble nutrients increased with increasing additional fertilizers except for
compost (Table S2). In the case of compost treatment as the basal fertilizer, an increased
ratio of additional fertilizer did not affect the soluble nutrients, which could be related
to the adsorption of cations on organic matter. According to Shin et al., the functional
groups present on the surface of organic matter contributed to the greater adsorption of
cations [37]. The bonding forces between the surface charge of the cations and the functional
groups of the organic matter formed organo-mineral interactions [38]. The soluble nutrient
concentrations decreased after five times of fertigation (102 DAT), while the exchangeable
nutrients increased after fertigation (Tables S2 and S3). The yield of spring onion was
not significantly affected by the different types of basal fertilizer and fertigation ratio,
but nitrogen uptake by spring onion was decreased with an increasing fertigation ratio,
signifying that N uptake depends on the N concentration in the soil at the early stage of
plant growth [23,39].

3.2. Monitoring of Sensor EC

The soil EC increased as fertilizer and water were added to the soil (Figure 1a). In
this work, according to the soil water potential, water was provided by an automatic
system, and the water content increased with irrigation and fertigation (Figure 1b). Water
facilitates the ion liberation process and raises the EC response [40], which is concordant
with our results. Ions transport electrons, and the number of ions available or capable of
transporting electrons affects EC. Vitz et al., reported that the soluble ions that exist in the
water contribute to the passage of electrons from one electrode to another [41].
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Figure 1. Effect of different fertilizers on soil EC response (a); the water content of different fertilized
soil (b). Black arrows indicate fertigation treatment, and blue arrows indicate precipitation. The
length of the blue arrows is related to the amount of precipitation.

Inorganic fertilizer and a higher fertigation ratio exhibited the highest EC followed by
compost and organic fertilizer (Figure 1a). The soil treated with inorganic fertilizer with
a higher ratio of additional fertilizer (N80, K80) showed a greater EC response than the
other treatment groups, which might be explained by the easy solubilization of inorganic
fertilizers in water relative to the other fertilizers. Ozlu and Kumar reported a similar
outcome, showing that soil EC was increased by 33% while applying the inorganic fertilizer
compared to manure [31].

The EC monitoring data were initially different among the treatments, but the dif-
ference was not significant after maturing spring onion. Lee et al., observed that, after
14 days of tomato plantation, the plants started to grow rapidly, and the EC dropped
quickly, suggesting that EC was directly related to the amount of available ions and plant
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growth [42]. However, the solubility of nutrients is highly influenced by the pH factor [43].
Therefore, the pH, amount of soil organic matter, and chemical properties of the fertilizer
could be responsible for the availability of a higher amount of nutrients in the soil with the
addition of inorganic fertilizer.

3.3. Correlation of Sensor EC Value and Elemental Contents of Different Fertilized Soils

Various fertilizers were applied in the soil to test if the sensor EC could correlate with
the soil available nutrients. The correlation analysis revealed a positive correlation of the
sensor EC with the water-extracted EC values and showed a strong positive association
with all the water-soluble elements except phosphorous (p < 0.05) (Table 2). A poor
correlation between the EC and P could be due to the immobilization of P in the soil into
insoluble compounds like calcium–phosphate minerals [44]. Park and Sung described a
correlation study of EC and soil elements that exhibited a positive association with all
elements excluding P [45]. Similar findings had also been found by Mazur et al., showing a
positive correlation of EC with macronutrients except P [46].

Although fertigation supplied only N and K, other available nutrients such as Ca
and Mg also increased because of the cation exchange reaction. Water-soluble Ca and Mg
were highly correlated with nitrate and exchangeable ammonium (NH4

+). Therefore, the
sum of the water-soluble nutrients was also highly correlated with the sensor EC (Table 2).
However, the correlation between the extracted EC, sensor EC, and exchangeable element
contents did not show a strong correlation except NH4

+ (Table 2). The K did not exhibit a
substantial correlation with EC, which could be because K is a mobile nutrient that was
exponentially absorbed by the plant [47]. An adequate amount of Ca is favorable for higher
K uptake by roots, which could be another reason [48]. However, the dose of fertilizer
application, plant species, and irrigation all have an impact on the amount of nutrients
in the top layer of soil [49]. Principal component analysis was performed with averaged
sensor EC values of the sampling day and chemical properties analyzed for different
fertilizer-treated soils, and the projections of the cases with two principal components were
imaged in Figure 2. PC1 and PC2 accounted for 59.17% and 19.94% of the total variation,
respectively. The sensor EC was strongly associated with nitrate and soluble Ca and Na
and negatively related to the soil pH. PC1 was strongly associated with soluble nutrients,
while PC2 was related to exchangeable nutrients (Table 3 and Figure 2). The application of
inorganic fertilizers was substantially correlated with sensor EC, soluble Na, Ca, Mg, and
nitrate among the variables.

Table 3. Principal component loadings and variance explained with the first three principal components.

PC1 PC2 PC3

Sensor EC 0.906 0.064 0.175
pH −0.566 −0.015 0.763

Soil EC 0.971 −0.162 0.119
Sol. Ca 0.989 −0.046 0.078
Sol. K 0.602 0.629 0.029

Sol. Mg 0.978 −0.166 −0.069
Sol. Na 0.929 0.163 0.117
Sol. P −0.633 −0.482 0.216
Sol. S 0.874 −0.421 −0.053

NO3-N 0.973 0.094 0.048
Ex. Ca −0.493 0.816 −0.039
Ex. K −0.379 0.856 −0.158

Ex. Mg 0.325 0.582 0.579
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Table 3. Cont.

PC1 PC2 PC3

Ex. Na 0.672 0.576 −0.197
Ex. NH4-N 0.760 −0.146 0.029

Eigenvalue 8.876 2.992 1.105
Variability % 59.172 19.943 7.369

Cumulative % 59.172 79.116 86.485
The bold value indicates a loading >0.5.
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Figure 2. Biplot of the principal component analysis for sensor EC, pH, and water−soluble and
exchangeable elements of different fertilizer−treated soils. (IOF: inorganic fertilizer, OF: organic
fertilizer, COM: compost, 66: sampled at 66 DAT, 102: sampled at 102 DAT).

Overall, this study revealed that the amounts of soluble nutrients and N had a signifi-
cant impact on the variations in EC response and were positively correlated with the sensor
EC values. The results imply a strong correlation between the extracted values of elemental
contents and the sensor EC values, suggesting that EC sensors can be used to monitor soil
nutrients, particularly N. Measuring soil EC could be a valuable indicator for determining
available N and a key marker for determining soil fertility [50]. However, the EC sensor
technology has several limitations because various factors, such as temperature, cropping,
irrigation systems, land usage, and fertilizers, have varying effects on soil EC. For example,
in the case of temperature, the mobility of ions under electrostatic potential rises with
temperature and eventually enhances the EC response [51]. However, the mobility of ions
progressively slows down and begins to idle at a lower or cooler temperature of the water or
soil, which reduces their activity and ultimately lowers the soil EC [52]. Therefore, different
factors should be considered when applying soil EC sensors for monitoring nutrient levels
in other types of soil.

4. Conclusions

An EC sensor was successfully implemented in the field for monitoring soil nutrients.
Compared to the other fertilizer groups, the inorganic fertilizer raised the soil EC response
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in this study, which was also represented by an EC sensor value, and showed a strong
positive correlation with soluble nutrient contents. Therefore, monitoring EC values using
soil sensors could be used to estimate the amount of fertilizer needed in the field. It was
also found that the fertilizer application rate, soil moisture, and pH significantly affect
the EC response. Overall, this research demonstrated that soil nutrients, particularly N,
greatly affect the EC sensor response, suggesting that EC sensor technology could be
prominently adopted for monitoring soil nutrients to promote crop development and
reduce the probable risk of environmental pollution. Future work will be conducted on
monitoring soil nutrients from various localities with an EC sensor and their correlation
according to the soil texture.
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Exchangeable ammonium and ammonium acetate extractable element concentrations (cmolc/kg).
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