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Abstract: Swine manure is widely used for ameliorating red soil acidification, but little information
is available about its effect on N2O emissions. To explore the effects, a 35-day incubation experiment
was conducted with two soils under different fertilization history: chemical fertilizers only (F) and
combination of chemical fertilizers with swine manure (M). The treatments included no fertilizer
(control), 100% N from urea (M0), and urea plus swine manure, which supplied 20% (M20), 40%
(M40), 60% (M60), and 100% (M100) of total N. Soil N2O emission rates, pH, exchangeable acidity,
mineral N species, dissolved organic carbon and nitrogen, microbial biomass carbon, and their inner
relationships were examined. The N2O emission rates markedly increased following the treatments,
reached peaks before day 2, and thereafter decreased sharply to the level of the control by day 25, 25,
23, 15, and 9 in F soil and by day 25, 25, 23, 19, and 11 in M soil for M0, M20, M40, M60, and M100
treatments, respectively. As swine manure application rate increased, the cumulative N2O emissions
of F soil decreased significantly, while, for M soil, there was no significant difference among M0, M20,
M40, and M60 treatments, which were higher than the M100 treatment. At the end of incubation, soil
pH in F and M soils followed the order M0 < M20 < M40 < M60 < control < M100 and vice versa for
exchangeable Al3+ and acidity. F soil had relatively higher NH4

+-N concentration in M0 treatment
and higher NO3

−-N concentrations in M0 and M20 treatments than M soil. Soil pH and NH4
+-N

had the greatest relative contribution to N2O emissions. Overall, this study indicates that partial
chemical N replacement by swine manure could effectively mitigate N2O emissions from acidic red
soil primarily because of mineral N immobilization and alleviated red soil acidification. Thus, swine
manure has the potential to co-ameliorate red soil acidification and N2O emission. Further research is
needed to determine the effect of swine manure on N2O emission reductions under field conditions
and the overall benefit in effective N management.

Keywords: chemical fertilization; manure; soil pH; nitrous oxide; nitrification

1. Introduction

Nitrous oxide (N2O), as a potent greenhouse gas, has received great attention due to
its atmospheric longevity (about 120 years) and global warming potential (273 times that of
CO2 on a per-molecule basis over a 100-year period) [1]. The main source of anthropogenic
N2O is agriculture, accounting for 60% of the global N2O emissions due to overuse of
nitrogen fertilizers for food production [2]. Acidic soil comprises approximately one-third
of the global ice-free land area, and it is the hotspot of global N2O emissions [3,4]. In China,
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most acidic soil is distributed in the red soil region. Overuse of chemical nitrogen fertilizer
has intensified red soil acidification, which seriously limits crop growth in the region [5].
Swine manure rich in alkalinity is widely used for preventing red soil acidification, in
addition to introducing a large amount of carbon and other nutrients [6–8]. Swine manure’s
effect on red soil N2O emissions is not fully understand.

N2O is produced primarily via microbial nitrification and denitrification processes.
Swine manure is rich in easily degradable organic carbon, such as soluble organic car-
bon and volatile fatty acids, which could effectively alleviate the denitrification inhibition
caused by the insufficient supply of carbon substrates, which is conducive to promoting
N2O production [9,10]. The input of unstable organic materials accompanied with manure
could create a more anoxic soil environment and favor N2O production from the denitrifi-
cation process [11]. In addition, soil pH is recognized as an important factor influencing
N2O production by altering microbial-driven N-cycling processes [12–14]. For example,
Cheng et al. [15] found that organic fertilizer increased acidic red soil N2O emissions due
to the soil pH elevation, which reduced the relative proportion of N2O emissions caused by
heterotrophic nitrification, but this might be masked by the increase in overall N2O emis-
sions stimulated by carbon input. The effect of pH stimulation on the rate of autotrophic
nitrification and NO3

− accumulation, as well as the increase in carbon availability, further
facilitated the denitrification process [16].

However, opposite results have been obtained regarding the effect of organic fertilizer
application on N2O emissions. Li et al. [17] showed that, compared with chemical fertilizer,
organic fertilizer amendment could significantly reduce N2O emissions. The possible
reasons are that the soil N2O emissions were mainly from the chemical fertilizer nitrogen,
rather than the mineralization and transformation of organic matter, while the available
nitrogen in the soil after the addition of organic fertilizer was lower than that after inorganic
fertilizer treatments [18,19]. Thus, the addition of organic N relative to chemical N could
slow the mineralization of soil N for nitrification and denitrification; thus, it had the
potential to depress the N losses of N2O. Considerable field investigations have shown
that decreasing the amount of chemical fertilizer input and replacing it with organic
fertilizer (e.g., manure) could substantially reduce soil N2O emissions [17–19]. However, the
measurements affected by partial chemical N replacement by manure were not consistent
due to substitution rates and soil properties.

The contributions of various combinations of swine manure-N with urea-N and of
soil improvement from manure amendment to N2O emissions are not fully clear. The
purpose of this study was to determine the potential effects of swine manure as amendment
for alleviating red soil acidification on N2O emissions and N transformation processes in
comparison with chemical fertilizers only. Therefore, a 35-day incubation experiment was
designed to investigate the effect of the proportion gradients of different swine manure
to replace chemical nitrogen fertilizer on the acidity of red soil and N2O emissions. Our
hypothesis was that the increase in swine manure substitution ratio could effectively
mitigate red soil acidification and reduce N2O emissions.

2. Materials and Methods
2.1. Experimental Materials

Soils (0–20 cm) used in the study were collected in February 2022 from two different
fertilization plots of a long-term (13 years) field experiment located at the Red Soil Ex-
perimental Station (26◦45′12′′ N, 111◦52′32′′ E, with an altitude of 120 m above sea level)
of the Chinese Academy of Agricultural Sciences, Qiyang City, Hunan Province, China.
The field experiment was conducted in September 2009, and the cropping system was
single spring maize. The fertilization treatments included chemical N, P, and K fertilizers
without manure (F), and chemical NPK plus swine manure at 60% of the total N supply
(M). The total N application rate was 225 kg N ha−1 year−1. Urea (CH4N2O) (46.6% N) was
used as the chemical N fertilizer source. Superphosphate (Ca(H2PO4)2) (12.5% P2O5) and
potassium chloride (KCl) (60.0% K2O) were applied at 33 kg P ha−1 year−1 and 62 kg K
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ha−1 year−1 to both treatments. All fertilizers were applied to the soil together. Lime (CaO)
(71.5% Ca) was applied at rate of 1500 kg ha−1 for F treatment at the end of 2019 due to
severe red soil acidification from chemical fertilizers. The study area is a subtropical humid
monsoon climate, and the details can be found in Cai et al. [8]. The soil is Ferralic Cambisol
according to the FAO or World Soil Classification and derived from quaternary red earth.
The soil texture is clay, and the main clay mineral is kaolin. Surface soils (0–20 cm) were
collected, air-dried, ground, and sieved to pass through a 2.0-mm sieve for incubation
experiment.

The swine manure used for incubation experiment was collected from local farmyards
and air-dried. For achieving uniform treatment, the swine manure was ground, sieved to
pass through a 2.0-mm sieve, and thoroughly mixed before incubation experiment. Selected
chemical properties of the soils and the swine manure are shown in Table 1.

2.2. Experimental Design and Incubation Procedure

Two soils (F and M) were respectively set up with 6 treatments: (1) no fertilizer
(Control), (2) 100% chemical fertilizer nitrogen (M0), (3) 20% N from manure and 80%
N from chemical N (M20), (4) 40% N from manure and 60% N from chemical N (M40),
(5) 60% N from manure and 40% N from chemical N (M60), and (6) 100% N from manure
(M100). An amount of air-dried soil equivalent to 1.5 kg of oven-dried soil was weighed in
a sterilized glass bottle (2500 mL volume capacity) for 36 duplicates. These soil samples
were moistened to 60% water holding capacity by DI water. The bottles were pre-incubated
in a constant-temperature and -humidity incubator (HSP-350B Kuntian, Shanghai, China)
at 25 ± 1 ◦C for 21 days to recover microbial activity. The urea and manure were added to
reach the final treatment rates, respectively. The soil, urea, and manure were thoroughly
mixed, and the soil water content was adjusted to 20% (w/w), equivalent to 80% of water
holding capacity (25%, w/w). Then, the bottles continued to incubate for 35 days. Each
bottle was sealed with PM996 sealing film and was equipped with 30 small pinholes to
reduce water loss during gas exchange. During the incubation, the weight of each bottle
was recorded every 2 or 3 days to calculate the water lost through evaporation, and DI
water was added to soil.

2.3. Gas Sampling and Analysis

Gas samples were collected on days 0, 0.25, 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 17, 19, 21, 23, 25,
28, 30, and 35 after adding fertilizers. Prior to gas sampling, the sealing film was removed
so that it was in equilibrium with the surrounding air for 30 min, and then the bottle was
sealed with a rubber cork with a glass tube (diameter 4.6 mm) at a 120◦ angle at the top,
which connected to a rubber tube and a three-way valve for gas sampling. The gas samples
were collected in 12.5 mL vacuum glass bottles with a 30 mL syringe at 0, 1, and 2 h after
sealing. The concentrations of N2O were determined using a meteorological chromatograph
(Agilent Technologies 7890A, Inc., Santa Clara, CA, USA). The N2O emission rate was
calculated by the following formula [20]:

Fl = ρ×V/W × ∆c/∆t× 273/(T + 273) (1)

Fl is the N2O emission rate (µg kg−1 h−1), ρ is the N2O density under the standard
condition (kg m−3), V is the volume of gas in the incubation bottle (m3), W is the mass of
drying soil in the incubation bottle (kg), ∆c is the change in N2O concentration during the
sealing time (ppm), ∆t is the sealing time (h), and T is the incubation temperature (25 ◦C).

E = ∑n
i=1

Fi + Fi+1

2
× (ti+1 − ti)× 24 (2)

E denotes the cumulative N2O emissions (µg kg−1), and Fi and Fi+1 are the N2O
emission rates at time ti and ti+1, respectively.
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Table 1. Selected chemical properties of the soils and the swine manure.

Materials pH NH4
+-N

(mg kg−1)
NO3−-N

(mg kg−1)
AN

(mg kg−1)
DON

(mg kg−1)
TN

(g kg−1)
DOC

(mg kg−1)
TOC

(g kg−1) C/N MBC
(mg kg−1)

AP
(mg kg−1)

TP
(g kg−1)

AK
(mg kg−1)

TK
(g kg−1)

BD
(g cm−3)

F Soil 5.60 2.22 9.27 68.48 26.80 0.94 109.94 8.20 8.72 116.43 14.26 0.91 121.76 13.30 1.26

M Soil 5.67 2.88 9.78 74.91 23.70 0.96 97.06 9.41 9.80 81.47 117.35 2.10 225.69 13.40 1.40

Manure 8.77 448.30 645.24 – – 16.48 – 356.68 21.64 – – 13.41 – 13.92 –

NH4
+-N, ammonium nitrogen; NO3

−-N, nitrate nitrogen; AN, alkali-hydrolyzable nitrogen; DON, dissolved organic nitrogen; TN, total nitrogen; DOC, dissolved organic carbon; TOC,
total organic carbon; MBC, microbial biomass carbon; AP, available phosphorus; TP, total phosphorus; AK, available potassium; TK, total potassium; BD, bulk density.
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2.4. Soil Sampling and Analysis

Soil samples were collected on days 0, 0.25, 1, 3, 5, 7, 11, 15, 21, 28, and 35 after fertilizer
addition. The soil in the incubation bottle was thoroughly mixed with a long-handled
stainless-steel weighing spoon before sampling, and then 50 g of soil was taken for soil
property analysis. Soil ammonium nitrogen (NH4

+-N) and nitrate nitrogen (NO3
−-N)

were extracted with 2 mol L−1 KCl and analyzed by a flow injection analyzer (SEAL Auto
Analyzer AA3, Norderstedt, Germany) [21]. Soil microbial biomass carbon (MBC) was
estimated using the chloroform–fumigation–extraction method [22]. Soil dissolved organic
carbon (DOC) and nitrogen (DON) were extracted with 0.5 mol L−1 K2SO4 solution [23].
MBC, DOC, and DON were analyzed by a total organic carbon analyzer (multi N/C 3100
Analityk Jena, Germany). Soil pH was determined by a pH meter (FE28, Mettler, Toledo,
OH, USA) with a mixture of soil and water at a ratio of 1:2.5 (soil-to-water ratio) [24]. For
total exchangeable acidity (Al3+ and H+), soils were extracted with 1 mol L−1 KCl, and
then titrated with 0.02 mol L−1 NaOH to phenolphthalein endpoint [25].

2.5. Data Analysis

One-way analysis of variance (ANOVA) and the independent-sample Duncan test
were conducted to compare differences in mean N2O emissions and soil properties among
different treatments at a significant level of 0.05 by SPSS v. 19.0 (IBM, Armonk, NY, USA).
Pearson correlation analysis was used to calculate correlation coefficients between N2O
emissions and soil properties by Origin 2023 (OriginLab, Northampton, MA, USA). All
figures and tables were created using SigmaPlot 10.0 and Microsoft Excel 2010 (Microsoft,
Redmond, WA, USA). All the data are presented as the mean plus or minus standard error.

3. Results
3.1. N2O Emission

There were no significant changes in N2O emissions from no fertilizer (control) of
the F and M soils throughout the whole incubation period. However, the N2O emission
rates of F soil were markedly increased following fertilization and reached the peaks by
day 0.25 for M40, M60, and M100 treatments, and by day 1 and day 2 for M20 and M0
treatment, respectively, indicating that the peaks significantly increased with the manure
application rate (p < 0.05). For M100 treatment, the N2O emission rates decreased sharply
thereafter (p < 0.05), in spite of some fluctuation between 0.58 and 0.77 µg kg−1 h−1 during
days 1 to 5, and further decreased to 0.03–0.06 µg kg−1 h−1 after day 9, becoming similar
to the control. For M40 and M60 treatments, a further decrease in N2O emission rates was
observed by day 15 and 11, respectively (p < 0.05). The second peaks were found by day 7
and 15 for M0 and M20 treatments, respectively, and a further decrease was observed after
day 19 (p < 0.05). For M soil, the peaks of N2O emission rates were observed by day 0.25
in all fertilization treatments and decreased sharply (p < 0.05) thereafter to the level of the
control by 25, 25, 23, 19, and 11 in M0, M20, M40, M60, and M100 treatments, respectively
(Figure 1).

The cumulative N2O emissions showed a significant difference among treatments
and soils. As compared with the control, all fertilization treatments significantly increased
the cumulative N2O emissions for both soils. For F soil, the cumulative N2O emissions
decreased with the increase in manure application rates. At the end of incubation, the
highest (282.17 µg kg−1) cumulative N2O emissions were observed in M0 treatment, and
the lowest (146.81 µg kg−1) were found in M100 treatment. For M soil, there was no
significant difference among M0, M20, M40, and M60 treatments, which were higher than
the M100 treatment (Figure 2).
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Figure 1. Change in nitrous oxide emission rates of the red soils after different fertilizations. The
initial soils were from two fertilization treatments of a long-term field experiment. (a) F soil N2O
emission rate, (b) M soil N2O emission rate. Error bars are the standard error of the mean.
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Figure 2. Change in cumulative N2O emissions of the red soils after different fertilizations. (a) F soil
cumulative N2O emission, (b) M soil cumulative N2O emission. Error bars are the standard error of
the mean. Different letters indicate a significant (p < 0.05) difference between the treatments and soils.

3.2. Soil pH Change

The changes in soil pH during the study period are shown in Figure 3. Soil pH
was significantly affected by application rates of swine manure in both the F and the M
soils. Without fertilizer addition (control), the soil pH showed no change throughout
the incubation period. As compared with the control, soil pH significantly increased for
all fertilization treatments of the two soils at the beginning of the incubation experiment
(p < 0.05). Thereafter, F soil pH significantly decreased (p < 0.05) and then stabilized by
days 28, 21, 15, 11, and 7, and the stable pH was 4.58, 4.79, 4.99, 5.27, and 5.78 for M0, M20,
M40, M60, and M100 treatments, respectively. In M soil, it took 28, 21, 15, 11, and 5 days
to reach the stable pH of 4.63, 4.74, 4.97, 5.25, and 5.81 for M0, M20, M40, M60, and M100
treatments, respectively. For both soils, the final pH significantly increased with swine
manure application rates (p < 0.05), and the M100 treatment had much higher soil pH than
the control treatment (p < 0.05). At the end of incubation, the pH of soils followed the order
M0 < M20 < M40 < M60 < control < M100, and there was no significant difference between
the F and the M soil at the same fertilization application rates in the incubation study.
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Figure 3. Change in pH of the red soils after different fertilizations. (a) F soil pH, (b) M soil pH.The
initial soils were from two long-term field fertilization treatments. Error bars are the standard error
of the mean.

3.3. Soil Exchangeable Acidity

The exchangeable H+ and Al3+ and the acidity differed between the two soils and
were also significantly affected by swine manure application rates (Figure 4). After 35-day
incubation, the exchangeable H+ and Al3+ and the acidity of the two soils significantly
decreased as the swine manure application rate increased. The highest exchangeable H+

was found in the M0 treatment of M soil. As compared to the control, exchangeable H+

increased by 33.33% in the M0 treatment of F soil (p < 0.05), and increased by 51.67% and
26.67% for the M0 and M20 treatments of M soil, respectively (p < 0.05) (Figure 4a,b). The
exchangeable H+ of the M0 and M20 treatments of M soil was much higher compared to F
soil (p < 0.05).

There was the same change trend in exchangeable Al3+ and acidity of the two soils
(Figure 4c–f). The highest exchangeable Al3+ and acidity were both observed in M0 of
F soil. As compared with the control, the M0 and M20 treatments of F soil increased
exchangeable Al3+ and acidity by 46.99–105.60% and 42.01–83.80% (p < 0.05); the M0, M20,
and M40 treatments of M soil increased exchangeable Al3+ and acidity by 59.74–126.59%
and 29.34–92.29% (p < 0.05). There were no significant differences in exchangeable Al3+ or
acidity between the control and M40 for F soil, and between the control and M60 for M soil.
The M60 and M100 treatments had much lower concentrations of exchangeable Al3+ and
acidity than the control treatment of F soil. For M soil, the lowest exchangeable Al3+ and
acidity were observed in the M100 treatment.

3.4. Soil Mineral Nitrogen Change

The changes in soil mineral N species (NH4
+-N and NO3

−-N) during the 35-day
incubation experiment are shown in Figure 5. Soil N species were significantly affected
by the application rates of swine manure in both the F and the M soils. Without fertilizer
addition (control), NH4

+-N and NO3
−-N of the two soils showed no change throughout

the incubation period. As compared to the control, soil NH4
+-N significantly increased for

all fertilization treatments of the two soils at the beginning of the incubation experiment
(p < 0.05). The peak NH4

+-N concentration of both F and M soils decreased as the swine
manure application rate increased. Thereafter, the NH4

+-N of F soil significantly decreased
to the level of the control by days 28, 21, 15, 11, and 7 for M0, M20, M40, M60, and M100
treatments, respectively. In M soil, it took 28, 21, 15, 11, and 5 days to decrease to the level
of the control for M0, M20, M40, M60, and M100 treatments, respectively. The concentration
of NH4

+-N in the M0 treatment of F soil was higher than that from M soil until day 11
(Figure 5a,b).
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Figure 4. Change in exchangeable acidity of the red soils after different fertilizations. (a) F soil
exchangeable H+, (b) M soil exchangeable H+, (c) F soil exchangeable Al3+, (d) M soil exchangeable
Al3+, (e) F soil exchangeable acidity, (f) M soil exchangeable acidity. Error bars are the standard
error of the mean. Different letters indicate a significant (p < 0.05) difference between the treatments
and soils.

A decrease in soil NH4
+-N concentration was accompanied by an increase in NO3

—N
concentration indicating nitrification. Soil NO3

—N concentration significantly increased
for all fertilization treatments of the two soils following addition and stabilized by days
15, 15, 15, 15, and 3 for M0, M20, M40, M60, and M100 treatments, respectively (p < 0.05).
The stable NO3

−-N concentrations of F soil were 146.3, 120.3, 106.7, 76.8, and 35.0 mg kg−1

for M0, M20, M40, M60, and M100 treatments, respectively. In M soil, the stable NO3
−-N

concentrations were 111.3, 108.1, 90.0, 64.7, and 33.3 mg kg−1 for M0, M20, M40, M60, and
M100 treatments, respectively. The stable NO3

−-N concentrations of M0 and M20 in F soil
were higher than those from M soil at the same fertilization (Figure 5c,d).
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Figure 5. Change in mineral nitrogen species of the red soils after different fertilizations. (a) F soil
NH4

+-N, (b) M soil NH4
+-N, (c) F soil NO3

−-N, (d) M soil NO3
−-N. The initial soils were from two

long-term field fertilization treatments. Error bars are the standard error of the mean.

3.5. Soil Dissolved Organic Carbon and Nitrogen, and Microbial Biomass Carbon

Soil dissolved organic carbon (DOC) concentrations increased firstly and then stabi-
lized as the incubation time increase. The increase rates of DOC in F soil were
2.30–3.63 mg kg−1 d−1 in the first 15 days, and slightly decreased in days 15–21. Soil
DOC of M40, M60, and M100 treatments were stable at 133.08–152.97 mg kg−1 after day 21,
and the concentration increased with the swine manure application rate (p < 0.05). Soil DOC
in the control treatment increased by 15.32% in the first 7 days and then stabilized around
124.10 mg kg−1. For M soil, DOC of M20, M40, M60, and M100 increased by 24.40–31.21%
as compared with the initial values (p < 0.05), and then decreased slightly after 21 days.
The DOC of the control and M0 treatments in the M soil continued to increase throughout
the incubation period and increased by 18.14% and 44.85% as compared to initial value. At
the end of the incubation experiment, the final concentrations of DOC increased with swine
manure application rates (p < 0.05), and the highest was found in the M100 treatment. The
soil DOC of F soil was higher than that from M soil for the same fertilization treatments
(Figure 6a,b).

There was a similar trend in soil dissolved organic nitrogen (DON) concentrations
to DOC concentrations. There were no significant changes in DON concentrations of the
control treatment for both F and M soils. DON concentrations in all fertilization treatments
for both F and M soils increased first (p < 0.05) and then stabilized by days 21, 21, 21,
21, and 7 for M0, M20, M40, M60, and M100 treatments, respectively. The highest DON
concentrations of F soil were 226.1, 205.1, 183.0, 140.4, and 80.5 mg kg−1 for M0, M20, M40,
M60, and M100 treatments, respectively. In M soil, the stable DON concentrations were
203.8, 188.7, 174.8, 140.8, and 83.7 mg kg−1 for M0, M20, M40, M60, and M100 treatments,
respectively. The stable DON concentrations of M0 and M20 in F soil were higher than
those from M soil at the same fertilization treatments (Figure 6c,d).
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Figure 6. Changes in DOC, DON, and MBC of the red soils after different fertilizations. (a) F soil
DOC, (b) M soil DOC, (c) F soil DON, (d) M soil DON, (e) F soil MBC, (f) M soil MBC. The initial soils
were from two long-term field fertilization treatments. Error bars are the standard error of the mean.

The soil microbial biomass carbon (MBC) content fluctuated greatly and increased
with the swine manure application rate. After 35-day incubation, the MBC of M100 was
significantly higher than that from other treatments. The soil MBC in M soil was higher
than that from F soil for the same fertilization treatments (Figure 6e,f).

3.6. Relationship between N2O Emission and Soil Properties

The N2O emission rate was positively correlated with soil pH, NH4
+-N, and MBC,

and the correlation coefficients were 0.59, 0.54, and 0.27, respectively (p < 0.001). The
N2O emission rate was significantly negatively correlated with soil NO3

—N, DON, and
DOC, and the correlation coefficients were −0.46, −0.44 (p < 0.001), and −0.18 (p < 0.05),
respectively. There was no significant correlation between N2O emission rate and MN
(manure nitrogen) (Figure 7a). The results of random forest statistics showed that soil pH
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had the greatest relative contribution to N2O emissions followed by NH4
+-N, while MBC

had the lowest impact (Figure 7b).
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4. Discussion
4.1. Difference in N2O Emmision between the Two Soils

The current study showed that the cumulative N2O emissions of M0 and M20 treat-
ments in F soil significantly increased by 23.24–68.25% (p < 0.05) compared with that from
M soil (Figure 2). A possible reason was the reduction in soil NH4

+-N and NO3
−-N due to

microbial assimilation from long-term carbon input in M soil [18,19]. In this study, more
than 90% N2O of fertilization treatments were released within the first 21 days of incubation
period, implying that a substantial amount of N2O was produced through nitrification
process. Swine manure as an organic carbon substrate for microbial growth could promote
the assimilation of microbial nitrogen, which led to an intense competition for NH4

+-N
between heterotrophic microorganisms and autotrophic nitrifiers, resulting in a decrease in
N2O production [26]. Studies have shown that a combination with organic fertilizers could
enhance the microbial immobilization [27,28] and reduce the soil nitrogen availability for
N2O production [29]. Bhattacharyya et al. [30] also reported that a combined application
of chemical and organic N reduced the conversion of fertilizer N to soil ammonium and
nitrate by 20% as compared to chemical fertilizers only. Yao et al. [31] pointed out through
meta-analysis that organic fertilizers decreased N2O emissions because of the limitation of
the readily available nitrogen substrates.

The N transformation data in the current study also confirmed microbial assimilation
as the concentration of NH4

+-N in M0 treatment of M soil was lower than that from F soil
(Figure 5a,b), and the NO3

−-N concentrations of M0 and M20 in M soil were also lower
than those from F soil (Figure 5c,d). The M soil with long-term swine manure application
history had a relatively higher TOC and C/N ratio than F soil (Table 1), which might
stimulate microbial immobilization, and it had reduced N2O production from nitrification
compared to F soil. A high proportion of chemical nitrogen fertilizer (M0 and M20) was
conducive to promoting the immobilization of nitrogen by microorganisms, thus reducing
available nitrogen for nitrification and denitrification and, therefore, N2O emissions [32].
Huang et al. [33] also showed that soil N2O emission had a negative relationship with C/N.

4.2. Partial Chemical N Replacement by Swine Manure Mitigating Red Soil N2O Emission

This study showed that the cumulative N2O emission decreased with the increase in
manure application rates, and a significant difference between F and M soils disappeared
as the swine manure application rate increased to 40% (M40), 60% (M60), and 100% (M100)
of total N (Figure 2). A possible reason is that the soil N2O emissions mainly came from hy-
drolysis and nitrification of urea-N rather than mineralization and transformation of swine
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manure-N [18]. In the current study, the relative importance of soil NH4
+-N concentration

to N2O production was only lower than that of pH (Figure 7). The ammonification of or-
ganic N within swine manure was much harder than that of hydrolysis of urea, and partial
chemical N replacement by swine manure markedly decreased soil NH4

+-N concentration,
which substantially reduced the nitrification process, supported by a much lower NO3

−-N
concentration in swine manure amendment treatments. A decrease in soil NH4

+-N showed
a lack of nitrification substrate, which resulted in a significant reduction in N2O emis-
sions [19]. The lower soil NH4

+-N concentration resulting from an increased swine manure
substitution ratio decreased soil N2O emissions at the initial stage. This is consistent with
the results reported by Duan et al. [34], where N2O emissions from nitrification in chemical
nitrogen treatments were significantly higher than manure treatments.

In addition, the increased swine manure substitution ratio resulting in prevailing
anoxic conditions might facilitate dissimilatory nitrate reduction to ammonium [35], re-
sulting in a decrease in soil NO3

− concentrations (Figure 5). The N transformation data
also suggested that NO3

− production through nitrification could have been impeded by
O2 limitations in the present study. Under the prevailing reductive soil conditions, denitri-
fiers might easily assimilate the highly reactive N2O as an electron-acceptor or nitrogen
source [36], thus lowering N2O emissions with manure substitution. Xia et al. [37] showed
that the combined application of synthetic and organic nitrogen fertilizers promoted the
reduction of N2O to N2 during denitrification due to the supply of dissolved organic carbon
by organic fertilizer addition.

In addition to a reduction in mineral N, soil pH was one of the most important
factors for N2O production, influencing nitrification, nutrient conversion, and microbial
community structure in the soil [38,39]. Soil pH increased by 0.13–1.21 units after swine
manure amendment (Figure 3). The increase in soil pH could enhance the activity of N2O
reductase encoded by nosZ gene, as well as promote the reduction of N2O to N2 [40].
Therefore, N2O production decreased as the swine manure application rate increased
(Figure 1). The abundance of N2O-related bacteria might have also increased with the
elevation of soil pH [41]; however, more N2O-consuming bacteria could have dominated
over the N2O-producing bacteria and then eventually resulted in a net decrease in bacterial
N2O emission with more manure addition in this study. Wang et al. [3] also pointed out
that, under the same N input, the N2O emissions of acidic soil were higher than those of
alkaline soil. Acidic conditions might favor the growth of fungal populations lacking N2O
reductase, terminating at N2O. Therefore, the inhibition of N2O reductase activity during
bacterial denitrification under low-pH conditions might have been another reason for the
high N2O emissions [42]. In this study, the manure rich in alkalinity addition increased the
soil pH; therefore, the increased N2O reductase activity decreased the N2O emissions [43].
In addition, higher soil pH might suppress the nitrate reductase activity that converted
NO3

− into NO2
− and then decreased N2O emissions [20].

In the future, it is still necessary to further explore the effects of adding different
amounts of swine manure on soil carbon and nitrogen conversion processes and greenhouse
gas emissions through isotope tracer technology, and study the community composition,
abundance of key nitrogen-related microorganisms, and related enzymes in the process of
nitrification and denitrification of red soil by applying organic materials combined with
molecular study. This can provide technical support for the efficient use of nitrogen fertilizer
in red soil production systems, reduce nitrogen gas loss, leaching loss, and environmental
risks, and provide a scientific basis for nutrient management of red soil and improvement
of soil cultivated land quality.

5. Conclusions

Our data indicated that partial chemical N replacement by swine manure could
effectively mitigate N2O emissions from acidic red soil primarily because of mineral N
immobilization and alleviated red soil acidification. Thus, swine manure has the potential
to co-ameliorate red soil acidification and N2O emission. Further research is needed to
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determine the effect of swine manure on N2O emission reductions and related enzymes
under field conditions and the overall benefits in effective N management.
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