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Abstract: Currently, the detection and localization of tea buds within the unstructured tea plantation
environment are greatly challenged due to their small size, significant morphological and growth
height variations, and dense spatial distribution. To solve this problem, this study applies an enhanced
version of the YOLOv5 algorithm for tea bud detection in a wide field of view. Also, small-size tea bud
localization based on 3D point cloud technology is used to facilitate the detection of tea buds and the
identification of picking points for a renowned tea-picking robot. To enhance the YOLOv5 network,
the Efficient Channel Attention Network (ECANet) module and Bi-directional Feature Pyramid
Network (BiFPN) are incorporated. After acquiring the 3D point cloud for the region of interest in
the detection results, the 3D point cloud of the tea bud is extracted using the DBSCAN clustering
algorithm to determine the 3D coordinates of the tea bud picking points. Principal component
analysis is then utilized to fit the minimum outer cuboid to the 3D point cloud of tea buds, thereby
solving for the 3D coordinates of the picking points. To evaluate the effectiveness of the proposed
algorithm, an experiment is conducted using a collected tea image test set, resulting in a detection
precision of 94.4% and a recall rate of 90.38%. Additionally, a field experiment is conducted in a tea
experimental field to assess localization accuracy, with mean absolute errors of 3.159 mm, 6.918 mm,
and 7.185 mm observed in the x, y, and z directions, respectively. The average time consumed for
detection and localization is 0.129 s, which fulfills the requirements of well-known tea plucking robots
in outdoor tea gardens for quick identification and exact placement of small-sized tea shoots with a
wide field of view.

Keywords: the famous tea; tea buds; locating and detecting; YOLOv5; point cloud

1. Introduction

Tea, being a naturally green beverage with a rich historical and cultural heritage,
offers various micronutrients and possesses anti-aging properties, among other benefits [1].
In recent years, China has made significant efforts to cultivate and produce renowned
teas, effectively boosting the income of tea farmers. According to statistical data, in 2021,
Guangdong Province alone yielded 87,000 tons of tea annually, with famous tea accounting
for 70% of the total output [2]. Currently, tea bud picking primarily relies on manual labor,
which offers advantages such as strong selectivity, high accuracy, and minimal damage to
tea leaves. However, this approach leads to increased labor intensity for tea farmers and
significant labor costs due to the inefficiency associated with manual picking. Therefore,
an essential challenge in intelligent tea picking lies in achieving precise and mechanized
picking to prevent leakage, incorrect picking, and tea breakage through effective target
detection of tea buds and accurate positioning of picking points.

In recent years, the application of vision-based automatic picking robots in the identifi-
cation and picking of renowned tea has gained significant traction. In a recent study, Zhang
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et al. [3] conducted image processing on collected tea samples to derive the R-component,
G-component, and B-component. By applying a threshold value greater than 0 to the
B-component of tea buds within the highlighted area, the differentiation between the old
leaves and the tea buds was enhanced through the segmental linear transformation of the
G-B component. Subsequently, the watershed function was employed for tea bud segmenta-
tion, resulting in an average segmentation precision of 95.79% and an overall segmentation
precision of 94.26% across 100 samples. Xu et al. [4] proposed a two-stage fusion network
detection and classification method. This method combines the fast detection ability of
YOLOv3 with the high-precision classification capability of DenseNet201. Experimental
results revealed a detection precision of 95.71% for tea buds captured from the side view,
which was 10.60% higher than that for tea buds captured from the top view. Yang et al. [5]
first trained and tested the R, G, and B components of young leaves and their backgrounds
and then used gradient descent and Adam’s algorithm to optimize the objective function.
The results showed that the average accuracy of young leaf recognition was 92.62%, with
an 18.86% misclassification rate. In a similar vein, Gui et al. [6] enhanced the YOLOv5
model by replacing the original convolution with the Ghostconv module. They also intro-
duced the Bottleneck Attention Module (BAM) into the backbone network. The improved
model demonstrated an average precision that exceeded the original YOLOv5 model by
9.66%. In addition, the enhanced model achieved a reduction of 52.402 G in floating-point
operations and 22.71 M in parameters. Li et al. [7] employed Ghost Net as the backbone
feature extraction network for YOLOv4, integrated the CBAM into PANet and introduced
the SIoU loss function. This approach increased the precision of detecting a bud with a
leaf/two leaves to 85.15%, an improvement of 1.08% over the original YOLOv4 network.
Moreover, it reduced the average computational complexity by 89.11% and the number
of parameters by 82.36%. Zhang et al. [8] proposed using MobileNetV3 as the backbone
network of YOLOv4, replacing the original convolution with a depth-separable convolu-
tion and introducing a deformable convolutional layer and a coordinate attention module,
and the experimental results show that under different lighting conditions, the detection
accuracy, recall, and AP are 85.35%, 78.42%, and 82.12%, respectively. Zhang et al. [9]
achieve the goal of reducing the model size by removing the focus layer and replacing the
original feature extraction network of YOLOv5 with the ShuffleNetv2 algorithm, followed
by channel pruning at the head of the neck layer, and the experimental results show that
the detection speed can be up to 8.6 frames/second. These studies reveal that, based on
color and morphological features, the initial separation of tea buds is accomplished through
image processing methods. However, such methods are susceptible to factors including tea
bud posture variations at different shooting locations, diverse light intensities, and color
thresholds. The advent of deep learning has paved the way for the widespread utilization
of semantic segmentation and target detection methods in tea bud recognition.

Currently, scholars have proposed various methods for tea bud-picking point posi-
tioning to achieve the automation of tea picking. Yang et al. [10] extracted the skeleton
of tea bud images. Then, they solved the two-dimensional coordinates after determining
the lowest point of the skeleton as the picking point location. Chen et al. [11] utilized
Faster R-CNN to detect regions of interest in tea images, followed by the recognition of
picking points applying FCN-16s. Experimental results showed that FCN achieved an
average precision of 84.91%, with an IOU average precision of 70.72%. Li et al. [12] utilized
a depth camera to acquire depth images. Then, depth images were fused with RGB images
to obtain a 3D point cloud of the target area. By employing point cloud preprocessing,
Euclidean clustering, and a target point cloud extraction algorithm, they determined the
3D harvesting positions of tea buds based on their growth characteristics, point cloud
properties, and end-effector scheme. The tea bud localization experiment achieved an
average positioning time of approximately 24 ms per bud. The team [13] achieved a local-
ization success rate of 78.90% in a subsequent field experiment. Chen et al. [14] proposed
a combination of skeleton extraction and minimum enclosing rectangle for localizing tea
bud picking points. Experimental results showed an average depth localization error of
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4.2 mm and a tea bud picking point precision rate of 83%. These studies indicate that
machine vision and deep learning methods can achieve a two-dimensional localization of
tea bud-picking points. However, due to variations and irregularities in the growth patterns
of tea buds, depth information is required to realize the three-dimensional localization of
tea bud picking points.

The current methods for shoot detection and small-size shoot localization within a
large field of view exhibit common issues such as low precision and efficiency. These
methods are unable to swiftly and accurately detect and localize tea buds, which is essential
for meeting the efficiency and quality requirements of mechanized tea plucking. This study
aims to address the detection and localization challenges associated with tea bud targets in
unstructured tea garden environments. The proposed innovations are as follows: (1) To
detect small-sized tea buds within a large field of view, a bidirectional feature pyramid
network and a channel attention module are employed to construct a feature map with
comprehensive semantic information. This facilitates the development of an enhanced
YOLOv5 network model for target detection. (2) To address the localization problem of tea
bud picking points, a 3D point cloud of tea leaf buds is extracted by generating a region
of interest 3D point cloud based on detection results and point cloud clustering. Principal
component analysis is utilized to fit the minimum outer cuboid of the 3D point cloud, with
the bottom center of the cuboid serving as the 3D coordinates for the tea bud picking points.

This paper’s succeeding sections are organized as follows: Section 2 outlines the
fundamental theory and the novel methods used in this investigation. The third section
examines the experimental test findings achieved in this investigation. Section 4 describes
the study’s findings. Finally, Section 5 brings the paper to a close.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

In this study, the Intel RealSenseD435 depth camera is employed to capture images of
Yinghong No. 9 tea leaves under natural illumination within an angular range between 30◦

and 60◦. The camera is positioned at a distance of 40–60 cm from the subject, operating at
30 FPS. The resulting images are saved in jpg format as RGB images with a resolution of
1280 × 720 pixels, while depth images were saved in png format. A total of approximately
50,000 tea leaf images were collected at the White Cloud Experimental Base of Guangdong
Academy of Agricultural Sciences between 8:00 and 17:00 during the months of mid-March
and mid-May in both 2021 and 2022.

To minimize the impact of harvesting on tea tree growth, preserve the tea trees’ inher-
ent growth potential, and facilitate the continuous sprouting of new tea buds, this study
seeks to identify a single bud and a single leaf that retain the characteristics of healthy
leaves, as demonstrated in Figure 1. During the process of data acquisition, the automatic
continuous shooting method, which captures images at a rate of 30 FPS, results in consecu-
tive images exhibiting similar content. Additionally, the captured images are susceptible to
variations in natural lighting conditions, leading to image exposure issues. Accordingly, the
collected tea leaf images are unsuitable for direct usage. Therefore, a subset of appropriate
images is selected and subsequently annotated, yielding a total of 1226 images that meet the
established harvesting criteria. To enhance the diversity of the experimental dataset, local
transformations are applied to the image dataset, simulating the growth state of tea leaves
in a natural environment. These transformations include horizontal flipping, brightness
adjustments, and the introduction of Gaussian noise. Through this process, the number of
samples is expanded [15], resulting in a tea image dataset including a total of 3678 images.
Among these, 2944 images are allocated for the training set, while the remaining 734 images
are designated for the testing set.
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Figure 1. Picking targets in this study: A bud and a leaf.

2.2. Methodology

This study focuses on shoot detection issues across a wide field of view and the
localization of picking points for small-sized tea buds. The workflow employed to solve this
problem is illustrated in Figure 2. Firstly, the RGB images and depth images of the tea buds
are acquired using a depth camera. Subsequently, the RGB images are fed into the target
detection network for identification, and the resulting detection results are fused with the
corresponding depth images to generate a 3D point cloud representing the region of interest.
The 3D point cloud derived from the clustering process is then utilized to determine the
picking points of the tea buds by applying cloud principal component analysis.
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2.2.1. Tea Bud Detection

The Detection of tea buds in large, unstructured tea garden environments presents chal-
lenges, including dense growth, similarity in color between the target and the background,
and occlusion resulting from overlapping foliage. These factors reduce the distinctiveness
of tea bud features, leading to incomplete detection results by existing models. To ensure
the operational efficiency of the tea-picking robot and fulfill the real-time detection require-
ments within the constraints of the edge computing server device, this study adopts the
YOLOv5s network model. The chosen model exhibits a minimal model file and comprises
four main components: the input end, the backbone network, the neck network, and the
detection head [16]. The neck network incorporates PANet [17], which is susceptible to a
limitation involving a sole top-down path and a solitary bottom-up path, where the features
from individual input edges are not effectively fused and contain minimal information.
Meanwhile, the feature extraction process in YOLOv5, accomplished through convolutional
layers, is prone to information loss and redundancy across feature maps. Therefore, to
further enhance the detection performance of small-sized tea buds within a wide field of
view, the introduction of a lightweight channel attention module, namely ECANet [18],
and a bidirectional feature pyramid structure (BiFPN) [19] is considered. These additions
enable better extraction and utilization of multi-scale feature information, allowing the
model to focus on tea bud characteristics and enhance the precision of tea bud detection.
Therefore, the network becomes more suitable for embedded devices and mobile terminals.
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The improved model is denoted as YOLOv5s-Tea, and its network structure is depicted in
Figure 3.
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1. Bidirectional feature pyramid network structure

To enhance feature fusion performance, this study incorporates a BiFPN to replace the
original PANet structure. Firstly, nodes with only one input edge or minimal contributions
to feature fusion are eliminated, and then extra connections are established between input
and output nodes within the same layer. Subsequently, each bidirectional (top-down
and bottom-up) path is treated as a feature network layer and repeated multiple times
within the same layer [20]. Finally, a weight is assigned to the fused features at each scale,
and the weighted feature fusion is conducted using fast normalized fusion, as shown in
Equation (1), yielding the final weighted bidirectional feature pyramid network.

o = ∑i wi·Ii (1)

Figure 4 illustrates a comparison between the PANet structure and the BiFPN structure,
and level 6 is taken as an example in Equations (2) and (3).

Ptd
6 = conv(

w1·Pin
6 + w2·Resize(Pin

7 )

w1 + w2 + ε
) (2)

pout
6 = conv(

w′1·Pin
6 + w′2·Ptd

6 + w′3·Resize(Pout
5 )

w′1 + w′2 + w′3 + ε
) (3)

where Ptd
6 is the intermediate feature at level 6 on the top-down pathway, and Pout

6
t is the

output feature at level 6 on the bottom-up pathway.
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Figure 4. Comparing the structures of PANet structure and BiPFN structure. Circles of the same color
represent the same hierarchy’s input, intermediate, and output nodes.
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2. Feature fusion network of channel attention mechanism

To enhance the focus of the network on target detection and improve the detection
efficacy, an Efficient Channel Attention (ECA) model is incorporated into the backbone net-
work [1]. The input feature map is first globally average-pooled, converting its dimensions
from a matrix [h, w, c] to a vector [1, 1, c]. This vector is then utilized to calculate the size, k,
of the adaptive convolution kernel, as shown in Equation (4):

k = ϕ(c) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd′

(4)

where k represents the convolution kernel size; C represents the number of channels; odd
represents that k can only take an odd number; γ and b are used to change the ratio between
the number of channels, C, and the convolution kernel size, k.

Subsequently, a 1 × 1 convolution is performed to acquire channel weight vectors in
the feature map. These vectors undergo processing through a Sigmoid activation function
and are multiplied channel-by-channel with the input feature map, yielding a weighted
feature map. The weighted feature map is then scaled and panned to generate the final
feature map [21]. The specific structure of the ECANet module is depicted in Figure 5.
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The hardware configurations employed in the model training platform used for this
study consist of an Intel(R) Xeon(R) Gold 5218 CPU operating at a frequency of 2.30 GHz,
along with a Quadro RTX 5000 graphics card equipped with 16 G video memory. The
Ubuntu18.04 operating system is installed, accompanied by CUDA10.2 and CUDNN8.6.0
configurations. Network training is conducted within the Anaconda virtual environment
pre-installed in the system, utilizing PyTorch1.7.1, paddlepaddle-gpu2.4.1, openCV4.6,
Open3D, and other related libraries. Python3.7 serves as the programming language
of choice. The training phase involves employing the data-enhanced Tea Tree dataset,
followed by the verification of the model’s stability and reliability using the testing set.
The training parameters are set as follows: an initial learning rate of 0.01, a Batch Size of
32, a Momentum of 0.937, a Decay of 0.0005, an IOU threshold of 0.05, and enhancement
coefficients of 0.015, 0.7, and 0.4 for Hue (H), Saturation (S), and value (V) respectively,
totaling 300 rounds (Epochs).

2.2.2. Localization Method of Picking Point

Building upon the aforementioned information, this study proposes a 3D localization
method for identifying tea bud picking points. Initial results obtained from the YOLOv5s-
Tea model are combined with depth images to generate a 3D point cloud for the designated
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area. Subsequently, DBSCAN clustering is applied to the 3D point cloud in order to extract
the relevant tea bud points. The minimum outer cuboid of the tea bud 3D point cloud
is then fitted to accurately locate the tea bud picking points. Finally, the bottom center
point of the cuboid is identified as the picking point location, enabling the realization of 3D
positioning for the picking points.

(1) Point cloud generation. Firstly, the region of interest (ROI) pertaining to the tea
buds is isolated from the input RGB and depth maps. Subsequently, the 3D coordinates
of each pixel point in the camera coordinate system are computed based on the internal
parameters of the depth camera, the pixel values from the RGB images, and the depth value
information extracted from the depth images, as presented in Equation (5) below.

zc

 u
v
1

 =

 fx 0 cx
0 fy cy
0 0 1

 xc
yc
zc

 (5)

where

 u
v
1

 represents the coordinate of the pixel point;

 xc
yc
zc

 represents the 3D coordi-

nate point in the camera coordinate system; zc represents the depth value; fx and fy represent
the focal length of the cameras; cx and cy represent the optical center of the camera.

(2) Tea bud point cloud clustering. The 3D point cloud data of the region of interest
comprises the tea buds and the surrounding environment, tea trees, and additional back-
ground point clouds. In this study, the Density-Based Spatial Clustering of Applications
with Noise [22] method is employed to cluster the point cloud data and differentiate be-
tween the data from the target 3D point cloud and other 3D point clouds. It is assumed that
the 3D point clouds of tea buds exhibit concentration and completeness within the area
of interest. Firstly, an empty set of cluster groups is initialized. Thereafter, the distances
between points are calculated, as shown in Equation (6), and points with distances less
than or equal to eps are identified based on the eps and distance matrix.

d =
2
√
(xcore − xborder)

2 + (ycore − yborder)
2 + (zcore − zborder)

2 (6)

where xcore, ycore, and zcore are the abscissa and the ordinate of the core point, respectively,
and xborder, yborder, and zborder are the abscissa and ordinate of the border point, respectively.

Subsequently, a core point is randomly chosen from the space, and its neighborhood is
assessed to determine if it meets the density criteria. If the density requirements are met,
the neighborhood points are iteratively grouped into the same cluster until all points within
the core point’s neighborhood have been accessed. The process then continues by selecting
the next unvisited core point and performing the same operation recursively. Boundary
points within the cluster group, where the nearest core point is situated, are considered
noise points if they do not belong to any cluster group [23]. This method enables the
detection of arbitrary shape classes without requiring a predetermined number of cluster
groups and effectively handles noisy point data, as illustrated in Figure 6. The effect of 3D
point cloud clustering is shown in Figure 7.
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(3) Picking point determination Utilizing the 3D point cloud of tea buds after DBSCAN
clustering in the previous step, Principal Component Analysis [24] is applied to analyze
the tea bud 3D point cloud and obtain the minimum outer cuboid enclosing the point
cloud. Firstly, the centroid coordinate of the tea bud 3D point cloud is calculated using
Equation (7).

m =
1
N

n

∑
i=1

Pi (7)

where m represents the centroid coordinate of the 3D point cloud, n represents the number
of 3D point clouds, and Pi represents the 3D coordinate of the ith point.

Subsequently, the covariance matrix C is derived from the centroid coordinate, as
presented in Equation (8).

C =
1
N

n

∑
i=1

(Pi −m)(Pi −m)T (8)

where C represents the covariance matrix C of the 3D point cloud.
To perform eigenvalue decomposition of the covariance matrix C, Equation (9) is

employed to obtain the eigenvalues λ = (λ1, λ2, λ3) and the corresponding eigenvectors
v = (v1, v2, v3) [25].

Cv = λv (9)

where the eigenvector v represents the principal component.
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Thereafter, the eigenvectors are sorted based on the corresponding eigenvalues, re-
sulting in the three principal component directions: X, Y, and Z. Each point in the point
cloud is projected onto these sorted eigenvectors. The projection lengths of the point cloud
in the three directions are denoted as l1, l2, and l3, and l1 is taken as an example, as shown
in Equation (10).

l1 = min
1≤i≤N

{Pi·X}+ max
1≤i≤N

{Pi·X} (10)

where min and max are the minimum and maximum values in the x, y, and z directions,
respectively.

By integrating the centroids and eigenvectors, the coordinates of the eight vertices of
the smallest cuboid can be calculated. Finally, the coordinates of the four points with the
smallest y-coordinate are averaged to obtain the coordinates of the center of the base.

2.2.3. Experimental Methodology

The detection and localization algorithm utilized in this study is carried out on a
TW-T600 Xavier edge computing server equipped with an 8-core ARM v8.2 64-bit CPU, a
512-core Volta with Tensor cores, and 32 GB of RAM. The tea bud detection algorithm is
derived from the OpenCV open-source computer vision library, while the picking point
localization algorithm is implemented using the Open3D point cloud library, programmed
in Python, and deployed on the edge computing server. (1) Detection experimental method
for tea buds to assess the detection performance of the YOLOv5s-Tea model, six metrics
are employed: Precision (P), Recall (R), Average Precision (AP), Param, Weight Size, and
frames per second (fps). The Precision, Recall, AP, and Param are computed according to
the Equations (11)–(14) presented below.

IoU =
A ∩ B
A ∪ B

(11)

P =
TP

(TP + FP)
× 100% (12)

R =
TP

TP + FN
× 100% (13)

AP =
∫ 1

0
P(R)dR (14)

In the aforementioned formulas, A denotes the area of the detected bounding box,
while B represents the area of the actual bounding box. In Equations (8) and (9), TP
corresponds to the number of accurately detected tea buds, FP signifies the number of
falsely detected tea buds, and FN represents the number of missed tea bud detections.
Weight Size indicates the memory space required to store the model in Mb, and fps denotes
the rate at which images are processed per second [26]. The intersection and union ratio
IoU ≥ 0.5 signifies a true case, IoU < 0.5 indicates a false positive case, while IoU = 0
expresses a false negative case.

(1) Feature Information Analysis Experiment
A gradient-weighted class activation mapping (Grad-CAM) heat map was employed

as an analytical tool to evaluate the performance of several structural YOLOv5s models for
the task of tea shot detection. Grad-CAM [27] is a class-discriminative localization strategy
for any CNN-based network that outputs visual interpretations. Firstly, given an image
and a category of interest tea, forward propagate the model through the CNN component
to produce task-specific category scores y. Then, set the specified category gradient tea to 1
and all other gradients to 0. Then, apply the supplied category scores yc to the convolutional
feature maps, combine the calculations to produce coarse gradient-CAM localizations (the
blue heatmaps), and lastly, multiply the results with the heatmaps to obtain high-resolution
Grad-CAM visualizations. Finally, the heat map is dot-multiplied with the backpropagation
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data to provide a high-resolution customized Grad-CAM visualization. The calculation of
Grad-CAM is shown in Equation (15):

Lc
Grad−CAM = ReLU(∑

k
αc

k Ak) (15)

where A is the feature layer to be shown, and the output of the final convolutional layer
is commonly chosen; k is the kth channel in feature layer A; and c is the category c. αc

k
represents the weight of the pin category c on the kth channel of the feature layer A; Ak

represents the weight matrix on the kth channel of the feature layer A; ReLU: makes the
final output result greater than zero and suppresses the uninteresting weights.

The calculation about αc
k is shown in Equation (16):

αc
k =

1
z ∑

i
∑

j

∂yc

∂Ak
ij

(16)

where yc is the score achieved via forward propagation for category c; Ak
ij is the data with

coordinates (i, j) on the kth channel of feature layer A; and Z is the product of width i and
height j. ∂yc

∂Ak
ij

represents the gradient information of category c acquired by backpropagation

on feature layer A; the calculated gradients are pooled globally and averaged over the
dimensions of width i and height j to get the important weight αc

k.
The shade of the color indicates the degree of attention the model pays to the tea shoots

in this visualisation, with darker red spots signifying greater attention from the model.
(2) Experimental method of tea bud picking point localization
The field experiment for tea bud picking point localization primarily involves a

GLM50-23G laser range finder (Bosch, precision ± 1.5 mm), an Intel RealSense D435 depth
camera, a tripod, and the edge computing server, as depicted in Figure 8. The depth camera
captures depth information images with a resolution of 640 × 480 pixels. Complying with
Intel’s specified minimum depth detection distance of 175 mm for the RealSense D435,
the distance between the depth camera and the tea buds is maintained at 200–300 mm,
satisfying the localization requirements. In addition, the depth camera establishes USB
communication with the edge computing server, and its installation angle relative to the
horizontal plane ranges from 45◦–60◦, minimizing occlusion issues among the tea buds.
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To analyze localization errors of the picking point primarily originating from the X,
Y, and Z directions, a test is conducted on the localization precision of tea buds’ picking
points, specifically focusing on the smallest external cuboid surrounding the buds. To
determine the coordinates of the laser range finder relative to the depth camera within the
coordinate system, a positional calibration is performed for both devices in a laboratory
setting. A *9-square black and white checkerboard grid calibration plate is prepared,
featuring small square grid sizes of 3030 mm. The normal direction of the calibration
plate plane aligned with the Z-axis, positioned at a distance of 400 mm from the depth
camera. The laser range finder and depth camera are mounted on the plane of a 3D-printed
component. The following specific coordinate measurement procedure is executed: Firstly,
the laser beam of the range finder is directed toward the intersection of the black and white
squares on the calibration plate. Subsequently, the ranging code retrieves the coordinates
(X′, Y′, Z′) of the point in the depth camera coordinate system. The X and Y coordinates
represent the horizontal coordinates of the laser range finder (X, Y*), while the depth
coordinate Z* is obtained by reading the distance from the calibration plate interface on
the range finder. The horizontal coordinates of the laser range finder are obtained using
the following method: The pixel coordinates of the points hit by the laser range finder,
corresponding to the depth, are first mapped by aligning the depth images of the depth
camera with the RGB images. Subsequently, the coordinates are calculated by combining
them with the conversion matrix of the depth camera’s internal and external parameters.
The field experiment took place in June 2023 at the tea test base of the Digital Agriculture
Demonstration Park, Baiyun Campus, Zhongkai Agricultural Engineering College, as
depicted in Figure 9. The experimental subject is the Yinghong No. 9 tea variety. Firstly, a
localization algorithm is applied to determine the locations of tea bud picking points on
different tea trees within the tea garden, utilizing the Intel RealSense D435 depth camera.
Then, the distance from the depth camera’s plane to the tea stem of the tea buds is measured
three times using a laser range finder. The average value of these measurements represents
the imaging distance of the outer surface of the tea stems. Additionally, the average value
of three measurements of the tea buds’ tea stem diameter, obtained using a vernier caliper,
is considered as the final diameter value, as shown in Figure 10.
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3. Results
3.1. Tea Bud Detection Experiment

To demonstrate the effectiveness of the model improvement, the datasets generated
in this study are employed for training and obtaining the optimal model. Subsequently,
these models are deployed to edge computing servers for test set testing. A comprehensive
comparison of the YOLO versions (specifically YOLOv5s, YOLOv7, and YOLOv8s) with the
Ours model for a comprehensive comparison. Table 1 shows that our model surpasses the
others in terms of detection accuracy and speed. When compared to the original YOLOv5,
ours improves in all elements of detection performance. With an AP of 94.58%, the accuracy
is 94.4% and increased by 0.69%. The addition of the BiFPN and ECANet modules enhances
the model’s complexity and size by introducing new procedures and parameters. However,
the model detected at 37.139 fps, which is roughly 22.5% faster.

Table 1. Test Set Results.

Network P (%) R (%) AP (%) Weight Size Param (M) fps 1

YOLOv5s 93.71 89.78 94.36 13.6 7,012,822 30.329
YOLOv5s + bifpn 94.08 89.72 94.58 13.8 7,078,367 34.896

YOLOv7 92.7 89.7 90.5 298.4 36,481,772 14.12
YOLOv8s 93.7 89 94.4 89.6 11,125,971 24.94

Ours 94.40 89.66 94.71 13.8 7,078,370 37.139
1 Calculate the inference time required to iterate 100 rounds.

Figure 11 compares our results to the original YOLOv5s ablation detection trials,
where the quantity of tea shoots, distance, and light intensity are varied in each of the
eight photos. The incorporation of BiFPN and ECANet into YOLOv5 increases the model’s
feature extraction and fusion capabilities, improves detection performance for obstructed
or tiny objects, and decreases missed detections even more.
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We used the Grad-CAM technique to visually compare the feature maps of YOLOv5
and Ours to show the correctness of the Ours model. The outcomes of YOLOv5 and Ours
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on various degrees of feature production are shown in Figure 12. The figure shows that by
efficiently filtering the background data and optimizing the computing resources for the
detection of tea shoots, ours beats the YOLOv5 model.
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3.2. Tea Bud Picking Point Localization Experiment

First, the distance between the depth camera imaging camera and the laser rangefinder
was measured using a straightedge, providing a value of approximately 43 mm in the
X-direction and about 1 mm in the Y-direction. The results of the experiment involving the
calibration of the laser range finder and depth camera positions are presented in Table 2.
These results illustrate that, under the coordinate system of the depth camera, the average
distances recorded in the X-direction, Y-direction, and Z-direction by the laser range finder
are 43.632 mm, 1.346 mm, and 241.967 mm, respectively. The corresponding standard
deviations are 0.674 mm, 0.349 mm, and 13.497 mm. Considering an average measurement
distance of 236 mm and a standard deviation of 13.520 mm for the laser range finder, the
distance between the depth camera’s imaging position and the laser range finder’s beam
launching position is calculated to be approximately 5.967 mm and the distances in the
X and Y directions are within the uncertainty of the straightedge measurements. Table 3
showcases the measured values for the field localization of the tea bud picking points,
including their errors. The mean values of the picking points’ three-dimensional coordinates
in the X, Y, and Z directions are 43.101 mm, 8.207 mm, and 288.291 mm, respectively, and
the average absolute errors calculated with the calibration results in Table 2 are found to be
3.159 mm, 6.918 mm, and 7.185 mm, respectively. The corresponding standard deviations
are 10.763 mm, 1.899 mm, and 2.759 mm. The result is shown in Figure 13. Moreover,
the average time consumed for target detection during the field experiment is 0.042 s, the
average time for the localization process is 0.087 s, and the overall average time for the
complete tea bud detection and localization process is 0.129 s.

Table 2. Position calibration results of laser rangefinder and depth camera.

Result X′/mm Y′/mm Z′/mm Rangefinder
Results Z*/mm

Average value
Standard
deviation

−43.632 1.346 241.967 236

0.674 0.349 13.497 13.520
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Table 3. Measured values of tea shoot picking point positioning and their errors.

Image No.
Positioning Results Rangefinder

Results

Positioning Error Results

X Y Z |X-X′|/mm |Y-Y′|/mm |Z-Z*|/mm

Average value −43.101 8.207 288.291 295.475 3.159 6.918 7.185
Standard deviation 11.205 2.097 32.493 31.899 10.763 1.899 2.759
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Figure 13. Picking position for tea shoots and the effect of the minimal exterior rectangle. The green
box in the image represents the projection impact of the minimal exterior rectangle created by the 3D
point cloud fitting, and the red dot represents the projection effect of the algorithm’s choosing point.

4. Discussion
4.1. Experimental Analysis of Tea Bud Detection

This study evaluates the precision and real-time performance of the enhanced YOLOv5s-
Tea network for tea bud detection. The findings indicate that the incorporation of ECANet
and BiFPN yielded superior results. To begin, ECANet can assist the model in better
focusing on the correlation between different channels in the image and extracting more
discriminative features by weighting the features of different channels in the image, al-
lowing it to better distinguish tea shoots from non-tea shoots and improve detection
accuracy [28]. Second, tea shoots can appear at various scales, and their size in the pho-
tograph can vary substantially. The BiFPN module can perform feature fusion and scale
adjustment efficiently by fusing features at different scales utilizing top-down and bottom-
up feature propagation, allowing the model to perform target identification at multiple
scales and increase its shot target detection capacity [29]. As a consequence, in a wide field
of view, tea shoots seem identical to non-tea shoots, and the introduction of ECAnet and
BiFPN modules in YOLOv5 allows the network to comprehend the target more fully and
precisely, potentially improving the model’s resilience and stability.

4.2. Locating Experimental Analysis of Tea Bud Picking Points

During the field experiment, the depth information is successfully obtained by most
of the tea buds, and the 3D point cloud is accurately acquired and localized. However,
a few picking points exhibit positioning errors. Analyzing only the point cloud detected
within the target area, rather than the entire scene’s point cloud, reduces the amount of
data used for processing. Therefore, the speed of the tea-picking robot in localizing the tea
bud-picking points improves significantly. The analysis of the experimental data presented
in Table 3 reveals that the visual localization errors primarily originated from the following
factors: (1) The presence of small tea buds and other distractions such as tea buds, tree
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branches, and tea leaves in the complex background hinders the correct extraction of the
tea bud’s 3D point cloud after clustering. (2) The intense direct light on the tea buds, along
with the depth camera, tends to overexpose the tea bud images and interfere with the
infrared structured light emitted by the depth camera [30]. As a result, the fusion of depth
and RGB images is compromised, leading to the loss of point clouds for some tea buds
and introducing errors in the horizontal direction during the calculation of the minimum
outer cuboid [31]. (3) The experimental method utilized in this study excludes a few laser
range finder points from the target detection identification box. This results in a systematic
error between the coordinates of the picking points solved by the picking point localization
algorithm and the calibrated coordinates of the laser range finder.

5. Conclusions

In order to achieve the detection of small-sized tea shoots and picking point localization
under a large field of view, this study developed an algorithmic system containing the
detection of tea shoots and picking point localization, which includes the YOLOv5s target
detection method, generation of the 3D point cloud in the region of interest, clustering
of the 3D point cloud, fitting and generation of the minimum outer rectangle, and 3D
localization of picking points. Field tests were used to assess the method’s performance,
and the following results were reached:

(1) The results show a tea bud detection precision of 94.4% and a recall rate of 90.38%.
This indicates the effective applicability of the method in identifying tea buds within small
targets and complex environments.

(2) The average absolute errors in the X-direction, Y-direction, and Z-direction are
found to be 3.159 mm, 6.918 mm, and 7.185 mm, respectively. This allows tea shoots to be
positioned in three dimensions.

(3) The overall average time for the complete tea bud detection and localization process
is 0.129 s.

In conclusion, the method is robust to tea shoot detection and localization in an
unstructured tea garden environment, and the algorithm has high detection and localization
accuracy and reasonable time consumption for the Famous Tea Picking Robot, which can
be effectively applied to the Famous Tea Picking Robot’s real-time picking work in hilly
and mountainous areas. Future research will primarily concentrate on localizing tea buds
in scenarios involving overlapping and obstruction.
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