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Abstract: Establishing lucerne field is an efficient way to protect natural steppes, alleviate conflicts
between meadows and livestock, and promote the development of animal husbandry. However,
problems such as extensive field management, valuing yield over quality, and low resource utilization
are endemic in production. Exploring reasonable cultivation patterns can contribute to improving the
current situation of artificial grassland production and promoting the high-quality development of
husbandry and prataculture. Lucerne the field experiment was carried out in Jingtai, Gansu Province,
China in 2021–2022; this study compared and analyzed the effects of three cultivation patterns—ridge
tillage with plastic film mulching (PM), ridge tillage with biodegradable film mulching (BM), and
traditional flat planting (FP)—on soil water, heat, and fertilizer, as well as lucerne growth, yield,
quality, and water and nitrogen use efficiency. The results show that: (1) during the growth period of
lucerne, PM and BM treatments augment the average moisture content of the soil layer of 0–120 cm
by 31.19% and 24.03% compared to the FP treatment, respectively. In the soil layer of 0–40 cm, PM
and BM treatments abate the soil moisture content of the ridges by an average of 19.29% and 7.89%
compared to that in the ditches, respectively. In the soil layer of 40–120 cm, PM and BM treatments
elevate the soil moisture content of the ridges by 4.40% and 4.65% on average compared to that in the
ditches, respectively. The average soil temperature in a soil layer of 5–25 cm shows PM > BM > FP.
In contrast with the FP treatment, PM and BM treatments increase the soil temperature of the ridges
by an average of 1.87 ◦C and 0.96 ◦C and decrease that of the ditches by an average of 0.47 ◦C and
0.46 ◦C, respectively. After two years of planting, the three cultivation patterns all promote the
soil nutrient content. Compared to the FP treatment, PM and BM treatments increase the organic
matter content by 9.94% and 19.94%, respectively. (2) Ridge tillage with film mulching can evidently
stimulate the growth of lucerne and enhance yield and quality. Compared to the FP treatment, PM
and BM treatments enhance plant height by an average of 15.37% and 4.04%, stem diameter by an
average of 34.14% and 14.58%, yield by an average of 21.20% and 14.77%, crude protein content by an
average of 13.47% and 7.68%, and relative feed value by an average of 8.71% and 4.41%, respectively.
(3) During the two-year growing period, the irrigation amount of lucerne was 508.60–615.30 mm, and
the evapotranspiration was 563.70–761.80 mm. Compared to the FP treatment, PM and BM treatments
hoist water use efficiency by an average of 43.50% and 17.56%, nitrogen partial factor productivity by
an average of 21.20% and 15.22%, and net income by an average of 14.78% and 11.05%, respectively.
In summary, in ridge tillage, both ordinary film mulching and biodegradable film mulching can create
a favorable soil environment for lucerne growth and heighten production effect. The former has a
better effect on advancing the lucerne production effect, and the latter exhibits superior performance
in improving soil fertility.

Keywords: soil environment; cultivation pattern; biodegradable membrane; yield; water and nitrogen
use efficiency; economic benefits
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1. Introduction

Due to the advantages of high yield, high quality, strong adaptability, and good
economic benefits, lucerne (Medicago sativa L.) is known as the “king of pasture” [1]. It can
increase land vegetation coverage, curb soil desertification and soil erosion, and fix nitrogen
through its root nodules, playing a crucial role in improving regional eco-environments
and soil fertility [2,3]. Lucerne is mainly grown in the United States, Canada, France, and
Italy. As an artificial pasture, its planting area is the largest in the world. In recent years,
China has attached great importance to the development of the lucerne industry and has
successively formulated and implemented documents such as “coordinating and adjusting
the planting structure of grain, economic, and forage crops”, “expanding the pilot area of
grain to forage conversion and accelerating the construction of a modern forage industry
system”, and “14th five-year national development plan for the forage industry”. As of
2022, the lucerne planting area in China has reached 600,000 ha, accounting for 15% of the
world’s total planting area, second to the United States (36%) [4]. However, in the context
of emphasizing agriculture and assisting animal husbandry in China, lucerne is mostly
planted in arid and semi-arid areas with scarce water resources and soil nutrients. Moreover,
multiple drawbacks exist in lucerne cultivation, such as single planting mode, extensive
field management, and low productivity levels. There is a tremendous gap between China’s
lucerne production capacity and market demand. In particular, high-quality lucerne still
relies on imports. Therefore, in response to the resource endowment characteristics of arid
and semi-arid regions, investigating reasonable lucerne cultivation patterns to improve
the soil micro-environment and stimulate the production potential of lucerne is of great
significance for efficient lucerne production and the rapid development of grassland animal
husbandry in China and worldwide.

Water is a primary environmental factor that limits crop growth [5]. Ridge tillage with
film mulching integrates ridge tillage and film mulching, which can effectively suppress
ineffective soil moisture evaporation, encourage the precipitation of the ridges to flow
into the ditches, increase the infiltration depth and content of soil moisture in the ditches,
and transform “ridge water” and “ditch water” into each other, making them serve as the
source and sink mutually [6,7]. The soil moisture effect of ridge tillage with film mulching is
closely related to factors such as ridge size and mulching material [8,9]. Research has shown
that the rainwater collection efficiency of ridge tillage with film mulching is significantly
higher than that of ridges, and the optimal effect can be achieved when the ridge-to-ditch
ratio is 60 cm:60 cm [10,11]. Ridges mulched with ordinary films and biodegradable films
can evidently enhance soil water storage. Because biodegradable films can gradually
degrade with crop growth, the water storage effect in the later stage decreases compared
to ridge tillage with ordinary film mulching [12–14]. Soil temperature is another major
environmental factor that impacts crop growth [15]. Ridge tillage can expand the surface
area of the soil receiving solar radiation and the temperature gap between day and night
by altering microtopography. Mulching can elevate soil temperature on ridges by blocking
solar long-wave radiation and absorbing more shortwave radiation [13,16,17]. However,
the soil temperature effect of ridge tillage with film mulching varies with mulching material.
It has been reported that the accumulated temperature of soil covered with ordinary films
is significantly higher than that of soil mulched with black films [18,19]. The warming effect
of novel mulching materials before degradation, such as biodegradable and liquid films,
barely differs from that of ordinary plastic films [20–22]. The timely peeling of films during
crop growth can effectively abate the phenomenon of crop premature senescence caused by
high temperatures [23–25]. In addition to water and temperature, soil nutrients are another
key environmental factor that affects crop growth [26]. Ridge tillage with film mulching
affects soil water and thermal conditions, the soil’s bacterial community structure, and
soil enzyme activity, which further influences soil nutrient content and distribution [6,16].
Research has proven that mulching can significantly increase the abundance and variety
of soil microorganisms, thereby decomposing more large particulate organic matter and
returning it to the soil [23,27,28]. Compared with traditional flat cropping, the soil enzyme
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activity and the content of available nitrogen, phosphorus, and potassium in the plow layer
of ridge tillage with rainwater harvesting are significantly promoted [10,29,30]. Under the
condition of ridge tillage with film mulching, the optimal soil water, heat, and fertilizer can
provide a favorable environment for crop growth, thereby improving crop production. It
has been revealed that, when comparing flat planting with film mulching and ridge tillage
without film mulching, ridge tillage with film mulching profoundly improves crop yield,
quality, water and fertilizer use efficiency, and increases economic benefits. In ridge tillage,
the improvement effects of ordinary film mulching and biodegradable film mulching
surpass that of liquid film mulching [31–33]. The production effects of biodegradable
membranes are tightly linked to the formula of the membranes and the environmental
conditions of the experimental areas [34]. In high-altitude and low-temperature areas,
using biodegradable films 0.008 mm thick are more conducive to improving the yield of
crops mulched with biodegradable films [35].

To sum up, ridge tillage with film mulching can remarkably improve the soil environ-
ment and crop productivity. The effect varies with mulching material. Existing research on
ridge tillage with film mulching mostly focuses on field crops [36,37] and cash crops [38–40].
There is a lack of studies on the soil environment and the production effect of the forage
crop lucerne. Notably, systematically comparing the comprehensive response mechanism
of lucerne with ordinary film mulching and biodegradable film mulching is insufficient.
Gansu has developed into an essential production base of high-quality lucerne in China.
As of 2023, the lucerne planting area in Gansu has reached 193,300 ha, accounting for
1/4 of the total planting area in China and ranking first in the country. The Yellow River
Irrigation Area in Gansu Province is the second largest lucerne production area after the
Hexi Corridor region. It has abundant light and heat resources and a wide temperature dif-
ference between day and night, which provide unique advantages in planting lucerne [41].
However, the region has sparse precipitation, severe soil salinization, a single lucerne
planting pattern, and low and unstable productivity. In view of this, this study took lucerne
from the Yellow River Irrigation Area in Gansu Province as the research object, aiming to
(1) clarify the regulatory effects of ridge tillage with ordinary film mulching, ridge tillage
with biodegradable film mulching, and traditional flat cropping on soil water, heat, and
fertilizer; (2) quantify the impacts of the three cultivation patterns on the growth, yield,
quality, and use efficiency of water and nitrogen and the economic benefits of lucerne;
(3) obtain the planting model of lucerne with high yield, high quality, and high efficiency
in the Gansu Yellow River Irrigation Area and similar ecological areas to provided a theo-
retical basis for the restoration of natural grassland and the high-quality development of
animal husbandry.

2. Materials and Methods
2.1. Description of the Experimental Site

The experiment was conducted in 2021 and 2022, from April to October, at the Irriga-
tion Test Station of the Jingtaichuan Electric Power Irrigation Water Resources Utilization
Center in Gansu Province (37◦23′ N and 104◦08′ E, with an altitude of 1562 m). The average
annual precipitation, evaporation, sunshine hours, radiation volume, temperature, and
frost-free period in the area were 191.6 mm, 2761 mm, 2652 h, 6.18 × 105 J·cm−2, 8.5 ◦C, and
191 days, respectively. The soil of the experimental land was sandy loam, with a dry bulk
density of 1.45 g·cm−3, a field water capacity of 24.1% (mass moisture content), and a pH
of 8.11. The soil organic matter, total nitrogen, total phosphorus, total potassium, available
nitrogen, available phosphorus, and available potassium in the soil layer of 0–40 cm were
1.32 g·kg−1, 1.62 g·kg−1, 1.32 g·kg−1, 34.03 g·kg−1, 74.51 mg·kg−1, 26.31 mg·kg−1, and
173 mg·kg−1, respectively. The total precipitations during the growth period of lucerne
in 2021 and 2022 were 147.43 mm and 170.46 mm, and the average temperatures were
19.07 ◦C and 18.77 ◦C, respectively (Figure 1).
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Figure 1. Meteorological characteristics of the experimental site from April to October in 2020.

2.2. Experimental Design and Field Management

Lucerne the tested lucerne variety in this study was Longdong lucerne, which has good
drought resistance, strong adaptability, and high forage value. Its roots are developed and
can fully absorb water. Its leaves are small with low stomatal density, which can effectively
reduce transpiration water consumption. Therefore, it is suitable for planting in arid areas.
The experiment set three cultivation patterns: ridge tillage with plastic film mulching (PM),
ridge tillage with biodegradable film mulching (BM), and traditional flat planting (FP)
(Figure 2). Each planting pattern had three repetitions, nine plots altogether, covering an
area of 42.9 m2 (5.5 m × 7.8 m). The ordinary plastic films (Fuyu Plastic Industry Co.,
Ltd., Lanzhou City, China) and biodegradable films (Tianzhuang Environmental Protection
Technology Co., Ltd., Jinan City, China with an induction period of 90 days) had a width of
100 cm and a thickness of 0.008 mm. Ten days before sowing in 2021, the land was leveled.
Strip sowing was adopted, with a sowing rate of 22.5 kg·ha−1. In the plots treated with
PM and BM, after digging ditches and ridging, lucerne was planted on the ridge sides and
inside the ditches. Each ridge was sowed with four rows of lucerne, with a row spacing
of 20 cm. The row spacing in the plots treated with FP was 30 cm. Drip irrigation was
used for fertilization. The spacing between drip irrigation belts in the plots treated with
PM and BM was 40 cm, and that in the FP-treated plots was 60 cm. The designed flow
rate of the drip head was 2 L·h−1. Valves and water meters (with an accuracy of 0.001 m3)
were installed on the water pipeline to adjust the amount of irrigation water. Fertilizers
of nitrogen, phosphorus, potassium, controlled-release nitrogen fertilizer (Jinzhengda
Ecological Engineering Group Co., Ltd., Linyi City, China; N mass fraction: 30%; nitrogen
application rate: 160.0 kg·ha−1), superphosphate (40.0 kg·ha−1; P2O5 mass fraction: 16%),
and potassium sulfate (19.2 kg·ha−1; K2O mass fraction: 50%) were applied once before the
first harvest turned regreen every year. Other field management measures were the same
as those used in the general lucerne field in the local area. The lucerne was sown in April
2021. After germination, the germination rate of the lucerne was estimated by randomly
selecting a one-square-meter area in each plot. After averaging all estimated values, the
germination rate of lucerne reached over 80%, which met the experimental requirements.
The lucerne plants were harvested on 16 July and 5 October in 2021 and 29 May, 29 July,
and 13 September in 2022, respectively.
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2.3. Indicators and Methods for Measurement
2.3.1. Soil Moisture Content (%)

For PM and BM treatments, each adjacent ridge and ditch in the center of the plots
was installed with one TDR (time–domain reflectometry, with a length of 150 cm) probe.
For the FP treatment, one TDR probe was installed between the rows in the center of the
plots. The PICO–BTTDR instrument (IMKO, Ettlingen City, Germany) was used to measure
the volume of moisture content of the soil layer of 0–120 cm (with an interval of 20 cm) of
the plots every 3–5 days.

2.3.2. Soil Temperature

The soil temperature (5 cm, 10 cm, 15 cm, 20 cm, and 25 cm) during the main growth
period of lucerne was measured from 8:00 to 18:00 (every two hours) using a bent stem
thermometer (Wuqiang Hongxing Instrument Factory, Hengshui City, China). For PM
and BM treatments, bent stem thermometers were laid on adjacent ridges and ditches in
the center of the plots; for the FP treatment, the bent stem thermometers were arranged
between rows in the center of the plots.

2.3.3. Soil Nutrient

The root system of lucerne planted in the first year is relatively shallow, with a depth
of about 30–50 cm. In the second year, the root system significantly deepens and expands,
reaching a depth of around 80–100 cm. The soil surface layer from 0–40 cm is the most
active area for lucerne roots. In this region, the density of lucerne roots is high and the
absorption of nutrients is more frequent. Therefore, the soil nutrient content in the 0–40 cm
soil layer was measured before lucerne planting in 2021 and after the third harvest of
lucerne in 2022. For the FP treatment, three random soil samples from the 0–40 cm layer
were taken from each plot to measure the nutrient content, and their average values were
calculated. For the PM and BM treatments, three sets of soil samples from the 0–40 cm layer
were randomly taken from the ridge and ditch in each plot to measure the nutrient contents,
and their average values were calculated. The nutrient content in the soil layer of 0–40 cm
was gauged before planting in 2021 and after the third harvest in 2022. The organic matter
was determined by the potassium dichromate oxidation method, the total nitrogen was
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identified using a KjeltecTM8400 (FOSS Corporation, Gothenburg City, Sweden) automatic
nitrogen analyzer, the total phosphorus was measured with the molybdenum antimony
colorimetric method, the total potassium was determined by a flame spectrophotometer,
the available nitrogen was gauged using the alkaline hydrolysis diffusion method, the
available phosphorus was identified with the 0.5 mol·L−1 NaHCO3 extraction colorimetric
method, and the available potassium was measured by the NH4OAc extraction flame
photometric method.

2.3.4. Plant Height and Stem Diameter

In each harvest, 10 lucerne plants with uniform growth were selected from each plot.
The vertical distances from the ground to the top of the plants were identified using a
tape measure, and the stem thicknesses of the plants about 5 cm above the ground were
determined with a vernier caliper.

2.3.5. Yield and Quality

(1) Yield (kg·ha−1)

The yield of lucerne was obtained using the quadrat method. When cutting each batch
of lucerne, a 100 cm × 100 cm sample plot of evenly growing lucerne was selected from
each plot. The lucerne plants were cut with scissors at a distance of 5 cm from the ground.
Fresh grasses were weighed after eliminating other weeds. Then, they were put in an oven
at 105 ◦C for green removal and dried at 75 ◦C until they reached a constant weight. The
weight was converted into yield per unit area based on the area of the plot.

(2) Quality

The dried lucerne plants of each batch were crushed and passed through a 0.4 mm
sieve for quality determination. The content of crude protein (CP, %) was determined using
a fully automatic nitrogen analyzer (KjeltecTM8400), and the content of acidic detergent
fiber (ADF, %) and neutral detergent fiber (NDF, %) was obtained by the Van Soest method
with a semi-automatic fiber analyzer (F800).

The formula of relative feed value (RFV) is: [42]

RFV = (BMI × DBM)/1.29 (1)

BMI = 120/NDF (2)

DBM = 88.9 − 0.799 × ADF (3)

2.3.6. Water-Nitrogen Use Efficiency [43]

(1) Evapotranspiration (ET, mm)

It can be obtained using the water balance method.

ET = 10∑n
i=1 γi Hi(θi1 − θi2) + I + P + K − R − D (4)

In the formula, i is the soil layer number; n is the total number of soil layers; γi is the
dry bulk density of the i-th soil layer in g·cm−3; Hi is the thickness of the i-th soil layer in
cm; θi1 and θi2 are the initial and final moisture content of the i-th soil layer, %, represented
by a percentage of the dry soil mass; I is the irrigation amount in mm; P is the precipitation
in mm; K is the replenishment amount of groundwater in mm; R is the surface runoff in
mm; D is the amount of deep leakage in mm. The experimental land had a flat surface, the
buried depth of groundwater was large, and the single precipitation was slight. Therefore,
K, R, and D can be omitted.

(2) Water use efficiency (WUE, kg·ha−1·mm−1)

WUE = Y/ET (5)

(3) Irrigation water use efficiency (IWUE, kg·ha−1·mm−1)
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IWUE = Y/I (6)

(4) Partial factor productivity of nitrogen (PFPN, kg·kg−1)

PFPN = Y/F (7)

In the formula, F is the nitrogen application rate in kg·ha−1.

2.3.7. Economic Benefits

(1) The formula for total revenue (TR, Dollar·ha−1) is:

TR = Y × P (8)

In the formula, P is the price of lucerne in Dollar·ha−1. The prices of lucerne in 2021
and 2022 were 290 and 304 Dollar·ha−1, respectively.

(2) The calculation of net revenue (NR, Dollar·ha−1) can be expressed as:

NR = TR − TC (9)

In the formula, TC is the input cost in Dollar·ha−1.

2.4. Data Analysis

This study used Microsoft Excel 2019 for data organization, Origin 9.0 and GraphPad
8.0.2 software for plotting, and IBM SPSS Statistics 26 software for analysis of variance,
significance testing (p < 0.05), and multiple comparisons.

3. Results
3.1. The Impact of Cultivation Patterns on Soil Microenvironment
3.1.1. Soil Moisture Content

The cultivation pattern plays a significant role in the spatiotemporal distribution of
soil moisture content (Figure 3). With the growth of lucerne, the soil moisture contents of
the three cultivation patterns show a trend of first decreasing and then increasing, with the
minimum value in the bud stage. Compared to the FP treatment, during the regreening,
branching, budding, and early flowering stages, the PM treatment elevates the average soil
moisture content by 27.99%, 29.98%, 23.20%, and 35.70%, and the BM treatment increases
the soil moisture content by 22.20%, 28.41%, 18.66%, and 24.36%, respectively. As the
depth of the soil layer increases, the soil moisture content of the FP treatment first grows,
then decreases and finally stabilizes, similar to that of the ditches treated with PM and
BM. By comparison, the soil moisture content of the ridges gradually elevates. In the soil
layer of 0–40 cm, the PM and BM treatments abate the average soil moisture content of
the ridges by 19.29% and 7.89% compared to that of the ditches, respectively. In the soil
layer of 40–120 cm, the PM and BM treatments raise the average soil moisture content
of the ridges by 4.40% and 4.65% compared to that of the ditches, respectively. During
the two-year growth period, compared to the FP treatment, the PM and BM treatments
increase the average soil moisture content in the soil layer of 0–120 cm by 31.19% and
24.03%, respectively.

3.1.2. Soil Temperature

Under the three cultivation patterns, the daily soil temperature drops with the soil
depth. During the growth period, it augments initially, followed by a decrease, and
reaches its peak in the branching period (Figure 4). In the two–year growth period, the
average temperature in the soil layer of 0–25 cm presented as PM > BM > FP, and the PM
and BM treatments promoted it by 0.70 ◦C and 0.25 ◦C compared to the FP treatment,
respectively. The temperature in the soil layer of 5 cm was the highest, and the difference in
soil temperature between treatments was the most significant. The PM and BM treatments
raised the soil temperature of the ridges by an average of 3.46 ◦C and 2.78 ◦C compared to
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the FP treatment, respectively. The two treatments increased the soil temperature in the
ditches by an average of 1.17 ◦C and 0.34 ◦C compared to the FP treatment, respectively.
In the soil layer of 25 cm, the temperature was the lowest, and the difference in soil
temperatures between treatments was the smallest. The PM and BM treatments elevated
the soil temperature of the ridges by an average of 0.46 ◦C and 0.15 ◦C and dropped that of
the ditches by an average of 1.25 ◦C and 1.10 ◦C compared to the FP treatment, respectively.
During the regreening, branching, budding, and early flowering stages, compared with
the FP treatment, the PM treatment increased the average soil temperature by 0.90 ◦C,
0.56 ◦C, 0.53 ◦C, and 0.80 ◦C, and the BM treatment promoted the average soil temperature
by 0.18 ◦C, 0.03 ◦C, 0.26 ◦C, and 0.54 ◦C, respectively; the PM treatment augmented the
soil temperature of the ridges by an average of 8.81%, 10.16%, 6.54%, and 9.59%, and the
BM treatment elevated the average soil temperature by 6.03%, 4.01%, 3.47%, and 5.06%,
respectively; the PM treatment decreased the soil temperature of the ditches by an average
of 1.21%, 5.79%, 1.58%, and 1.49%; and the BM treatment abated the soil temperature by an
average of 4.08%, 3.77%, 1.02%, and 0.35%, respectively.
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Figure 3. Temporal and spatial changes of lucerne soil moisture under different planting patterns. In
the figure, regreening stage, branching stage, initiation of flowering stage and flowering stage were
used respectively as RS, BS1, BS2 and FS. PM, BM, and FP represent ridge mulching with ordinary
plastic film, ridge mulching with bio-degradable film, and traditional flat planting, respectively.

3.1.3. Soil Nutrients

Compared with before planting lucerne in 2021, the three cultivation patterns all
enhanced the nutrient content in the soil layer of 0–40 cm after the third harvest in 2022,
with the highest increment in organic matter content (375.00–469.70%), followed by the
available nitrogen, available phosphorus, and available potassium content (3.17–22.88%),
and the least in total nitrogen, total phosphorus, and total potassium content (0.26–1.11%)
(Table 1). Compared with the FP treatment, the PM and BM treatments raised the soil
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nutrients by 0.09–9.94% and 0.26–19.94%, respectively. The differences in total nitrogen,
total phosphorus, total potassium, and available nitrogen contents are minor. The BM
treatment increased the content of organic matter, available phosphorus, and available
potassium by 9.94%, 1.79%, and 4.07% compared with the PM treatment, and 19.94%, 3.26%,
and 9.94% compared with the FP treatment, respectively.
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Figure 4. Temporal and spatial changes of lucerne soil temperature under different planting patterns.
In the figure, regreening stage, branching stage, initiation of flowering stage and flowering stage were
used respectively as RS, BS1, BS2, and FS. PM, BM, and FP represent ridge mulching with ordinary
plastic film, ridge mulching with biodegradable film, and traditional flat planting, respectively.

Table 1. Average soil nutrient contents in 0–40 cm soil layer under different planting modes after the
third crop lucerne cutting in 2022.

Treatments OM
(g·kg−1)

TN
(g·kg−1)

TP
(g·kg−1)

TK
(g·kg−1)

AN
(mg·kg−1)

AP
(mg·kg−1)

AK
(mg·kg−1)

PM 6.8 ± 0.1 b 1.8 ± 0.0 a 1.4 ± 0.0 a 34.2 ± 0.0 ab 90.2 ± 1.1 a 31.8 ± 1.0 b 188.6 ± 1.7 b
BM 7.5 ± 0.1 a 1.8 ± 0.0 a 1.4 ± 0.0 a 34.2 ± 0.0 a 91.0 ± 0.7 a 32.3 ± 0.8 a 196.2 ± 1.2 a
FP 6.3 ± 0.0 c 1.8 ± 0.0 a 1.4 ± 0.0 a 34.1 ± 0.0 a 89 ± 0.6 a 31.3 ± 0.6 b 178.5 ± 1.8 c

Note: Different lowercase letters indicated significant differences in soil nutrients between different treatments
(p < 0.05). In the table, PM, BM, and FP represent ridge-covered ordinary film, ridge-covered biodegradable film,
and traditional plain crop, respectively. The FP treatment is used as the control. The OM, TN, TP, TK, AN, AP and
AK represent Organic Matter, Total Nitrogen, Total Phosphorus, Total Potassium, Available Nitrogen, Available
Phosphorus and Available Potassium, respectively.

3.2. The Impact of Cultivation Patterns on the Growth of Lucerne

Plant height and stem diameter are prominent indicators that reflect the growth status
of lucerne. The heights of the lucerne plants show an extending trend with planting years
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and a declining trend with harvests (Figure 5a). Compared with 2021, the average heights
of lucerne plants under the three cultivation patterns increase by 23.45% to 25.10% in
2022. During the two-year growth, the overall heights of lucerne plants under the three
cultivation patterns present PM > BM > FP, with an average increment of 15.37% and
4.04% under the PM and BM treatments compared to the average increment under the
FP treatment. In the second harvest in 2021, the difference in the lucerne plant heights
among the three cultivation patterns is the slightest. The PM and BM treatments elevate
plant height by an average of 13.80% and 3.58% compared to the FP treatment, respectively.
In the first harvest in 2022, the difference in lucerne plant heights is the greatest among
the three cultivation patterns, and the PM and BM treatments augment plant height by an
average of 16.12% and 5.61% compared to the FP treatment, respectively.
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Figure 5. In the figure, (a,b) represent plant height and stem diameter, respectively. Effects of planting
patterns on plant height and stem diameter of lucerne. PM, BM, and FP respectively represent ridge
mulching with common plastic film, ridge mulching with biodegradable plastic film, and traditional
flat cropping. Different lowercase letters of a, b and c indicated significant quality difference among
different treatments (p < 0.05).The same hereinafter.

The stem thickness of lucerne enlarges with planting years and drops with harvests
(Figure 5b). Compared with 2021, the stem diameters of lucerne under the three cul-
tivation patterns increased by an average of 0.24–4.87% in 2022. During the two-year
growth, the overall stem thicknesses of lucerne under the three cultivation patterns showed
PM > BM > FP, and the PM and BM treatments promote the overall stem thicknesses by
an average of 34.14% and 14.58% compared to the FP treatment, respectively. In the first
harvest in 2021, the difference in stem thickness among the three cultivation patterns was
the smallest; the PM and BM treatments augmented the stem thickness by an average
of 29.55% and 9.43% compared to the FP treatment, respectively. In the first harvest in
2022, the difference in stem thickness among the three cultivation patterns was the most
significant; the PM and BM treatments elevated the stem thickness by an average of 43.53%
and 19.49% compared to the FP treatment, respectively.

3.3. The Impact of Cultivation Patterns on Lucerne Production
3.3.1. Yield

The yield of lucerne in the two-year growing exhibits a decreasing trend with harvests
(Table 2). In the 2021 growing season, the first and second yields of the three cultiva-
tion patterns were 4713.03–5948.04 kg·ha−1 and 1955.79–2411.63 kg·ha−1, accounting for
70.67–71.50% and 28.50–29.33% of the total annual yield, respectively. The total yields
of the PM and BM treatments are similar. However, the yields significantly increased
by 25.35% and 18.61% compared to that of the FP treatment, respectively. In the 2022
growing season, the first, second, and third crop yields of the three cultivation patterns
were 10,234.07–11,954.32 kg·ha−1, 5358.74–6269.64 kg·ha−1, and 2053.60–2429.39 kg·ha−1,
accounting for 57.88–58.69%, 29.82–30.37%, and 11.64–11.76% of the total annual yield,
respectively. The total yield of the PM treatment was remarkably higher than that of the
BM treatment, and both grew by 17.04% and 10.94% compared to that of the FP treatment,
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respectively. This indicates that ridge tillage with film mulching, especially with ordinary
films, has a satisfying effect on boosting lucerne yields.

Table 2. Impact of planting patterns and nitrogen levels on lucerne yield (kg·ha−1).

Treatments
2021 2022

First Cut Second Cut Yearly Yield First Cut Second Cut Third Cut Yearly Yield

PM 5948 ± 18 a 2411 ± 137 a 8360 ± 245 a 11,954 ± 70 a 6270 ± 62 a 2429 ± 66 a 20,653 ± 134 a
BM 5655 ± 72 a 2255 ± 96 ab 7910 ± 166 a 11,489 ± 65 b 5837 ± 72 b 2251 ± 68 ab 19,577 ± 72 b
FP 4713 ± 73 b 1956 ± 95 b 6669 ± 46 b 10,234 ± 63 c 5359 ± 60 c 2054 ± 60 b 17,646 ± 57 c

Note: The data in the table are mean ± standard deviation. Different lowercase letters of a, b and c indicated
significant quality difference among different treatments (p < 0.05). PM, BM, and FP represent ridge-covered
ordinary film, ridge-covered biodegradable film, and traditional plain crop, respectively. The same is true below.

3.3.2. Quality

During the two-year growth period, the CP content and RFV content of the lucerne
increased with the harvests, while the content of ADF and NDF dropped (Table 3). During
the growing season of 2021, the contents of CP, ADF, NDF, and RFV under the three
cultivation patterns were 15.48–16.50%, 32.62–35.05%, 52.70–56.44%, and 100.36–110.95%
in the first cutting, and 16.44–18.65%, 27.04–32.03%, 47.02–49.11%, and 120.21–133.35% in
the second cutting, respectively. The annual average values of the four quality indicators
imply that the PM treatment enhances the CP content by 5.91% and 10.09% compared to
the BM and FP treatments and reduces the ADF content by 11.06% compared to the FP
treatment, the PM and BM treatments downgrade the NDF content by 5.53% and 3.13%
compared to the FP treatment, and the PM treatment increases RFV by 10.75% compared to
the FP treatment.

Table 3. Impacts of planting patterns and nitrogen levels on lucerne quality (%).

Index
2021 2022

First Cut Second Cut Average First Cut Second Cut Third Cut Average

CP
PM 16.5 ± 0.1 a 18.7 ± 0.4 a 17.6 ± 0.2 a 18.5 ± 0.7 a 18.7 ± 0.2 a 23.5 ± 0.4 a 20.3 ± 0.2 a
BM 16.2 ± 0.5 a 17.0 ± 0.1 b 16.6 ± 0.2 b 17.9 ± 0.4 a 18.2 ± 0.3 ab 21.8 ± 0.5 a 19.3 ± 0.2 b
FP 15.5 ± 0.7 a 16.4 ± 0.1 b 16.0 ± 0.4 b 16.0 ± 0.2 b 17.2 ± 0.5 b 19.0 ± 0.9 b 17.4 ± 0.4 c

ADF
PM 32.6 ± 0.4 a 27.0 ± 2.8 a 29.8 ± 1.2 b 32.6 ± 0.3 b 29.0 ± 1.6 a 26.7 ± 0.3 a 29.5 ± 0.5 b
BM 34.0 ± 1.7 a 30.0 ± 0.2 a 32.0 ± 1.0 ab 34.5 ± 0.8 a 29.7 ± 1.1 a 27.0 ± 0.3 a 30.4 ± 0.3 ab
FP 35.1 ± 1.0 a 32.0 ± 0.5 a 33.5 ± 0.8 a 34.6 ± 0.5 a 31.7 ± 0.6 a 28.3 ± 0.8 a 31.5 ± 0.2 a

NDF
PM 52.7 ± 0.5 c 47.0 ± 0.8 a 49.9 ± 0.1 c 51.7 ± 1.4 a 47.9 ± 0.7 a 45.0 ± 0.8 b 48.2 ± 0.4 a
BM 54.4 ± 0.1 b 47.9 ± 0.3 a 51.1 ± 0.1 b 51.8 ± 0.2 a 48.4 ± 0.5 a 46.65 ± 0.6 ab 48.9 ± 0.0 a
FP 56.4 ± 0.4 a 49.1 ± 1.5 a 52.8 ± 0.6 a 52.6 ± 1.2 a 49.9 ± 1.6 a 47.7 ± 0.7 a 50.1 ± 1.1 a

RFV
PM 111.0 ± 1.7 a 133.4 ± 6.6 a 122.2 ± 2.5 a 113.3 ± 3.4 a 127.7 ± 0.6 a 139.7 ± 3.1 a 126.9 ± 0.1 a
BM 105.6 ± 2.0 ab 126.2 ± 1.3 a 115.9 ± 1.7 ab 110.2 ± 0.7 a 125.3 ± 0.4 a 134.3 ± 2.1 ab 123.3 ± 0.6 ab
FP 100.4 ± 0.6 b 120.2 ± 4.5 a 110.3 ± 2.6 b 108.5 ± 3.0 a 118.7 ± 2.8 b 129.3 ± 3.2 b 118.8 ± 3.0 b

Note: Different lowercase letters of a, b and c indicated significant quality difference among different treatments
(p < 0.05).. In the table, PM, BM, and FP represent ridge-covered ordinary film, ridge-covered biodegradable film,
and traditional plain crop, respectively. CP, ADF, and NDF represent crude protein, acid detergent fiber, and
neutral detergent fiber, respectively, while RFV stands for relative feeding value.

In contrast with the growth season of 2021, the quality of lucerne under the three
cultivation patterns improved during the growth season of 2022. The contents of CP,
ADF, NDF, and RFV of the three harvests of lucerne were 15.97–23.53%, 26.73–34.56%,
45.00–53.63%, and 108.47–139.74%, respectively. The annual average values of the four
quality indicators show that the PM and BM treatments increased the CP content by 16.57%
and 11.10% compared to the FP treatment and that the PM treatment abated the ADF
content by 6.54% compared to the FP treatment; it also showed that there is no significant
difference in the NDF content among the three cultivation patterns, and the PM treatment
elevated the RFV by 6.81% compared to the FP treatment.
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3.3.3. Water Use Efficiency

The ET, PFPN, IWUE, and WUE of lucerne all rise with planting years. Compared
to traditional flat cropping, ridge tillage with film mulching significantly decreases ET
and improves the PFPN, IWUE, and WUE (Table 4). During the 2021 growing season, in
contrast with the FP treatment, the PM and BM treatments decreased the ET by 16.75% and
8.60% and augmented the IWUE, WUE, and PFPN by 25.34%, 49.49%, 25.36%, and 18.55%,
16.16%, and 18.62%, respectively. During the 2022 growth season, compared to the FP
treatment, the PM and BM treatments lowered the ET by 14.87% and 12.98%, respectively;
the PM treatment increased the IWUE, WUE, and PFPN by 17.04%, 37.50%, and 17.04%,
and the BM treatment enhanced those by 10.99%, 18.97%, and 10.94%, respectively.

Table 4. Impacts of planting patterns on the water–nitrogen use efficiency of lucerne.

A Given Year Handle ET (mm) IWUE (kg·ha−1·mm−1) WUE (kg·ha−1·mm−1) PFPN (kg·kg−1)

2021
PM 563.7 ± 7.2 c 2.8 ± 0.1 a 1.5 ± 0.1 a 52.3 ± 1.5 a
BM 618.9 ± 7.9 b 2.6 ± 0.1 a 1.2 ± 0.0 b 49.4 ± 1.0 a
FP 677.1 ± 23.3 a 2.2 ± 0.0 b 1.0 ± 0.0 c 41.7 ± 0.3 b

2022
PM 648.5 ± 23.4 b 5.2 ± 0.0 a 3.2 ± 0.1 a 129.1 ± 0.8 a
BM 662.9 ± 21.2 b 5.0 ± 0.0 b 2.8 ± 0.1 b 122.4 ± 0.5 b
FP 761.8 ± 15.8 a 4.5 ± 0.0 c 2.3 ± 0.0 c 110.3 ± 0.4 c

Note: Different lowercase letters of a, b and c indicated significant quality difference among different treatments
(p < 0.05). In the table, PM, BM, and FP represent ridge-covered ordinary film, ridge-covered biodegradable film,
and traditional plain crop, respectively. ET, WUE, IWUE, and PFPN represent evapotranspiration, water use
efficiency, irrigation water use efficiency, and the partial factor productivity of nitrogen.

3.3.4. Economic Benefits

The net income of lucerne increases with planting years, and the overall performance
presents as PM > BM > FP (Table 5). During the 2021 growth season, there was no significant
difference in net income between the PM and BM treatments. However, compared to the FP
treatment, the PM and BM treatments significantly increased in net income by 26.80% and
26.62%, respectively. During the 2022 growing season, there was a significant difference
in the net income of lucerne among the three cultivation patterns. The PM and BM
treatments promoted the net income of lucerne by 15.22% and 11.05% compared to the FP
treatment, respectively.

Table 5. Impacts of planting patterns on lucerne’s economic benefits.

Factors
2021 2022

PM BM FP PM BM FP

Total revenue (Dollar·ha−1) 2425.2 2292.4 1932.1 6277.0 5950.2 5363.4

Input cost
(Dollar·ha−1)

Seed 73 73 73 73 73 73
Controlled release nitrogen fertilizer 133 133 133 133 133 133

Rotary tillage 207 207 207 0 0 0
Insecticide 117 117 117 117 117 117

Mulching film 89 61 0 89 61 0
Total input cost 619 591 530 412 384 323

Labor cost
(Dollar·ha−1)

Mulching and residue removal 225 124 124 225 124 124
Others (planting, fertilization, etc) 156 156 156 156 156 156

Total labor cost 381 280 280 381 280 280

Net revenue (Dollar·ha−1) 1424.9 a 1422.9 a 1123.8 b 5485.4 a 5285.6 b 4759.5 c

Note: Different lowercase letters of a, b and c indicated significant quality difference among different treatments
(p < 0.05). In the table, PM, BM, and FP represent ridge-covered ordinary film, ridge-covered biodegradable film,
and traditional plain crop, respectively.
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3.4. Correlation Analysis

Correlation analysis was conducted on the three cultivation patterns of lucerne during
the two-year growth period, including plant height; stem diameter; yield; contents of
CP, ADF, NDF, RFV, ET, IWUE, WUE, and PFPN; economic benefits; soil moisture con-
tent; soil temperature; and soil nutrients. Most of the correlation coefficients between
the indicators are above 0.50 or below −0.50, indicating strong correlations between the
selected indicators (Figure 6). Yield is significantly positively correlated with organic
matter, available potassium, plant height, stem diameter, CP, RFV, IWUE, WUE, PFPN,
and economic benefits. Meanwhile, it is negatively correlated with ADF and ET. RFV
has significantly positive correlations with CP, IWUE, WUE, PFPN, yield, and economic
benefits and significantly negative correlations with ADF, NDF, and ET. WUE is signif-
icantly positively correlated with organic matter, plant height, stem diameter, CP, RFV,
IWUE, PFPN, yield, and economic benefits and significantly negatively correlated with
ADF and ET. PFPN has significantly positive correlations with organic matter, available
potassium, plant height, stem diameter, CP, RFV, IWUE, WUE, yield, and economic benefits
and significantly negative correlations with ADF and ET.
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4. Discussion
4.1. The Impact of Cultivation Patterns on Soil Microenvironment

Ridge tillage with film mulching can ameliorate the ecological microclimate of farm-
lands and coordinate the soil environments of water, fertilizer, air, and heat in the crop
root system, which is crucial for sustainable agriculture development in arid and semi-arid
areas [44].

Furthermore, ridge tillage can heighten soil water availability [5]. Similar to the
research of Kou et al. [45] on lucerne and that of Jia et al. [46] on maize in the semi-arid
region of northwest China on the Loess Plateau, this study discovered that the average
soil moisture content and the ditch moisture content of the PM and BM treatments were
significantly higher than those of the FP treatment. This is mainly attributed to the fact
that ridge tillage with film mulching can superimpose rainfall in ridges and lessen surface
soil evaporation, thereby improving soil moisture [47]. Meng et al. [48] proposed in their
study on the Loess Plateau that the soil moisture content of ridge tillage with film mulching
increased first and then dropped with soil depth, and it gradually declined with the growth
period of lucerne. Meanwhile, this study found that the soil moisture content under the
three cultivation patterns showed a trend of first decreasing and then increasing with
the growth period of lucerne. This may be related to different irrigation management
approaches. Meng et al. conducted the experiment under the rain–fed condition. The root
system of lucerne continuously consumed the soil water stored in the root zone during
the growth period, resulting in a gradual decrease in the soil moisture content. In contrast,
this study consulted local production experience for irrigation during the growth period
of lucerne. In the later growth stage of lucerne, the demand for water was relatively
low. Moreover, the concentrated precipitation from July to September in the study area
weakened the consumption of soil water by lucerne. In addition, this study found that the
soil moisture content of the PM treatment was higher than that of the BM treatment; in the
soil layer of 0–40 cm for PM and BM treatments, the soil moisture content in the ditches was
greater than that of the ridges; it was converse in the soil layer of 60–120 cm. This is mainly
because, under the gradual degradation of degradable films with the growth of lucerne
and the long growing period, multiple instances of mowing in a year lead to an inferior
soil moisture retention effect of degradable films compared to that of ordinary plastic films.
For ridge tillage with film mulching, precipitation or irrigated water accumulates in the
ditches, increasing the moisture content of the shallow soil in the ditches and infiltrating
the adjacent ridges under the action of soil capillary. Lucerne is a deep-rooted crop that can
absorb underground soil moisture, thus decreasing the moisture content of the deep soil in
the ditches.

Another feature of ridge tillage with film mulching is regulating soil temperature [49].
Jing et al. [50] carried out their study in the high-altitude pastoral area of Tianzhu, Gansu
Province, and believed that the temperature in the soil layer of 0–25 cm reached its peak
between 14:00 and 16:00. This study disclosed that the soil temperatures of the three
cultivation patterns all achieved their highest points during 12:00 and 14:00. This may be
relevant to the solar radiation and light intensity in the study area. Similar to the research
of Li et al. [51] on maize in the Weibei arid plateau, this study found that under the three
cultivation patterns, the average soil temperatures in the soil layer of 0–25 cm during the
growth period of lucerne presented as PM > BM > FP. The PM treatment exerts a warming
effect through the entire growth of lucerne, while the BM treatment plays a warming role
mainly in the early growth stage. This is because film mulching can allow short waves of
sunlight to pass through the cover layer to the soil surface, and long waves reflected by the
soil cannot get through the cover layer, thereby elevating the soil temperature under the
films. Compared with ordinary plastic films, biodegradable films gradually degrade with
the growth period of crops, and the insulation effect abates correspondingly. Generally,
the degradation of biodegradable films in the later stage can effectively downgrade the
premature senescence of crops caused by high temperatures, maintain soil fertility, and
promote the sustainable development of agricultural ecosystems [52,53]. Meanwhile, this
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study found that, throughout the growth of lucerne, the soil temperatures of the PM and
BM treatments on ridges were higher than in the ditches. On the one hand, this may be
attributed to the fact that ridge tillage with film mulching abates solar radiation in the
ditches. On the other hand, a good hydrothermal environment enables lucerne to quickly
form an optimal canopy, enhancing the shading effect and declining soil temperature in the
ditches [6].

Ridge tillage with film mulching not only affects soil, water, and heat conditions but
also impacts the soil nutrient content and distribution [54]. Among them, soil organic
matter content is one of the primary indicators for evaluating cultivation patterns [19].
Ren et al. [55] put forward in their research on summer maize in the Wei River Valley that
compared to flat cropping, furrow-collecting rainwater cultivation remarkably enhanced
the soil’s available nitrogen, phosphorus, potassium, and organic matter contents in the
plow layer. Similarly, this study also found that, after two years of planting lucerne, the
soil nutrients of each treatment increased. The BM and PM treatments elevated the soil
organic matter content by 469.70% and 418.18%, respectively. However, Song et al. [56]
explored wheat in the Longzhong area of Gansu Province and discovered that the mulching
duration had an enormous impact on the soil organic matter content. Compared with the
initial stage of the experiment, the organic matter content of the entire mulching treatment
declined by 21.2%, the content of the 60-day mulching treatment dropped by 17.2%, and
the decline in the content of 30-day mulching and non-mulching treatments was relatively
small. The reason may be that favorable water and heat conditions, abundant microbial
populations, and strong enzyme activity in the lucerne planting area in the ditches covered
with plastic films accelerate the decomposition of humus and allow plenty of organic
matter to be returned to the soil [30]. Meanwhile, biodegradable films can restrict soil
moisture evaporation, retain moisture, and have a strong adhesion ability, which can bind
soil particles and form ideal aggregates, enhancing the capillary effect of soil particles and
ameliorating soil permeability [57]. Additionally, after a certain period of degradation,
biodegradable films become pollution-free small-molecule substances that participate in the
biological metabolic cycle or are assimilated and absorbed by the soil, thereby promoting
the soil nutrient content [58–60].

4.2. Effects of Cultivation Patterns on the Growth, Yield, and Quality of Lucerne

Reasonable cultivation patterns are essential for the good growth and development
of plants and for yield formation [61]. Song et al. [62] reported in their research on the
hilly areas of the Loess Plateau that the plant height and stem diameter of the lucerne from
ridge tillage with ordinary and biodegradable film mulching were significantly higher
than those on soil ridges and flat cropping. Zhang et al. [63] found in the semi-arid region
of northwest China that ridge tillage with ordinary and biodegradable film mulching
increased the heights of sainfoin plants by 56.6% and 47.7% compared to traditional flat
cropping, respectively. Huo et al. [64] revealed in their study on the hilly areas of the
Loess Plateau that, in contrast with traditional flat cropping, ridge tillage with ordinary
and biodegradable film mulching increased lucerne hay yield by 5.2–12.0% and 2.0–9.9%,
respectively. Similar to previous findings [62–64], this study found that, compared to the
FP treatment, the PM and BM treatments promoted the average plant height of lucerne
by 15.37% and 4.04%, the average stem diameter by 34.14% and 14.58%, and the average
yield by 19.32% and 13.04%, respectively. The major reason for this is that ridge tillage
with film mulching slows down the wind speed in the ditches and builds a suitable
soil microenvironment for lucerne growth, thereby stimulating plant growth and yield
formation [8]. In addition, this study discovered that the yields of lucerne under the three
cultivation patterns decreased with harvests. This may be attributed to the fact that after
lucerne is harvested, it will recover its growth by consuming the nutrients stored in the root.
However, as the number of cuts increases, the nutrient supply in the root of lucerne cannot
meet the plant’s needs, resulting in a drop in yield. Additionally, under high temperatures,
lucerne will grow too fast, and low temperatures can constrain the growth rate of lucerne.
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The second and third crops of lucerne grew in hot summer and cold late autumn when
biomass was insufficient, and the yield decreased.

The contents of CP, ADF, NDF, and RFV are key indicators for measuring the nutri-
tional value of lucerne [41]. The higher the CP and RFV contents and the lower the contents
of ADF and NDF, the better the feeding performance and the higher the nutritional value
of lucerne [65]. Similar to the results of Meng et al. [48] ‘s research on the Loess Plateau,
this study found that the PM and BM treatments evidently improved the quality of lucerne
compared to the FP treatment, and the PM treatment achieved the best quality. The primary
reason for this is that during the growth of lucerne, ridge tillage with film mulching can
effectively collect rainwater and store water, which elevates the soil moisture content in
the ditches, advances the activity of glutamine synthase, and depresses the activity of
proteolytic enzymes, ultimately leading to an augmentation of the CP content [66]. More-
over, the increase in soil moisture in the ditches promotes root water absorption and plant
moisture content, thereby inhibiting plant lignification and downgrading the content of
ADF and NDF [67]. Sha et al. [68] discovered in the Ningxia Hui Autonomous Region that
the contents of CP, ADF, and NDF in lucerne were greatly affected by planting years. The
content of CP decreased with planting years, while that of ADF and NDF rose. However,
this study found that the CP content of lucerne in the second year was remarkably higher
than that in the planting year, and the contents of ADF and NDF were significantly lower.
The reason for this may be that this study planted two lucerne crops in the same year, with
a long growth cycle. During this period, affected by precipitation and wind, the lucerne
plants incurred lodging from the bud stage to the early flowering stage. Lodged lucerne
suffered from insufficient light, weakened photosynthesis, poor root and neck respiration,
and decay, ultimately leading to a drop in quality.

4.3. Effects of Cultivation Patterns on Water and Nitrogen Use Efficiency of Lucerne

The WUE can characterize the efficiency of converting unit water volume into dry
matter accumulation during the physiological activities of crops [69]; IWUE reflects the
contribution of irrigated water to the dry matter in crops [70]; and PFPN refers to the
increase in crop nitrogen yield per unit of land due to the application of a certain amount
of nitrogen fertilizer [71]. Ridge tillage with film mulching can efficiently assemble precipi-
tation, augment soil moisture content, enhance the soil absorption of water and nitrogen,
promote plant growth and dry matter accumulation, and improve the WUE and PFPN [35].
Huo et al. [64] reported in their study on the semi-arid Loess Hilly Region in Gansu
Province that ridge tillage with ordinary and biodegradable film mulching increased the
average WUE of lucerne by 35.00% and 31.00% compared to traditional flat cropping,
respectively. Wenhui Meng et al. [72] conducted a study on corn in the Loess Plateau and
believed that, compared with traditional flat cropping, two years of ridge tillage with film
mulching enhanced PFPN by 27.72% and 30.66%, respectively. Consistent with previous
findings [8,72], this study found that, in contrast with the FP treatment, the PM and BM
treatments downgraded the ET by an average of 15.81% and 10.79% and elevated the IWUE
by an average of 21.19% and 14.77%, the WUE by an average of 43.50% and 17.56%, and
the PFPN by an average of 21.20% and 14.78%, respectively. The reason is that in this study,
the yield shows PM > BM > FP, and the water consumption exhibits FP > BM > PM, while
the irrigation and nitrogen application rates are constant. Therefore, the water and nitrogen
use efficiency of the PM treatment is the highest, and that of the FP treatment is the lowest.

5. Conclusions

During the entire growth cycle of lucerne, ridge mulching with ordinary plastic film
and ridge mulching with biodegradable film significantly increased the average water
content in the 0–120 cm soil layer. The average soil temperature in the 0–25 cm soil layer
followed the order of ridge mulching with ordinary plastic film > ridge mulching with
biodegradable film > traditional flat planting. Compared with traditional flat planting,
ridge mulching with ordinary plastic film and ridge mulching with biodegradable film
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both increased the average soil temperature and decreased the soil temperature in the
furrow. After two years of planting, the soil nutrient content in all treatments increased
compared to traditional flat planting. In terms of promoting growth, enhancing yield,
quality, and utilizing water and nitrogen, ridge mulching with ordinary plastic film was
the most effective, followed by ridge mulching with biodegradable film, while traditional
flat planting was the least effective. In summary, both ridge mulching with ordinary plastic
film and ridge mulching with biodegradable film can create a suitable soil environment
for lucerne growth and improve production efficiency. Among them, ridge mulching with
ordinary plastic film is more effective in improving lucerne production efficiency, while
ridge mulching with biodegradable film is more effective in improving soil fertility.
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