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Abstract: To analyze the interaction between the surface soil and the soil-contacting component
(65 Mn) in the camellia oleifera forest planting area in Changsha City, Hunan, China, in this study, we
conducted discrete element calibration using physical and simulation tests. The chosen contact model
was Hertz–Mindlin with JKR cohesion, with the soil repose angle as the response variable. The repose
angle of the soil was determined to be 36.03◦ based on the physical tests. The significant influencing
factors of the repose angle determined based on the Plackett–Burman test were the soil–soil recovery
coefficient, soil–soil rolling friction coefficient, soil-65 Mn static friction coefficient, and surface energy
of soil for the JKR model. A regression model for the repose angle was developed using the Box–
Behnken response surface optimization method to identify the best parameter combination. The
optimal parameter combination for the JKR model was determined as follows: surface energy of soil:
0.400, soil–soil rolling friction coefficient: 0.040, soil-65 Mn static friction coefficient: 0.404, and soil–
soil recovery coefficient: 0.522. The calibrated discrete element parameters were validated through
experiments on the repose angle and steel rod insertion. The results indicated that the relative errors
obtained from the two verification methods were 2.44% and 1.71%, respectively. This research offers
fundamental insights for understanding the interaction between soil and soil-contacting components
and optimizing their design.

Keywords: soil; repose angle; soil-contacting components; discrete element method; parameter calibration

1. Introduction

Camellia oleifera, one of the four major edible raw oil materials worldwide, plays a
significant role in China’s agricultural economy. Due to its well-developed root system,
drought tolerance, and ability to thrive in less fertile areas, Camellia oleifera is widely
distributed across various regions in China. Hunan, in particular, is considered a suitable
region for cultivating Camellia oleifera forests. However, the mountainous and hilly terrain
of Camellia oleifera plantations makes mechanized operations challenging, resulting in low
levels of mechanization and slow industry growth [1–3].

The discrete element is a numerical simulation method that can treat the entire medium
as a collection of several particle units. It is widely used in the fluidity of scattered materials,
solid crushing, and machine–soil interactions [4,5]. Due to the complex soil characteristics,
the finite element soil model is not very accurate, and can only simulate soil damage
behavior, but cannot simulate the soil movement process. The discrete element method can
solve the contact between particles and boundaries and uses adhesive particles to simulate
the generation of soil aggregates, greatly improving the accuracy of soil models [6,7].

Rotary tillage plays a crucial role in the management of land operations. It transforms
the soil from a compacted state into granular particles with a specific particle size. By
studying the interaction between the rotary blade and the soil, valuable insights can be
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gained to inform blade design. In a study conducted by Cheng et al. [8], the rotary tillage
process of a rotary tiller blade was simulated using the discrete element method. The
findings indicated that the soil adhesion force primarily accumulates on the oblique long
part of the rotary tillage blade. Moreover, as the rotary tillage section moves through the soil,
it collects more soil particles. To study the interaction mechanism between vertical rotary
tillers and soil, Shike Zhai et al. [9] used EDEM to conduct a virtual simulation of different
operating parameters and structural parameters of vertical rotary tillers and obtained the
optimal operating parameters and structural parameters. Xiongye Zhang et al. [10] utilized
a simulation based on the discrete element method (DEM) to develop the contact model,
soil particle model, and soil-rotary tiller roller interaction model. They simulated the
dynamic process of the rotary tiller roller cutting soil and obtained information on the soil
deformation area, cutting process energy, cutting resistance, and soil particle movement.

Establishing a discrete element model of soil and calibrating contact parameters can
enhance the accuracy of numerical simulations in soil and tool preparation. It also provides
a foundation and basic parameters for studying soil–tool interaction mechanisms [11–13].
Before conducting a DEM simulation analysis, it is crucial to accurately construct the
discrete element model of the soil. Yang et al. [14] used the repose angle as a response,
calibrated red clay in hilly areas based on physical experiments and simulation tests, and
obtained the contact parameters. Du et al. [15] used the Hertz–Mindlin and JKR contact
models in EDEM to calibrate the contact parameters involved in the interaction between
tilled loose soil and Q235 steel in response to the angle of repose and obtained their optimal
parameter combination. The calibration results were verified through field experiments.
Zhong et al. [16] used the same method to obtain the discrete element model parameters of
soil in rice fields.

Under different scenarios and different operating methods, the soil conditions are
different, and the obtained discrete element parameters are also different. Previous research
on soil calibration often focuses on using the repose angle as a response variable, with
the calibration results validated using the repose angle obtained through physical testing.
However, in economic forests, the surface soil tends to be in a fragmented state. When
calibrating this type of soil, it is suitable to consider the repose angle as the response vari-
able. Subsequent measurements of the working resistance of soil-contacting components
generally align well with the simulation results. Beneath the surface soil lies the root–soil
complex, which is no longer in a discrete state due to the significant influence of tree roots.
The parameters calibrated using the repose angle as a response show significant errors.
In this scenario, it is more suitable to consider the shear stress of the soil or the working
resistance of the soil contact parts as a response. To enhance the rigor of the research, this
study focused on the surface soil of the Camellia oleifera forest and utilized equal-diameter
spherical particles as the soil particle model in order to enhance the simulation’s accuracy.

During the cultivation of Camellia oleifera trees, the interaction between the soil-
contacting parts and the soil is involved. Therefore, to address the limited research and lack
of references on soil and contact material parameters in the Camellia oleifera forest scene in
Changsha, Hunan, this study focused on using local soil as the research object. The Hertz–
Mindlin approach with the JKR contact model and the soil repose angle test were employed
to calibrate the soil’s discrete element simulation parameters. The calibrated parameters
could be utilized for the discrete element simulation between the soil and soil-contacting
parts, thereby providing essential data for analyzing the interaction between the soil-
contacting parts and soil in Camellia oleifera forest cultivation equipment. Furthermore, it
enabled the exploration of the action mechanism of the soil-contacting components and
optimization design.

2. Materials and Methods
2.1. Materials

The studied soil was collected on 8 December 2023 from the Camellia oleifera forest
experimental base in the Wangcheng District, Changsha City, Hunan Province, China.
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In the study, the soil samples were collected from the soil layer of the Camellia oleifera
forest at depths ranging from 0 to 50 mm. The sampling method employed was the
five-point method, with each sampling point having a minimum sampling mass of 200 g.

The equipment used for the subsequent measurements of the density, friction angle,
repose angle, etc., included 200 mm × 400 mm 65 Mn plates, graduated cylinders, balances,
cameras, funnels, etc. The software used for these measurements included EDEM and
Origin, among others.

2.2. Methods

The Hertz–Mindlin model with JKR was selected as the soil contact model for this
study [17]. The parameters, such as the soil’s Poisson’s ratio, solid density, shear modulus,
and soil-65 Mn static friction coefficient, were determined through experimental measure-
ments and a literature review. The soil moisture content was obtained using the drying
method, the soil-65 Mn static friction coefficient was determined through slope tests, the
soil particle size distribution data were obtained through soil sieve screening tests, and the
soil density was obtained using an immersion method.

The simulation test was conducted based on EDEM software. The index of the test
results was the ratio of the difference between the measured repose angle and the simulated
repose angle to the measured repose angle, which was calculated as shown in Equation (1).
Taking the above parameters as influencing factors, a second-order regression model of the
repose angle and significance parameters was obtained through the Plackett–Burman test,
steepest climb test, and Box–Behnken test design, and finally, the best combination of the
significance parameters was determined [18,19].

y =
α − α1

α1
× 100% (1)

where α1 is the measured repose angle and α is the discrete element simulation repose angle.
The soil discrete element parameter calibration process is shown in Figure 1 [20,21].
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Figure 1. Process of parameter calibration.

3. Acquisition of Soil Characteristic Parameters and Contact Parameters
3.1. Acquisition of the Soil Characteristic Parameters

The soil characteristic parameters mainly included the moisture content, density, shear
modulus, and Poisson’s ratio.
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3.1.1. Determination of the Soil Moisture Content

During the winter season, the absence of precipitation persisted for several days,
resulting in the soil being dry. The moisture content was determined using the drying
method, which revealed that the moisture content of the soil was 1.48%.

3.1.2. Soil Particle Size Distribution Determination

The soil samples were naturally air-dried and weighed using an electronic balance.
Subsequently, the samples were sieved using a standard sieve with apertures of 5, 2, 1, 0.5,
0.1, and 0.025 mm [22]. The sieving process was carried out for 10 min (Figure 2).
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Figure 2. Soil screening.

After sieving, the masses corresponding to different particle sizes were measured using
an electronic scale. The mass fractions corresponding to the particle sizes of the soil can be
found in Table 1 and Figure 3. The mass fractions of the soil particles in different size ranges
were as follows: 0.75% (0~0.025 mm), 2.91% (0.025~0.1 mm), 28.06% (0.1~0.5 mm), 18.81%
(0.5~1 mm), 20.62% (1~2 mm), 20.34% (2~5 mm), and 8.50% (>5 mm).

Table 1. Size classification and mass fraction of soil.

Particle size range/mm 0~0.025 0.025~0.1 0.1~0.5 0.5~1 1~2 2~5 >5

Mass fraction/% 0.75 2.91 28.06 18.81 20.62 20.34 8.50
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3.1.3. Acquisition of Other Soil Characteristic Parameters

Based on previous studies [14,23], the Poisson ratio of the soil was assigned a value of
0.25~0.45, while the shear modulus of the soil was set at 1.15 × 107 Pa.

3.2. Determination of the Soil Static Friction Coefficient

During actual contact between the soil and other materials, static friction plays a
major role. The soil static friction coefficient is determined using the inclined plane slid-
ing test [24]. The relevant principles and formulas of its measurement are shown in
Figure 4 and Formula (2). The test device comprises two main components: a self-made
200 mm × 400 mm plate made of 65 Mn material and an inclinometer.
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Figure 4. Principle of determination of the soil static friction coefficient. F1 is the traction force, N; F2

is the pressure, N; G is the gravity, N; f is the friction force, N; N is the support force, N; θ is the angle
between the base and slope, ◦; b is the base length, mm; h is the height of the slope, mm.

To measure the friction angle of soil-65 Mn, we placed the soil sample on the 65 Mn
plate and gradually increased the tilt angle of the plate. Once the soil particles on the slope
started to slide off, we stopped increasing the slope angle and recorded the tilt angle. This
recorded angle value represented the friction angle of soil-65 Mn (Figure 5). We repeated
this measurement five times and calculated the average value as the friction angle of soil-65
Mn. The test results are presented in Table 2. By using Formula (2), the static friction
coefficient of soil-65 Mn was determined as 0.40.

F1 = G sin θ
F2 = G cos θ
F1 − f = 0
F1 − N = 0

F1 = µF2

 ⇒ µ = tan θ (2)

Agronomy 2024, 14, x FOR PEER REVIEW 6 of 20 
 

 

1

2

1

1

1 2

sin
cos

tan0
0

F G
F G
F f
F N
F F

θ
θ

μ θ

μ

= 
=  =− = 
− = 

= 

 (2) 

 

  
(a) (b) 

Figure 5. Measurement of the soil-65 Mn steel static friction angle. (a) Static friction measurement 
device. (b) Soil-65 Mn static friction angle measurement results. 

Table 2. Measurement results of the soil-65 Mn steel static friction angle. 

Soil Sample Soil-65 Mn Static Friction Angle/° 
Test 1 Test 2 Test 3 Test 4 Test 5 Average Value Overall Average 

1 21.40 22.31 22.14 23.22 20.87 22.008 
21.9440 2 20.62 21.79 23.41 22.93 20.65 21.88 

3 22.82 20.39 21.47 22.83 22.21 21.944 

3.3. Determination of the Soil Repose Angle 
The repose angle refers to the angle at which a significant amount of material collects 

on a horizontal surface to form a stable cone-shaped pile. To measure the soil repose angle, 
we employed the funnel method and constructed a test platform, depicted in Figure 6 
[25,26]. 

 

Figure 5. Measurement of the soil-65 Mn steel static friction angle. (a) Static friction measurement
device. (b) Soil-65 Mn static friction angle measurement results.



Agronomy 2024, 14, 1011 6 of 19

Table 2. Measurement results of the soil-65 Mn steel static friction angle.

Soil Sample
Soil-65 Mn Static Friction Angle/◦

Test 1 Test 2 Test 3 Test 4 Test 5 Average Value Overall Average

1 21.40 22.31 22.14 23.22 20.87 22.008
21.94402 20.62 21.79 23.41 22.93 20.65 21.88

3 22.82 20.39 21.47 22.83 22.21 21.944

3.3. Determination of the Soil Repose Angle

The repose angle refers to the angle at which a significant amount of material collects on
a horizontal surface to form a stable cone-shaped pile. To measure the soil repose angle, we
employed the funnel method and constructed a test platform, depicted in Figure 6 [25,26].
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Figure 6. Soil repose angle determination test.

In the experiment, the soil was placed into a funnel and allowed to flow from the
bottom of the funnel onto the bottom plate, forming a pile shape. A photograph was
taken to capture the soil pile, and the photo was subsequently processed to keep only the
part to be calculated for the repose angle. After obtaining the soil accumulation photos,
image processing technology was used to obtain the repose angle. The general process was
as follows:

(1) We divided the soil pile image into left and right sides symmetrically and extracted
the unilateral image;

(2) We binarized the unilateral image of the soil pile;
(3) We extracted the image boundary contours;
(4) The boundary contour line was linearly fitted using the least squares method to obtain

the fitting straight line and equation. The slope (k) of the equation was obtained. The
repose angle was calculated using Formula (3).

θ = arctan|k| (3)

The specific image processing process is shown in Figure 7.
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Figure 7. Process of obtaining the soil repose angle. (a) Soil accumulation; (b) image cropping;
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Through the above method, the measurement of the soil repose angle was repeated
five times, and the obtained repose angle results are shown in Figure 8.
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Figure 8. Fitting results of the soil accumulation test.

After the above measurements, it was concluded that the average repose angle of the
soil was 36.03◦.

4. Soil Discrete Element Parameter Calibration Process and Results
4.1. Construction of the Soil Particle Model and Device Model

The analysis of the soil particle size distribution revealed that the soil particles were
predominantly small and exhibited variation in size. Considering the negligible roundness
of most soil particles, they could be approximated as standard spherical shapes. To expedite
the creation of soil particle models and streamline the subsequent simulation tests, spherical
particles with a radius of 1.5 mm were utilized as the soil particle model [27–29].

The repose angle detection device model was constructed through SolidWorks soft-
ware (Figure 9).
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4.2. Selection of the Contact Model

The Hertz–Mindlin (no slip) model was chosen as the contact model for the soil-65
Mn interaction in the discrete element simulation, and the Hertz–Mindlin model with JKR
cohesion was selected as the contact model for the soil–soil interactions.

The Hertz–Mindlin with JKR cohesion contact model is a cohesive particle contact
model that is based on Hertz’s theory. It is specifically designed for simulating materials
where particles exhibit bonding and agglomeration due to static electricity, moisture,
and other factors. Figure 10 illustrates the schematic diagram of this model. The model
accurately represents the viscoelastic characteristics between the particles through normal
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elastic force, which is determined using the amount of normal overlap and surface energy.
The calculation method for normal elastic force is provided in Formulas (4) and (5).

FJKR = −4
√

πγR∗E∗δ
3
2
τ +

4E∗

3R∗ α3 (4)

δn =
δ2

τ

R∗ −
√

4πγδτ

E∗ (5)

In the formula, FJKR represents the normal elastic force of JKR in Newtons (N), δn represents
the normal overlap between the two contacting particles in meters (m), δτ represents the
tangential overlap between the two contacting particles in meters (m), γ represents the
surface energy (J/m2), E* represents the equivalent elastic modulus in Pascals (Pa), and R*
represents the equivalent radius of the particle in meters (m).
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Figure 10. Schematic diagram of the contact model. Note: Oi and Oj are the spherical center positions
of the two particles, respectively; Ri and Rj are the radii of the two particles, respectively; δn is the
normal overlap amount when the particles collide (m); kn and kτ are the normal and tangential
Huco coefficients of the particles, respectively; βn and βτ are the normal and tangential damping
coefficients of the particles, respectively; and µ is the static friction coefficient between the particles.

The definitions of the equivalent elastic modulus E* and the equivalent contact radius
R* are shown in Formulas (6) and (7).

1
E∗ =

1 − µ2
i

Ei
+

1 − µ2
j

Ej
(6)

1
R∗ =

1
Ri

+
1
Rj

(7)

In the formula, Ei and Ej represent the elastic modulus of particle i and particle j in contact
(Pa); µi and µj represent the Poisson ratios of particle i and particle j; and Ri and Rj represent
the radii of particle i and particle j (m).

When the surface energy γ = 0, the JKR normal elastic force becomes the Hertz–Mindlin
normal force (Formula (8)).

FJKR = FHertz =
4
3

E∗√R∗δ
3
2
n (8)

When the particles are not in direct contact, the Hertz–Mindlin with JKR contact model
can also account for attractive cohesion. Equations (9) and (10) demonstrate the methods to
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calculate the normal maximum gap and tangential maximum gap when there is non-zero
cohesion between the particles.

δc =
α2

c
R

−
√

4πγαc

E∗ (9)

αc =

[
9πγR∗2

2E∗ −
(

3
4
− 1√

2

)] 1
3

(10)

In the formula, δc represents the maximum normal gap between the particles when there
is non-zero cohesion (m), while αc represents the maximum tangential gap between the
particles when there is non-zero cohesion (m).

When δn > δc, the cohesion between the particles becomes 0. When the particles are
not in actual contact and the distance is less than δc, the cohesion reaches its maximum
value. The method for calculating the maximum value is shown in Formula (11).

Fpullout = −3
2

π·γ·R∗ (11)

4.3. EDEM Software Simulation Parameter Settings

This study utilized EDEM software for the simulation. The computer had a 13th
Gen Intel(R) Core (TM) i5-13490F CPU, 32 GB RAM, and an NVIDIA GeForce RTX 3050
graphics card with 8 GB video memory. The soil model parameters play a crucial role
in the simulation results; thus, accurately setting these parameters is of utmost impor-
tance. Material parameters, such as the density, Poisson’s ratio, and shear modulus, were
determined through the experiments or literature and are listed in Table 3. The contact
parameters, including the static friction factor, rolling friction factor, and collision recovery
coefficient, were determined based on the data from the measurement tests and relevant
references [28,30–32]. The recommended ranges for these contact parameters are provided
in Table 4. The particle generation method was set to dynamic, with a generation rate of
2000 particles/s and a total of 24,000 generations. The simulation time was set to 18 s, with
a time step of 0.2 s and a grid size of 10R. The gravity acceleration was set to 9.81 m/s2, and
the time step was set to 19% of the Rayleigh time step. The particle size distribution was
determined according to Table 3. After 18.0 s, a stable particle pile was formed (Figure 11).

Table 3. Intrinsic parameters of soil and 65 Mn steel.

Material Density/(kg·m−3) Poisson’s Ratio Shear Modulus/Pa

Soil 2.61 × 103 0.41 1.15 × 107

65 Mn 7.865 × 103 0.3 7.90 × 1010

Table 4. Factors and levels of the simulation test.

Symbol Parameter Low Level High Level

A Soil–soil recovery coefficient 0.2 0.8
B Soil–soil static friction coefficient 0.3 0.9
C Soil–soil rolling friction coefficient 0.02 0.08
D Soil–65 Mn recovery coefficient 0.2 0.8
E Soil–65 Mn static friction coefficient 0.3 0.9
F Soil–65 Mn rolling friction coefficient 0.1 0.3

G Surface energy of soil for JKR
Model/(J·m−2) 0.2 0.8
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4.4. Plackett–Burman Screening Test and Significance Analysis

The Plackett–Burman test was designed using Design Expert software, with the soil
repose angle as the response value to identify the physical parameters that have a signif-
icant influence. In the simulation test, eight real parameters (A–G) were designed. Each
parameter had two levels, low and high, represented by codes −1 and +1, respectively
(Table 4). A center point was also included in the simulation test, resulting in a total of
13 sets of tests [33].

The Plackett–Burman screening test design and results are presented in Table 5, with
the analysis based on the test results displayed in Table 6 and Figure 12. The order of
significance, from largest to smallest, was as follows: surface energy of soil for the JKR
model, soil–soil rolling friction coefficient, soil–65 Mn static friction coefficient, and soil–soil
recovery coefficient. Consequently, these four influencing factors were chosen for further
steepest climbing tests.

Table 5. Design and results of the Plackett–Burman test.

No. A B C D E F G Y/◦

1 0.8 0.3 0.02 0.2 0.9 0.1 0.8 44.2
2 0.2 0.3 0.02 0.2 0.3 0.1 0.2 30.4
3 0.2 0.3 0.08 0.2 0.9 0.3 0.2 46.7
4 0.2 0.3 0.02 0.8 0.3 0.3 0.8 47.1
5 0.8 0.9 0.02 0.8 0.9 0.3 0.2 33.9
6 0.2 0.9 0.08 0.8 0.3 0.1 0.2 43.9
7 0.8 0.9 0.08 0.2 0.3 0.1 0.8 46.9
8 0.2 0.9 0.02 0.8 0.9 0.1 0.8 47.9
9 0.8 0.3 0.08 0.8 0.9 0.1 0.2 43.3

10 0.2 0.9 0.08 0.2 0.9 0.3 0.8 55.2
11 0.8 0.3 0.08 0.8 0.3 0.3 0.8 48.3
12 0.8 0.9 0.02 0.2 0.3 0.3 0.2 28.9

Note: Y refers to the repose angle.

Table 6. Analysis of the Plackett–Burman test.

Source Sum of Squares df Mean Square F-Value p-Value

Model 674.2 7 96.31 25.46 0.0037 **
A 55.04 1 55.04 14.55 0.0189 *
B 0.9075 1 0.9075 0.2399 0.6499
C 224.47 1 224.47 59.34 0.0015 **
D 12.2 1 12.2 3.23 0.1469
E 55.04 1 55.04 14.55 0.0189 *
F 1.02 1 1.02 0.2699 0.6308
G 325.52 1 325.52 86.06 0.0008 **

Residual 15.13 4 3.78
Cor total 689.33 11

Note: * and ** indicate significance at the 0.05 and 0.01 levels, respectively.

Here, p-values less than 0.0500 indicated that the model terms were significant. In this
case, A, C, E, and G were significant model terms. Values greater than 0.1000 indicated that
the model terms were not significant.
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4.5. Steepest Climbing Test Results and Analysis

The range values of A, C, E, and G in Table 5 were too large. To determine the values
of each simulation parameter more accurately, a steepest climb test was required. Based on
the results of the Plackett–Burman test, the steepest climb test was conducted on the four
selected factors that had greater contributions. The relative error between the actual repose
angle and the simulated repose angle was calculated to determine the optimal range of
the simulation parameters. During the simulation process, the parameters that had little
contribution to the repose angle were set to intermediate-level values. Specifically, B was
set to 0.6, D was set to 0.5, and F was set to 0.2.

The design and results of the steepest climbing test are presented in Table 7. The
findings indicate that the repose angle had the smallest relative error in the second set of
tests. This suggests that the optimal interval was close to the parameter values used in the
second set. Therefore, the parameter values from the first and third groups were considered
as the low level and high level, respectively, for the subsequent Box–Behnken tests.

Table 7. Steepest climb test design and results.

No. G C E A Repose Angle/(◦) Relative Error/(%)

1 0.20 0.020 0.30 0.80 28.14 21.90
2 0.35 0.035 0.45 0.65 36.97 2.61
3 0.50 0.050 0.60 0.50 47.72 32.45
4 0.65 0.065 0.75 0.35 55.26 53.37
5 0.80 0.080 0.90 0.20 67.31 86.82

4.6. Box–Behnken Test Results and Analysis

To determine the best parameter combination of G, C, E, and A in the simulation test,
a four-factor and three-level test design was conducted based on the results of the climbing
test. The repose angle was used as the test index, following the Box–Behnken test principle.
A total of 29 tests were performed, and the test plan and results are presented in Table 8.

Table 8. Box–Behnken test plan and results.

No.
Influencing Factors

Y/◦G C E A

1 0.5 0.05 0.45 0.65 46.21
2 0.35 0.02 0.45 0.8 31.13
3 0.2 0.04 0.45 0.8 33.51
4 0.35 0.04 0.45 0.65 34.92
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Table 8. Cont.

No.
Influencing Factors

Y/◦G C E A

5 0.2 0.02 0.45 0.65 31.53
6 0.35 0.04 0.45 0.65 34.88
7 0.35 0.05 0.3 0.65 37.97
8 0.5 0.04 0.45 0.5 36.92
9 0.5 0.04 0.45 0.8 44.94
10 0.35 0.02 0.3 0.65 28.55
11 0.35 0.04 0.6 0.8 40.27
12 0.35 0.04 0.6 0.5 40.94
13 0.35 0.05 0.45 0.5 38.01
14 0.35 0.04 0.3 0.8 33.91
15 0.35 0.05 0.6 0.65 44.86
16 0.35 0.02 0.45 0.5 34.02
17 0.35 0.05 0.45 0.8 42.73
18 0.2 0.04 0.45 0.5 34.18
19 0.5 0.02 0.45 0.65 34.53
20 0.35 0.04 0.45 0.65 34.96
21 0.35 0.04 0.3 0.5 32.32
22 0.5 0.04 0.6 0.65 46.07
23 0.2 0.05 0.45 0.65 37.22
24 0.35 0.04 0.45 0.65 34.94
25 0.2 0.04 0.3 0.65 29.85
26 0.2 0.04 0.6 0.65 34.28
27 0.5 0.04 0.3 0.65 40.73
28 0.35 0.02 0.6 0.65 33.72
29 0.35 0.04 0.45 0.65 34.93

Design Expert software was used to perform a multivariate fitting analysis on the
test results. A regression model was established between the repose angle and the four
independent variables. The regression equation is presented as Equation (12). The results
of the regression model variance analysis can be found in Table 9.

Y = 53.93 − 123.69G − 1587.01C + 118.71E − 45.53A + 6390.00GC + 388.70GE − 236.85GA − 1608.15CE + 373.70CA
− 25.11EA + 234.89G2 + 26932.96C2− 179.36E2 + 47.37A2 − 6562.96G2C − 1350.37G2E + 476.30G2A − 94962.96GC2

− 120.49GE2 − 21629.63C2E + 6740.74C2A + 3681.48CE2 + 112592.59G2C2 + 1071.60G2E2
(12)

Table 9. ANOVA for the reduced quartic model.

Source of Variance Sum of Squares Degrees of Freedom Mean Square F-Value p-Value

Model 657 24 27.4 31,088.73 <0.0001 **
A-G 50.2 1 50.2 57,042.3 <0.0001 **
B-C 60.8 1 60.8 69,047.76 <0.0001 **
C-E 56.1 1 56.1 63,750.11 <0.0001 **
D-A 0.21 1 0.21 240.45 0.0001 **
GC 8.97 1 8.97 10,193.21 <0.0001 **
GE 0.21 1 0.21 235.26 0.0001 **
GA 18.9 1 18.9 21,453.44 <0.0001 **
CE 0.74 1 0.74 840.45 <0.0001 **
CA 14.5 1 14.5 16,452.3 <0.0001 **
EA 1.28 1 1.28 1451.02 <0.0001 **
G2 4 1 4 4541.07 <0.0001 **
C2 0.97 1 0.97 1105.84 <0.0001 **
E2 3.17 1 3.17 3606.98 <0.0001 **
A2 4.78 1 4.78 5434.56 <0.0001 **
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Table 9. Cont.

Source of Variance Sum of Squares Degrees of Freedom Mean Square F-Value p-Value

G2C 0.4 1 0.4 450.06 <0.0001 **
G2E 3.39 1 3.39 3855.7 <0.0001 **
G2A 5.17 1 5.17 5872.86 <0.0001 **
GC2 0.59 1 0.59 675.06 <0.0001 **
GE2 9.03 1 9.03 10,262.78 <0.0001 **
C2E 1.07 1 1.07 1211.14 <0.0001 **
C2A 0.1 1 0.1 117.63 0.0004 **
CE2 3.09 1 3.09 3508.65 <0.0001 **

G2C2 0.32 1 0.32 369.2 <0.0001 **
G2E2 0.29 1 0.29 334.44 <0.0001 **

Pure error 0.0035 4 0.0009
Cor total 656.60 28

R2 = 1 Adjusted R2 = 1 Adequate precision = 641.18

Note: ** indicate significance at the 0.01 levels.

The regression model shows a significant result with a p-value of less than 0.0001. The
coefficient of determination R2 was 1, the adjusted R2 was 1, and the adequate precision was
641.18, indicating the high accuracy of the model. This suggests that the table effectively
illustrates the relationship between the repose angle and the four factors.

4.7. Regression Model Interaction Effect Analysis

In this experiment, the soil repose angle was used as the response variable. The data
were analyzed using Design Expert software through multiple regression fitting. The
response surface, as depicted in Figure 13, was generated to visualize the relationship
between the influencing factors and the response value.
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Figure 13 illustrates that the influence of G, C, E, and A on the repose angle aligns with
the findings of the Plackett–Burman test mentioned earlier. Notably, the response surface
curve for G exhibited the sharpest incline, suggesting it had the most pronounced effect
on the repose angle. Conversely, the curve for A showed a more gradual slope, indicating
that its effect on the repose angle was the least significant. Furthermore, G, C, and E had a
positive effect on the repose angle, whereas A had a negative effect.

4.8. Parameter Optimization and Simulation Verification

In the optimization module of Design Expert 11.0 software, the regression equation
needs to be optimized and solved with a target value of 36.03◦. The optimization target
value and constraints are represented in Equation (13).

36.03

s.t.


0.2 ≤ G ≤ 0.5

0.02 ≤ C ≤ 0.05
0.3 ≤ E ≤ 0.6
0.5 ≤ A ≤ 0.8

(13)

The optimal parameter combination obtained through the optimization solution con-
sisted of a value of G at 0.400, a value of C at 0.040, a value of E at 0.404, and a value of
A at 0.522. To verify the reliability and authenticity of the discrete element simulation
parameters post-calibration of the soil, a simulation test was conducted using the optimal
parameter combination as the EDEM simulation parameters. The repose angle of the soil
was measured at 36.91◦ with a relative error of 2.44%. For verification purposes, a compari-
son of the test results is presented in Figure 14 to ensure the reliability and authenticity of
the simulation test.
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The reliability of the calibration parameters was further confirmed using the 65 Mn
steel rod insertion method based on the optimal parameter combination identified previ-
ously (Figure 15). The dimensions of the container in which the soil was placed (base area
and height) corresponded to the dimensions of the glass container. In both the physical and
simulation tests, a 3 mm wide and 100 mm long steel rod was dropped freely from a height
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of 150 mm onto the soil, and the depth of the steel needle inserted into the soil after the fall
was measured. The physical test and simulation test were repeated eight times each, and
the statistical results are presented in Figure 16. The final result was determined by taking
the average value from both the physical and simulation tests. The physical test yielded an
average insertion depth of 19.31 mm, while the simulation test yielded an average insertion
depth of 18.98 mm, resulting in a relative error of 1.71%. This test once again verified the
reliability of the calibrated parameters.
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5. Discussion

In numerous studies, the discrete element calibration method for discrete state ma-
terials primarily relies on the repose angle as a response variable. While the calibration
process remains largely consistent across studies, the methods of verification vary. Some
researchers have opted to use the physical repose angle under optimal conditions for
verification, while others have utilized the resistance of material-contacting components or
the movement of materials in the device [34–36]. Our study employed verification through
the physical angle of repose measurements and steel rod drop tests. It is important to
note that calibration results may differ based on variations in soil quality, environmental
conditions, particle size, and initial parameter ranges. According to the relevant theories,
the material–material static friction coefficient, material–material rolling friction coefficient,
material–contact component static friction coefficient, material–contact component rolling
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friction coefficient, and surface energy of soil for the JKR model are all positively correlated
with the repose angle. On the other hand, the material–material collision recovery coeffi-
cient and material–contact component collision recovery coefficient are inversely related to
the angle of repose.

The measurement of the repose angle lacks a standardized method, resulting in
inaccuracies that can affect the significance of the influencing factors. Even factors expected
to positively impact the repose angle may be distorted by bias, yielding misleading results.
For example, in the study by Deli J et al. [37], the static friction coefficient of the cotton
stalk–cotton stalk had a negative impact on the repose angle (it should have been positive).
In our study, due to the existence of deviation, the soil–soil static friction coefficient in
Figure 12 showed a negative effect.

6. Conclusions

The Hertz–Mindlin with JKR contact model was utilized to calibrate the discrete
element parameters of Camellia oleifera forest soil in Changsha, Hunan, China, based
on discrete element EDEM simulation software. By combining the physical tests and
simulation tests, along with Design Expert software, the Plackett–Burman test identified
the key factors affecting the soil repose angle, which were the surface energy of the soil for
the JKR model, soil–soil rolling friction coefficient, soil–65 Mn static friction coefficient, and
soil–soil recovery coefficient. A regression model was established through the Box–Behnken
test to analyze the variance and interaction effects of the four factors on the repose angle.
The optimal parameter combination, determined to be the surface energy of the soil for
the JKR model (0.400), soil–soil rolling friction coefficient (0.040), soil–65 Mn static friction
coefficient (0.404), and soil–soil recovery coefficient (0.522), was validated through stacking
simulation tests. The relative error between the optimal parameter combination and the
actual physical repose angle was found to be 2.44%, confirming the reliability of the soil
discrete element parameters. Furthermore, validation through a steel rod insertion test
showed a relative error of 1.71% between the insertion depth in the simulation test and the
physical test, further supporting the reliability of the soil discrete element parameters.

Author Contributions: Conceptualization, Y.Y. and D.W.; methodology, X.M. and Y.H.; software,
X.M.; validation, D.Y., D.L. and H.W.; formal analysis, X.M.; investigation, X.M.; resources, X.M.;
data curation, X.M.; writing—original draft preparation, X.M.; writing—review and editing, Y.Y.;
visualization, X.M.; supervision, Y.Y.; project administration, Y.Y.; funding acquisition, Y.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2022YFD2001905-02.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors sincerely thank the anonymous reviewers for their critical comments
and suggestions for improving the manuscript.

Conflicts of Interest: All authors Deqiu Yang, Daoyi Li and Haihua Wu were employed by the
company Chinese Academy of Agricultural Mechanization Sciences Group Company Limited. All
authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

References
1. Meng, H.; Li, C.; Zheng, X.; Gong, Y.; Liu, Y.; Pan, Y. Research on Extraction of Camellia Oleifera by Integrating Spectral, Texture

and Time Sequence Remote Sensing Information. Spectrosc. Spectr. Anal. 2023, 43, 1589–1597.
2. Miao, S.; Ma, Z.; Su, S. Fruit quality changes during ripening period of four varieties of oil tea. J. Northeast For. Univ. 2023,

51, 37–44.
3. Wu, D.; Zhao, E.; Fang, D.; Liu, Y.; Wang, S.; Wu, C.; Guo, F. Experiment and analysis of mechanized picking of Camellia oleifera

fruit based on energy utilization rate. INMATEH-Agric. Eng. 2023, 69, 177–184. [CrossRef]
4. Bu, P.; Li, Y.; Zhang, X.; Wen, L.; Qiu, W. A calibration method of discrete element contact model parameters for bulk materials

based on experimental design method. Powder Technol. 2023, 425, 118596. [CrossRef]

https://doi.org/10.35633/inmateh-69-16
https://doi.org/10.1016/j.powtec.2023.118596


Agronomy 2024, 14, 1011 18 of 19

5. Liu, X.; Wang, Q.; Wang, Y.; Dong, Q. Review of calibration strategies for discrete element model in quasi-static elastic deformation.
Sci. Rep. 2023, 13, 13264. [CrossRef]

6. Fan, L.; Purwana, O.A.; Yuan, Y.; Duan, M.; Gao, J. Discrete element method for simulations of the jack-up foundation penetration.
Ocean. Eng. 2023, 273, 113884. [CrossRef]

7. Yu, J.; Zhang, Q.; Wu, C.; Jia, C. Investigation on stability of soil-rock mixture slope with discrete element method. Environ. Earth
Sci. 2023, 82, 449. [CrossRef]

8. Cheng, J.; Zheng, K.; Xia, J.; Liu, G.; Jiang, L.; Li, D. Analysis of Adhesion between Wet Clay Soil and Rotary Tillage Part in Paddy
Field Based on Discrete Element Method. Processes 2021, 9, 845. [CrossRef]

9. Zhai, S.; Shi, Y.; Zhou, J.; Liu, J.; Huang, D.; Zou, A.; Jiang, P. Simulation Optimization and Experimental Study of the Working
Performance of a Vertical Rotary Tiller Based on the Discrete Element Method. Actuators 2022, 11, 342. [CrossRef]

10. Zhang, X.; Zhang, L.; Hu, X.; Wang, H.; Shi, X.; Ma, X. Simulation of Soil Cutting and Power Consumption Optimization of a
Typical Rotary Tillage Soil Blade. Appl. Sci. 2022, 12, 8177. [CrossRef]

11. Song, X.; Dai, F.; Zhang, X.; Chen, H.; Zhang, F.; Zhao, W. Numerical analyses ridge-forming for whole film-mulching and double
ridge-furrow, a discrete element method. Comput. Electron. Agric. 2023, 215, 108364. [CrossRef]

12. Zhang, J.; Xia, M.; Chen, W.; Yuan, D.; Wu, C.; Zhu, J. Simulation Analysis and Experiments for Blade-Soil-Straw Interaction
under Deep Ploughing Based on the Discrete Element Method. Agriculture 2023, 13, 136. [CrossRef]

13. Zhao, Z.; Wang, D.; Shang, S.; Hou, J.; He, X.; Gao, Z.; Xu, N.; Chang, Z.; Guo, P.; Zheng, X. Analysis of Cyperus esculentus Soil
Dynamic Behavior during Rotary Tillage Based on Discrete Element Method. Agriculture 2023, 13, 358. [CrossRef]

14. Yang, L.; Li, J.W.; Lai, Q.H.; Zhao, L.L.; Li, J.J.; Zeng, R.H.; Zhang, Z.H. Discrete element contact model and parameter calibration
for clayey soil particles in the Southwest hill and mountain region. J. Terramechanics 2024, 111, 73–87. [CrossRef]

15. Du, K.; Wang, J.L.; Liu, M.; Wang, P.Y.; Fu, D.P.; Feng, W.Z.; Chu, L.D.; Ning, Y.C.; Wang, Y.; Guo, Y.J. Parameter Calibration for
Discrete Element Simulation of the Interaction between Loose Soil and Thrown Components after Ginseng Land Tillage. Processes
2024, 12, 246. [CrossRef]

16. Zhong, P.Z.; Jia, W.Q.; Yang, W.W.; He, J.F.; Zhang, E.L.; Yu, D.Y.; Xu, Y.H.; Chen, J.P.; Peng, F.H.; Zeng, G.X.; et al. Calibration and
Testing of Parameters for the Discrete Element Simulation of Soil Particles in Paddy Fields. Agriculture 2024, 14, 118. [CrossRef]

17. Zhou, J.C.; Zhang, L.B.; Hu, C.; Li, Z.H.; Tang, J.J.; Mao, K.M.; Wang, X.Y. Calibration of wet sand and gravel particles based on
JKR contact model. Powder Technol. 2022, 397, 117005. [CrossRef]

18. Wang, H.Y.; Wu, P.; He, H.K.; Ma, Y.H.; Bu, K.; Xue, J. Calibration of Parameters for Discrete Element Simulation Model for Alfalfa
with Different Moisture Contents Based on Angle of Repose Test. Bioresources 2022, 17, 1467–1484. [CrossRef]

19. Shi, G.K.; Li, J.B.; Ding, L.P.; Zhang, Z.Y.; Ding, H.Z.; Li, N.; Kan, Z. Calibration and Tests for the Discrete Element Simulation
Parameters of Fallen Jujube Fruit. Agriculture 2022, 12, 38. [CrossRef]

20. Yang, Q.; Shi, L.; Shi, A.; He, M.; Zhao, X.; Zhang, L.; Addy, M. Determination of key soil characteristic parameters using angle of
repose and direct shear stress test. Int. J. Agric. Biol. Eng. 2023, 16, 143–150. [CrossRef]

21. Qi, J.T.; An, S.G.; Kan, Z.; Meng, H.W.; Li, Y.P.; Zhao, X.Y. Discrete element-based calibration of simulation parameters of Cyperus
esculentus L. (tiger nut) planted in sandy soil. J. Food Process. Preserv. 2021, 45, e15631. [CrossRef]

22. Xiang, W.; Wu, M.; Lu, J.; Quan, W.; Ma, L.; Liu, J. Calibration of simulation physical parameters of clay loam based on soil
accumulation test. Trans. Chin. Soc. Agric. Eng. 2019, 35, 116–123.

23. Dai, F.; Song, X.; Zhao, W.; Zhang, F.; Ma, H.; Ma, M. Simulative Calibration on Contact Parameters of Discrete Elements for
Covering Soil on Whole Plastic Film Mulching on Double Ridges. Trans. Chin. Soc. Agric. Mach. 2019, 50, 49–56, 77.

24. Mi, G.P.; Liu, Y.; Wang, T.; Dong, J.X.; Zhang, S.L.; Li, Q.W.; Chen, K.Z.; Huang, Y.X. Measurement of Physical Properties of
Sorghum Seeds and Calibration of Discrete Element Modeling Parameters. Agriculture 2022, 12, 681. [CrossRef]

25. Tian, X.; Cong, X.; Qi, J.; Guo, H.; Li, M.; Fan, X. Parameter Calibration of Discrete Element Model for Corn Straw-Soil Mixture in
Black Soil Areas. Trans. Chin. Soc. Agric. Mach. 2021, 52, 100–108, 242.

26. Ma, S.; Xu, L.; Yuan, Q.; Niu, C.; Zeng, J.; Chen, C.; Wang, S.; Yuan, X. Calibration of discrete element simulation parameters of
grapevine antifreezing soil and its interaction with soil-cleaning components. Trans. Chin. Soc. Agric. Eng. 2020, 36, 40–49.

27. Zhou, P.; Li, Y.; Liang, R.; Zhang, B.; Kan, Z. Calibration of Contact Parameters for Particulate Materials in Residual Film Mixture
after Sieving Based on EDEM. Agriculture 2023, 13, 959. [CrossRef]

28. Chen, B.; Liu, Y.; Yu, Q.; Chen, X.; Miao, Y.; He, Y.; Chen, J.; Zhang, J. Calibration of soil discrete element contact parameter in
rhizome medicinal materials planting area in hilly region. INMATEH-Agric. Eng. 2022, 68, 521–532. [CrossRef]

29. Li, J.; Xie, S.; Liu, F.; Guo, Y.; Liu, C.; Shang, Z.; Zhao, X. Calibration and Testing of Discrete Element Simulation Parameters for
Sandy Soils in Potato Growing Areas. Appl. Sci. 2022, 12, 10125. [CrossRef]

30. Qiu, Y.; Guo, Z.; Jin, X.; Zhang, P.; Si, S.; Guo, F. Calibration and Verification Test of Cinnamon Soil Simulation Parameters Based
on Discrete Element Method. Agriculture 2022, 12, 1082. [CrossRef]

31. Li, Q.; Zheng, X.; Liu, J.; Yang, H.; Wang, Z.; Zhang, L. Parameter calibration of discrete element simulation of farmland silt in
Xinjiang. Xinjiang Agric. Sci. 2022, 59, 2014–2024.

32. Liu, Y.; Zhao, J.; Qi, H.; Ma, Z.; Li, H.; Hao, J. Parameters calibration of discrete element of clay soil in yam planting area. J. Agric.
Univ. Hebei 2021, 44, 99–105.

33. Chen, X.; Gu, F.; Hu, Z.; Wu, F.; Luo, W.; Guo, K. The Calibration of Soil Simulation Parameters for Wheat Grown after Rice in the
Yangtze River Basin of China. Sustainability 2023, 15, 15079. [CrossRef]

https://doi.org/10.1038/s41598-023-39446-2
https://doi.org/10.1016/j.oceaneng.2023.113884
https://doi.org/10.1007/s12665-023-11107-7
https://doi.org/10.3390/pr9050845
https://doi.org/10.3390/act11120342
https://doi.org/10.3390/app12168177
https://doi.org/10.1016/j.compag.2023.108364
https://doi.org/10.3390/agriculture13010136
https://doi.org/10.3390/agriculture13020358
https://doi.org/10.1016/j.jterra.2023.10.002
https://doi.org/10.3390/pr12020246
https://doi.org/10.3390/agriculture14010118
https://doi.org/10.1016/j.powtec.2021.11.049
https://doi.org/10.15376/biores.17.1.1467-1484
https://doi.org/10.3390/agriculture12010038
https://doi.org/10.25165/j.ijabe.20231603.6293
https://doi.org/10.1111/jfpp.15631
https://doi.org/10.3390/agriculture12050681
https://doi.org/10.3390/agriculture13050959
https://doi.org/10.35633/inmateh-68-51
https://doi.org/10.3390/app121910125
https://doi.org/10.3390/agriculture12081082
https://doi.org/10.3390/su152015079


Agronomy 2024, 14, 1011 19 of 19

34. Liu, L.; Wang, X.L.; Zhang, X.C.; Zhong, X.K.; Wei, Z.C.; Geng, Y.L.; Cheng, X.P.; Zhao, K.L.; Bai, M.Y. Determination and
verification of parameters for the discrete element modelling of single disc covering of flexible straw with soil. Biosyst. Eng. 2023,
233, 151–167. [CrossRef]

35. Ma, X.J.; Guo, M.J.; Tong, X.; Hou, Z.F.; Liu, H.Y.; Ren, H.Y. Calibration of Small-Grain Seed Parameters Based on a BP Neural
Network: A Case Study with Red Clover Seeds. Agronomy 2023, 13, 2670. [CrossRef]

36. Ding, X.T.; Wang, B.B.; He, Z.; Shi, Y.G.; Li, K.; Cui, Y.J.; Yang, Q.C. Fast and precise DEM parameter calibration for Cucurbita
ficifolia seeds. Biosyst. Eng. 2023, 236, 258–276. [CrossRef]

37. Jiang, D.L.; Chen, X.G.; Yan, L.M.; Gou, H.X.; Yang, J.C.; Li, Y. Parameter Calibration of Discrete Element Model for Cotton
Rootstalk-Soil Mixture at Harvest Stage in Xinjiang Cotton Field. Agriculture 2023, 13, 1344. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.biosystemseng.2023.08.001
https://doi.org/10.3390/agronomy13112670
https://doi.org/10.1016/j.biosystemseng.2023.11.004
https://doi.org/10.3390/agriculture13071344

	Introduction 
	Materials and Methods 
	Materials 
	Methods 

	Acquisition of Soil Characteristic Parameters and Contact Parameters 
	Acquisition of the Soil Characteristic Parameters 
	Determination of the Soil Moisture Content 
	Soil Particle Size Distribution Determination 
	Acquisition of Other Soil Characteristic Parameters 

	Determination of the Soil Static Friction Coefficient 
	Determination of the Soil Repose Angle 

	Soil Discrete Element Parameter Calibration Process and Results 
	Construction of the Soil Particle Model and Device Model 
	Selection of the Contact Model 
	EDEM Software Simulation Parameter Settings 
	Plackett–Burman Screening Test and Significance Analysis 
	Steepest Climbing Test Results and Analysis 
	Box–Behnken Test Results and Analysis 
	Regression Model Interaction Effect Analysis 
	Parameter Optimization and Simulation Verification 

	Discussion 
	Conclusions 
	References

