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Abstract: With the rising prominence of organic farming systems in European Union countries,
motivated by agricultural policies, there is pressure for effective disease management strategies. To
address this challenge, the use of plant resistance inducers (PRIs) and elicitors has emerged as a
promising approach. In this study, we compared the impact of integrated production with organic
agriculture farming practices, specifically applying PRIs and elicitors in the latter, on the expression
levels of stress-responsive genes in two grapevine cultivars, ‘Alicante Bouschet’ and ‘Trincadeira’. Our
findings revealed that the organic farming system led to upregulation of eight of the 12 studied genes
in at least one cultivar, indicating a significant influence of production mode. The upregulated genes
were associated with plant stress-responsive genes (PR1, PR2, PR4, and TLP9), sugar metabolism
(HT5), phenylpropanoids (STS1), enzymes related to jasmonic acid synthesis and response to biotic
stresses, respectively (LOX, PER42). Also, the ‘Alicante Bouschet’ cultivar consistently displayed
significantly higher levels of transcript accumulation on most of the stress-related genes compared to
the ‘Trincadeira’ cultivar in both production modes. Our study provides valuable insights into the
effectiveness of PRIs and elicitors in increasing plant expression levels of stress-responsive genes,
leading to greater resilience to pathogen attacks and emphasizing their position in organic agriculture.

Keywords: Alicante Bouschet; Trincadeira; farming systems; elicitors; plant resistance inducers

1. Introduction

In recent years, the European Union (EU) has intensified its commitment to encourage
sustainable farming practices, mostly through the Common Agriculture Policy (CAP).
Included in the CAP 2023-27 objectives is an action plan aligned with the Green Deal’s
Farm to Fork strategy, which aims to have at least 25% of all EU’s agricultural land under
an organic farming system until 2030 [1,2]. This commitment is in line with a larger global
trend towards more socially and environmentally conscious farming methods [3].

Grapevine (Vitis vinifera), one of the most important perennial crops worldwide, with
a global surface area of around 7.28 million hectares in 2022 [4], is inevitably included
in the EU’s sustainability objectives, with the goal of coordinating agricultural methods
with environmental conservation and socioeconomic development. By 2019, 450,000 ha
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of vineyards were already dedicated to organic farming practices [5]. In Portugal, the
vineyard industry holds a significant position, covering a total of 175,791 ha. Moreover,
Portugal is a prominent wine exporter, having produced a total of 6.8 million hL of wine in
2022, making it the fifth biggest wine producer in Europe [6–8].

Despite its economic and cultural importance, grapevine faces numerous threats that
induce plant stress, such as water and nutrient deficiencies, temperature fluctuations, soil
salinity, pests, and diseases. Addressing these challenges requires innovative approaches
to farming, especially in regard to the organic production systems, which face several
restrictions on the use of phytopharmaceutical products that are not applied to integrated
production (IP) systems. This latter system makes use of integrated pest management
strategies that are compatible with agricultural productivity, environmental preservation,
utilization of natural resources, and production processes, in addition to farming practices
that guarantee sustainable agriculture while maintaining higher yields. It also allows for the
use of biological and chemical control methods [9]. Organic farming is a system that aims
to eliminate the use of synthetic inputs including synthetic fertilizers and agrochemicals,
genetically engineered seeds, and breeds, regardless of potentially lowering yields. These
are replaced with site-specific management approaches that preserve and improve long-
term soil fertility while also preventing pests and diseases [10].

One of the biggest challenges of organic farming is finding alternatives to synthetic
chemicals, which is why substances like plant resistance inducers (PRIs) and elicitors gain
relevance. When applied, they aim to improve the defensive plant mechanisms against
pathogens, minimizing their potential damage and subsequential production loss. While
PRIs improve the plant’s readiness to protect itself against potential threats, elicitors directly
induce immune responses that activate plant defensive systems; they are perceived by
the plant as a signal to express resistance, locally or systemically [11]. However, induced
resistance still fails to reach the level of effectiveness provided by agrochemicals [12].

Organic farming employs copper and sulfur-based products on vineyards, primarily
to combat diseases such as downy mildew (Plasmopara viticola), powdery mildew (Erysiphe
necator), and gray mold (Botrytis cinerea) [12]. While effective against oomycetes and
fungi [13], the overuse of copper has led to restrictions mandated by the EU to a maximum
annual application rate not exceeding 4 kg/ha [14], as it poses risks including soil contami-
nation [15,16] and negative impacts on human health and wildlife [17,18]. Consequently,
urgent measures are needed to reduce reliance on copper-based products. Substitutes like
PRIs and elicitors can serve as complementary products in this regard. Among the PRIs
used in vineyards, cerevisane, a yeast-derived product, and chitosan, a biopolymer obtained
from the exoskeletons of different marine organisms, are highlighted [19,20]. Cerevisane
has shown effective results in controlling downy mildew by upregulating key defense
genes in grapevines, such as one’s coding for enzymes related to hormone metabolism and
pathogenesis-related proteins. However, it has negative effects on certain plant growth and
development processes [21]. Chitosan has demonstrated potential in controlling powdery
mildew [22] and gray mold, and it can increase the activity of phenylalanine ammonia-lyase
(PAL), a key enzyme involved in plant defense mechanisms [23]. Recent reports also suggest
that chitosan may be effective in managing trunk diseases [24]. Plant extracts, such as those
from Mimosa tenuiflora and Quercus robur, have demonstrated the ability to mitigate the
severity of various pathogenic fungi through its antimicrobial compounds. These extracts
exhibit a comparable efficacy to PRIs, bolstering multiple processes involved in the plant’s
innate defense mechanisms [25].

Although new developments in molecular technologies have facilitated the identifica-
tion of different resistance genes, our understanding of the complex molecular mechanisms
underlying grapevine-pathogen interactions is still poorly understood [26], especially
in how the products applied in the organic farming system interfere to plant molecular
response to biotic stress and in conferring resilience to pathogen attack.

This study aims to understand the impact of organic and IP farming systems on the
expression of stress-related genes in the cultivars ‘Alicante Bouschet’ and ‘Trincadeira’. The



Agronomy 2024, 14, 892 3 of 13

selected genes are involved in sugar metabolism; pathogenesis-related, enzyme activity
related to jasmonic acid synthesis; the phenylpropanoids pathway; thermotolerance; plant
growth; and the response to biotic and abiotic stresses. By doing so, it facilitates the
identification of genes that respond to the application of PRIs and elicitors and, thus,
are responsible for plants resilience against common diseases affecting vineyards and
contribute significantly to sustainable plant-disease management.

2. Materials and Methods
2.1. Study Site and Plant Materials

This study was conducted at two distinct water-fed vineyards in the Alentejo region
(southern Portugal). The first vineyard, Cartuxa—Quinta de Valbom—Fundação Eugénio
de Almeida, follows organic farming practices (38◦58′45′′ N, −7◦91′92′′ W). The second
vineyard, Monte de Pinheiros—Adega Cartuxa—Fundação Eugénio de Almeida, operates
under IP methods (38◦54′93′ N, −7◦87′49′′ W). The cultivars selected for the present study
were ‘Alicante Bouschet’ and ‘Trincadeira’, which are present in both vineyards. ‘Alicante
Bouschet’ is known to be susceptible to downy mildew and trunk diseases and to the pest’s
green leafhopper and mites [27]. ‘Trincadeira’ is susceptible to grey mold and powdery
mildew [28].

2.2. Application of Plant Resistant Inducers

Several products have been used in the organic vineyard to enhance plant resistance,
including Idaicobre (IdaiNature, Valencia, Spain) (copper 6.0%), Mimetic (IdaiNature, Va-
lencia, Spain) (manganese 1%, zinc 1%), Baslact Plus (Hubel verde, Olhão, Portugal) and
Carbobasic (IdaiNature, Valencia, Spain) (sodium hydrogen carbonate 99%). These prod-
ucts were combined with copper and sulphur, both permitted in organic farming practices.

The 2023 technical itinerary for the PRIs application consisted of three treatments
of Idaicobre, Mimetic, and Carbobasic, each. The last treatment was based on Idaicobre,
Mimetic and Carbobasic, one month prior the collection of the samples. The treatments
were spaced 10 days apart. Each treatment involved the application of 1.5 L/ha of both
Idaicobre and Mimetic and 2 kg/ha of Carbobasic. In 2022, similar products were used
with the addition of Baslact Plus.

Idaicobre, a copper-based fertilizer, aims to activate key plant enzymes [29]. Mimetic
is also a fertilizer composed of botanical extracts from Mimosa tenuiflora and Quercus robur
and stimulates the plants defensive system [30]. Baslact Plus, containing whey, chitosan
hydrochloride, and Equisetum arvense, offers preventive and curative protection against
fungi like powdery mildew and downy mildew [31]. Carbobasic, a sodium hydrogen
carbonate, acts as a natural fungicide primarily targeting powdery mildew [32].

2.3. Sampling Collection

Samples were gathered on the morning of 10 August 2023, immediately before the
grapes harvest. The samples were collected in late summer because the grapevines had
experienced some stress, increasing the likelihood of overexpression of stress-related genes.
Maximum and minimum temperatures in the region ranged from 29 ◦C to 42 ◦C and 10 ◦C
to 20 ◦C, respectively, during July and August. There was no registered precipitation during
July and August (Arquivo meteorológico Évora—meteoblue, accessed on 6 February 2024).

In both vineyards, five random plants were selected from each cultivar (biological
replicates) and leaf samples were collected, resulting in a total of 20 samples. Each sample
(corresponding to a pool of three to four leaves), weighting approximately 25 g each, was
immediately placed in a 50 mL tube placed in a styrofoam box with liquid nitrogen to
minimize RNA degradation. Subsequently, the samples were ground to powder using
sterile mortars and pestles with the assistance of liquid nitrogen. The resulting plant
material was transferred to 2 mL collection tubes and stored at −80 ◦C, until further use.

The vines from both cultivars and production modes showed no visible signs of any
disease so they were considered as asymptomatic.
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2.4. RNA Extraction and Complementary DNA Synthesis (cDNA)

RNA was extracted with a NZY Total RNA Isolation kit following manufacturer’s
instructions (NZYTech, Lisbon, Portugal). The RNA quantification and the evaluation of its
purity was performed by a Quawell Q9000 micro spectrophotometer (Quawell Technology,
Beijing, China). To improve overall quality, all samples were also subjected to a purification
step using the OneStepTM PCR Inhibitor Removal kit (Zymo Research, Irvine, CA, USA).

Maxima® First Strand cDNA Synthesis kit (Thermo Scientific, Waltham, MA, USA)
was used to reverse transcribe the total RNA (500 ng) following manufacturer instructions.

2.5. qPCR Conditions for Gene Expression Analysis

For normalization, three reference genes were considered: GAPDH (glyceraldehyde-3-
phosphate dehydrogenase), PEP (phosphoenolpyruvate carboxylase), and UBC (ubiquitin
conjugating enzyme). Table 1 displays the amplicon sizes and primer sequences of the
reference genes.

Table 1. Reference genes and primers used for qPCR normalization.

Gene Primer Sequence (5′→3′) AL (bp) NCBI Accession ID E
(%) Ref.

GAPDH Fw: CCACAGACTTCATCGGTGACA
Rv: TTCTCGTTGAGGGCTATTCCA 70 XM_002263109.3 96.3 [33]

PEP Fw: CCTCCTCCTCCAGATTGC
Rv: GGCTTGCTTGATTCCATTATC 198 AF236126.1 95.0 [34]

UBC Fw: CATAAGGGCTATCAGGAGGAC
Rv: TGGCGGTCGGAGTTAGG 161 EE253706 106.6 [34]

E—primer efficiency; AL—amplicon length.

The target genes were chosen based on previous research findings on their involve-
ment in the grapevine response to stress [33–37]. Those genes are PR1, PR2 and PR4
(pathogenesis-related), TLP9 (thaumatin-like protein related to PR5), HT5 (hexose trans-
porter), cwINV (cell wall invertase), PAL (phenylalanine ammonia-lyase), STS1 (stilbene
synthase), LOX (lipoxygenase), PER42 (peroxidase), HSP101 (heat shock protein), and MAP-
KKK17 (mitogen-activated protein kinase kinase kinase) (Table 2). Gene-specific primers
of HSP101 and MAPKKK17 were designed using Primer3 software version 0.4.0 from the
specific sequence of V. vinifera deposited in the NCBI GenBank.

qPCR was performed on a LineGene9600Plus (BIOER, Hangzhou, China) using 5 µL
of first-strand cDNA (previously diluted 1:10), 9 µL of NZY qPCR Green Master Mix (2x)
(Nzytech, Lisbon, Portugal), and 1 µL with a 10 µM concentration of each primer, for a
total volume of 18 µL. Threshold cycle (Ct) values were acquired, for each sample, with
the following cycling conditions: initial denaturation for 20 s at 95 ◦C, followed by an
amplification program of 40 cycles of 15 s at 95 ◦C and 20 s at 60 ◦C. To evaluate PCR
specificity, it was added to the program a single cycle at 95 ◦C for 15 s, 60 ◦C for 1 min, and
a rump-up 0.2 ◦C/s to 95 ◦C for 15 ◦C, to create a dissociation curve. Each sample was
tested with three technical replicates and no template controls were added with every run.
Efficiencies were calculated through the equation E = (10(−1/slope) − 1) × 100, as well as
slope and linearity (coefficient of determination, R2), using a 5-point standard curves from
a 4-fold dilution series of pooled cDNA (1:10–1:2560).

The statistical tool geNorm [38] was used to assess the expression stability of the
reference genes and pick the best gene combination for data normalization. To investigate
target gene expression, Ct values were regressed against the log of the produced cDNA
standard curve. The value of normalized arbitrary units of the target genes was then
determined for each sample using the reference genes normalization parameters.
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Table 2. Target genes and respective primers used for qPCR.

Gene Primer Sequence (5′→3′) AL (bp) NCBI Accession ID E
(%) Ref.

PR1 Fw: GCAACTATATCGGACAACGTCCTT
Rv: TCACCATGCTCTAACAGTACCCA 80 XM_002273752 97.4 [35]

PR2 Fw: GCAGTCGGGAACGAAGTGAG
Rv: ATGGAGGGTAGGAGTTGCCC 172 NM_001280967.2 116.9 [33]

PR4 Fw: GCCCAGAGCGCCAGCAATGT
Rv: CGCCATGCCAAGGGCTTGCT 125 XM_002264684 104.7 [35]

TLP9 Fw: TGCAGCAACCTTCAACATC
Rv: GTGGCGGCCTTCACAT 120 XM_002276395.4 110.1 [36]

HT5 Fw: TAGTGATGCGTCCCTCTACTC
Rv: CTTCCAGCAAGAGCAATCGAC 113 NM_001281278.1 108.3 [33]

cwINV Fw: ACGAATCATCTAGTGTGGAGCAC
Rv: CTTAAACGATATCTCCACATCTGC 236 NM_001281279.1 92.2 [33]

PAL Fw: TGCTGACTGGTGAAAAGGTG
Rv: CGTTCCAAGCACTGAGACAA 114 XM_003635609.3 107.2 [33]

STS1 Fw: AGGGAAGCAGCATTGAAGGC
Rv: CGGGCATTTCTACACCGGAG 97 XM_002263845.4 94.8 [33]

LOX Fw: TGCTCTACCCCACAAGCGAA
Rv: AGCAGTGTGCTCATGATTTTCCAG 95 NM_001281249.1 109.3 [33]

PER42 Fw: CTTGTGAGAGGTATGAAGATG
Rv: ACCATAACGCCATTGTAAC 193 XM_002274733.3 95.1 [37]

HSP101 Fw: AATGAGACTCTTGCTGGGGC
Rv: CAGCACCGATTATGGCTTGC 130 NM_001280893.1 106.8 This study

MAPKKK17 Fw: ACCTTAGGCTCTGGCTCCTC
Rv: CACACCCCTTGTAGCCAACT 169 XM_002269624.3 116.5 This study

E—primer efficiency; AL—amplicon length.

2.6. Statistical Analysis

All target genes underwent a two-way ANOVA analysis using the Statistical Package
for the Social Sciences (IBM SPSS 20.0), aimed at assessing significant differences in expres-
sion levels across different cultivars and production modes for each gene. Normality of the
data was tested using the Shapiro–Wilk test and homogeneity of variances was tested using
Levene’s test. Normalized arbitrary units were used to evaluate the significant differences.
Differences were considered significant when p < 0.05, while p-values between 0.05 and
0.10 were considered trends.

3. Results

The estimated geNorm M value for the GAPDH, PEP, and UBC reference genes
was 0.600, 0.788, and 0.621, respectively, which is below the maximum value (M < 1.5)
considered for gene stability. This allowed the use of the three reference genes to normalize
the target gene expression.

Statistical analysis, considering a significance level of p < 0.05, was conducted for each
target gene to allow comparisons of gene expression values obtained through normalized
arbitrary units.

The genes were categorized based on their respective roles on the plant: pathogenesis-
related genes (PR1, PR2, PR4 and TLP9) (Figure 1), genes associated with sugar metabolism
(HT5 and cwINV) (Figure 2), genes involved in phenylpropanoid pathways (PAL and STS1)
(Figure 3), enzyme-related genes (LOX and PER42) (Figure 4), and, finally, genes with
different functions; one is associated with thermotolerance (HSP101) and the other with
plant growth and responses to both biotic and abiotic stresses (MAPKKK17) (Figure 5).
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In Figure 1, significant differences were observed in the expression levels of PR1, PR2,
and TLP9 genes between grapevines grown organically and those under IP for the cultivar
‘Alicante Bouschet’, with the organic production mode presenting a higher transcript
accumulation. ‘Trincadeira’ also showed significantly higher expression levels of PR2 and
PR4 genes in organic production mode, and a trend towards a significant difference on the
TLP9 gene (p = 0.054). Furthermore, when comparing the differences in gene expression
levels between cultivars under the organic production mode, significant differences were
observed for PR1 and TLP9, with expression levels consistently higher in the ‘Alicante
Bouschet’ cultivar; in the IP mode, only TLP9 displayed significant differences, with the
‘Alicante Bouschet’ cultivar showing higher expression levels.

Regarding the selected genes involved in sugar metabolism, significant differences
were identified solely in the HT5 gene expression between production modes for the
‘Alicante Bouschet’ cultivar, with the organic production mode exhibiting a consistent
upregulation (p = 0.004) (Figure 2). Inter-cultivar expression differences were only noted for
the HT5 gene in organic production mode, with the ‘Alicante Bouschet’ cultivar showing a
higher expression level.

Once more, only the STS1 gene exhibited significant differences between production
modes for the ‘Alicante Bouschet’ cultivar, with the organic production mode demonstrat-
ing an upregulation (Figure 3). ‘Trincadeira’ only showed a tendency towards a significant
difference for the STS1 gene (p = 0.061) being the organic production mode upregulated.
Regarding inter-cultivar expression level differences, the PAL gene showed significant
differences for both production modes, while the STS1 gene only showed differences be-
tween organic production modes. This upregulation is always reported in the cultivar
‘Alicante Bouschet’.

LOX and PER42 revealed significant differences between the production modes only
for ‘Alicante Bouschet’ (Figure 4), with the organic production mode showing an upregula-
tion of both genes. Significant differences at the gene expression level between cultivars was
seen on LOX gene for the organic production mode, with the cultivar ‘Alicante Bouschet’
cultivar upregulated.

Finally, as observed in Figure 5, no significant differences were noted between produc-
tion modes and cultivars regarding HSP101 and MAPKKK17 transcript accumulation. Only
a tendency of upregulation in the organic production mode was observed for MAPKKK17
in ‘Alicante Bouschet’ (p = 0.098).

4. Discussion

Our study aimed to assess the effects of IP and organic farming methods on stress-
related gene expression in ‘Trincadeira’ and ‘Alicante Bouschet’, two grapevine cultivars
well adapted to the geography and climate of the Alentejo region [39]. We found significant
differences in eight out of the 12 genes studied when comparing production modes in
at least one cultivar, suggesting a potential correlation between production mode and
transcript accumulation. The upregulation of stress-responsive genes in organic farming
systems aligns with previous studies attributing this phenomenon to the use of plant PRIs
and elicitors [40–63].

The chosen target genes play various roles in plant physiology. PR genes have a
wide range of properties and functions in plants and can be regulated by G-proteins,
ubiquitin, calcium, hormones, and transcription factors [64,65]. They are associated with
plant response to pathogens and directly or indirectly induce resistance against micro-
organisms by antifungal, antiviral, and antibacterial activity, or by causing osmotic rupture
of the fungal plasma membrane [40]. PR genes selected for this study (PR1, PR2, PR4,
and TLP9) showed significant differences in expression levels between production modes
in at least one of the cultivars. Notably, even in cases where no significant differences
were observed, expression values were consistently higher in organic farming compared
to IP. This is in line with previous research indicating that products like chitosan, when
associated with copper sulfate, upregulate PR gene expression in grapevine leaves [41–43],
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and lead to accumulation of phytoalexins, which are antimicrobial substances produced by
plants as a response to both biotic and abiotic stresses. This activation enhances the plant’s
protection against common vineyard diseases, such as powdery and downy mildew [41,42].
Similar outcomes have been observed in diverse plant species, including tomato and Coffea
arabica [44,45], highlighting the importance on understanding the impact of PRIs on plants.

HT5 and cwINV genes, also selected for this study, are involved in sugar metabolism
in plants [33,46] and are responsible for the entrance of sucrose into the plant’s metabolism,
as well as the sugar (hexose and sucrose) transport [47]. It was already reported that
invertase genes, such as cell wall invertase (cwINV) and acidic vacuolar invertase (GIN2), as
well as sugar transport transcripts (HT2 and HT5) on grapevine, were strongly induced in
grapevine during acibenzolar-S-methyl treatment, which is a benzothiadiazole analogue of
salicylic acid and acts as a PRI [48]. Although a different PRI was used in our study, some
similarities can be observed, such as the upregulation of HT5 expression in organically
grown vineyards of the ‘Alicante Bouschet’ cultivar.

PAL and STS1 genes are linked to phenylpropanoids [49,50], specialized metabolites
related to plant defense against biotic and abiotic stresses. Phenylpropanoids can act
indirectly by either through signaling molecules or through toxic effects caused by phytoan-
ticipins, that are common compounds present in plant tissues, and phytoalexins, which are
bioactive substances that are produced by a plant in response to the detection of pathogens,
such as fungi, bacteria, and virus [51]. Although PAL did not exhibit significant differences
in gene expression levels, we verify that STS1 showed significant differences between pro-
duction modes in ‘Alicante Bouschet’, with a tendency towards significance in ‘Trincadeira’.
A previous study carried out on a 50-year-old vineyard in Greece reported that chitosan
and abscisic acid induce phenylpropanoid gene expression, including PAL [44]; an increase
of expression and enzyme activity of both PAL and STS1 was verified using a suspension
of the epiphytic yeast Aureobasidium pullulans, which was potentially used as a PRI [45].

The selected target genes LOX and PER42 are related to enzyme activity [54,55]. While
LOX genes are oxireductase enzymes found in plants and mediate the manufacture of
jasmonic acid, that serves as a stress biomarker for biotic and abiotic stressors [54]; per-
oxidases are involved in defensive mechanisms against pathogens and in the cell wall
lignification, among other critical functions [56]. As shown in Figure 4, LOX and PER42
gene expression is significantly higher in organic farming compared to IP for the ‘Alicante
Bouschet’ cultivar, while no significant differences were observed for the ‘Trincadeira’ culti-
var. An increased expression of LOX, PAL, and chitinase using chitosan on grapevine leaves
has already been reported [57]. Also, transcript accumulation of LOX9, which encodes a
lipoxygenase involved in the expression of jasmonic acid, STS1, resveratrol, and flavonol
synthase genes, was positively affected by chitosan application [42]. Additionally, LOX
genes have been shown to be upregulated in grapevines after biostimulant and laminarin
application, indicating their participation in the elicitation of defense mechanisms [58].

Finally, HSP101, associated with plants thermotolerance [59], and MAPKKK17, con-
nected to plant growth and response to biotic and abiotic stresses [60], were selected for
expression analysis. Although our studies did not identify significant differences in tran-
script accumulation in both production modes and cultivars, mitogen-activated protein
kinases (MAPK) were already identified as involved in defense mechanisms. The use of
β-1,3-glucan laminarin, derived from the brown algae Laminaria digitata, has shown to be
an effective elicitor of defense responses in grapevine cells, also it reduces the development
of B. cinerea and P. viticola on grapevine plants, as laminarin triggered the activation of two
mitogen-activated protein kinases in grapevine cells [61].

The organic farming system included the use of the botanical extracts of M. tenuiflora
and Q. robur. A study on lettuce suggested a positive effect on plant defense against Sclero-
tinia [25]. This extract also demonstrated an enhancement of plant defense mechanisms
against fungi like Botrytis, Fusarium, Rhizoctonia, and Pythium [62].

Despite the scarcity of literature on this matter, our results uncover a clear tendency
for the ‘Alicante Bouschet’ cultivar to consistently display significantly higher expression
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levels of stress-related genes compared to the ‘Trincadeira’ cultivar. This correlation could
be attributed to the knowledge that the ‘Alicante Bouschet’ cultivar exhibits a greater sus-
ceptibility to some diseases, such as GTDs, when compared to ‘Trincadeira’ [63], potentially
resulting in elevated levels of stress-responsive gene expression. It is essential to recognize
that the application of PRIs and elicitors may downregulate genes associated with crucial
processes like photosynthesis, energy metabolism, and changes in carbohydrate accumu-
lation and distribution [48]. Therefore, further investigation into these potential impacts
is needed.

Given that our study was conducted under field conditions of commercial vineyards,
it reveals new insights into the impact of PRIs and elicitors on plant gene expression, show-
casing potential variations compared to studies conducted under controlled conditions.
Moreover, field-based research offers a comprehensive perspective, capturing the complex
interactions among plants, pathogens, soil, and environmental factors. These multifaceted
dynamics, often overlooked and difficult to replicate in controlled settings, contribute
to a more holistic understanding of plant responses to PRIs and elicitors. The products
used in the organic vineyard are described to enhance plant resistance, to activate key
plant enzymes, to stimulate the plants defensive system, and were combined with copper
and sulphur, both permitted in organic farming practices, contributing to the search for
environmentally friendly biocontrol agents.

It is critical to recognize the limitations of our research, including variations in field
conditions among the different cultivars and production modes, which could potentially
affect gene expression levels. Additionally, high-throughput RNA-seq technology will be
of great importance as an enabler for the identification of grapevine-specific genes that are
most responsive to the application of PRIs and elicitors [66].

Plant immunity inducers in crop disease resistance have unclear modes of action
and activation mechanisms. To improve crop disease resistance, it is necessary to further
investigate the target, receptor recognition, key activation sites, signal transduction, and
the activation mechanism of PRIs and elicitors [67]. Determining the activation mechanism
of PRIs and elicitors is crucial for developing plant disease-control strategies that increase
plants resilience.

With the urgent need of acquiring new knowledge on new products that fulfil the
world requirements of searching of environmentally friendly biocontrol agents, our results
already provide valuable insights into the effectiveness of PRIs and elicitors in organic
farming, leading, for sure, to greater plant resilience to pathogen attacks and emphasizing
the position of these products in organic agronomic practice. Nevertheless, we are aware
that our results, although quite relevant, are preliminary.

Future research could expand upon our findings by investigating the long-term effects
of organic farming techniques on plant disease susceptibility and also how the use of
different concentrations and combinations of substances influences the regulation of genes,
combined with evaluation of agronomic traits.

5. Conclusions

In this study, we investigated the expression of stress-responsive genes associated
with various plant functions in organic and integrated-production farming systems for
two grapevine cultivars, ‘Alicante Bouschet’ and ‘Trincadeira’. Our findings highlight the
significant impact of applying specific products, such as plant resistance inducers and
elicitors, used in organic farming, leading to the upregulation of multiple genes when
compared to integrated production farming. These results emphasize the importance of
exploring the effects of these substances on plant gene expression and developing new
compounds to improve the productivity of organic farming practices, thereby increasing
plant resilience.
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