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Abstract: The kale crop is an important bulk vegetable, and automatic segmentation to recognize
kale is fundamental for effective field management. However, complex backgrounds and texture-rich
edge details make fine segmentation of kale difficult. To this end, we constructed a kale dataset in a
real field scenario and proposed an UperNet semantic segmentation model with a Swin transformer
as the backbone network and improved the model according to the growth characteristics of kale.
Firstly, a channel attention module (CAM) is introduced into the Swin transformer module to improve
the representation ability of the network and enhance the extraction of kale outer leaf and leaf bulb
information; secondly, the extraction accuracy of kale target edges is improved in the decoding
part by designing an attention refinement module (ARM); lastly, the uneven distribution of classes
is solved by modifying the optimizer and loss function to solve the class distribution problem.
The experimental results show that the improved model in this paper has excellent performance
in feature extraction, and the average intersection and merger ratio (mIOU) of the improved kale
segmentation can be up to 91.2%, and the average pixel accuracy (mPA) can be up to 95.2%, which is
2.1 percentage points and 4.7 percentage points higher than the original UperNet model, respectively,
and it effectively improves the segmentation recognition of kale.

Keywords: kale; semantic segmentation; Swin transformer; UperNet

1. Introduction

Kale is an important bulk vegetable species in China and is well liked by consumers
because it is rich in various nutrients required by the human body, and it is very beneficial
to human health. The main growth characteristics of kale are its outer leaves and leaf
bulb, whose growth traits affect the field water and fertilizer management measures, and
ultimately affect the overall yield of kale. Therefore, it is important to keep the growth
status of the outer leaves and leaf bulbs of kale abreast to reduce the risk of damage to kale.

In recent years, with the rapid development of deep learning, semantic segmenta-
tion [1], target detection [2], and image classification [3] have also made significant progress.
Among them, in computer vision, semantic segmentation is a very important direction, and
the main method used is to judge the category that this image belongs to by the pixels that
have been labelled in the image. Field kale images have color, texture, and spatial structure
information. Traditional image processing algorithms, such as pixel-level cluster-based
segmentation, pixel-level threshold-based segmentation, and pixel-level decision tree-based
classification, usually use the underlying features of the image for segmentation. These
traditional algorithms may face the problem of poor accuracy in image segmentation tasks
because they mainly focus on the underlying features and ignore higher-level semantic in-
formation. With the rise of deep learning techniques, modern image segmentation methods
are increasingly favoring the use of deep learning models, such as convolutional neural
networks, which are capable of learning higher level abstract features to achieve better
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performance in image segmentation tasks. Deep learning methods are able to improve
segmentation accuracy by automatically learning feature representations in images through
end-to-end learning. Since the introduction of fully convolutional neural networks, many
classical semantic segmentation networks have emerged, including FCN [4], Unet [5],
PSPnet [6], DeepLab [7], DeepLabv3+ [8], and so on. These classical networks have had
a profound impact on later semantic segmentation research, and their applications on
the agricultural field have gradually increased. Junrui Xue et al. [9] proposed an image
segmentation method based on improved FCN-8s and obtained a date class intersection
and merger ratio of 93.50% and a segmentation speed of 16.20 frames/s. Song et al. [10]
used DeepLabV3 + based on Resnet-101 to enable the best segmentation of fruit calyx,
branches, and filaments in kiwifruit canopy images. Hongjie et al. [11] proposed a method
to segment crops in UAV remote sensing images by replacing the ordinary convolution in
the ASPP module with a depth-separable convolution and by adding a double attention
mechanism to improve the DeepLabv3+ model; the results show that the pixel accuracy of
this method reached 93.9%, and the average intersection and merger ratio was 83.3%. Com-
pared with convolutional neural networks, deep neural networks based on the transformer
architecture [12] with self-attention mechanism have achieved excellent results in natural
language processing [13] problems facing time-series data in recent years. The self-attention
mechanism is able to increase the feature weights in the input linear data so that it can better
extract the feature information; thus, scholars have begun to use it in the field of image
processing. However, the Swin transformer [14] is a deep neural network based on the
self-attention mechanism. Swin transformer [14] architecture is thus proposed; the window
self-attention mechanism of a Swin transformer enables the transformer architecture to
be well applied to the task of processing two-dimensional and above images and videos
with large input data. Liu et al. [14] proposed the Swin transformer model by restricting
windows to control the interaction between different slices, and the method also greatly
reduced the computational effort of the network.

Semantic segmentation of vegetable crops, such as kale, is a critical task for efficient
field management and yield optimization. However, current methodologies face signifi-
cant challenges when segmenting the leaf bulb and outer leaves of kale against complex
backgrounds, often resulting in low accuracy and compromised real-time performance.
Traditional machine learning techniques have struggled to capture the intricate details and
variations present in kale images, leading to suboptimal segmentation results.

In this context, the following limitations of existing research are summarized by this
study: (1) insufficient datasets: the lack of comprehensive datasets capable of capturing
kale diversity under real-world conditions hinders the training and validation of robust
segmentation models [15]; (2) limited feature representation: existing methods often cannot
effectively represent and extract the unique features of kale bulbs and outer leaves, espe-
cially in scenes with complex backgrounds [11]; (3) edge detection accuracy: the accuracy
of edge detection of kale leaves often falls short of the requirements, which are crucial
for accurate segmentation [10]; (4) class imbalance: the class imbalance problem during
training has not been fully resolved, which may lead to biased model performance [14].

To overcome these limitations, the main contributions of this work are summarized as
follows [16]:

• Building upon the UperNet architecture, a tailored semantic segmentation framework
is developed that considers the specific growth characteristics of kale leaves.

• By adopting the Swin transformer as our backbone network, the channel attention
module (CAM) is introduced to significantly improve the network’s ability to represent
and extract information about the kale’s outer leaves and leaf bulb.

• An ARM within the decoding part of the framework is designed to refine the edge
detection accuracy of kale’s target areas.

• The issue of class imbalance is addressed by modifying the optimizer and loss function
during the network training phase, ensuring a more balanced class distribution and
improved learning dynamics.
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The remainder of this article is organized as follows. Section 2 briefly summarizes
related research. Section 3 provides technical details of model training. Section 4 provides a
comprehensive discussion of the experiments. Finally, Section 5 outlines some concluding
remarks and suggestions for future research.

2. Materials and Methods
2.1. Experimental Data

The image data in this study were obtained from the Precision Agriculture Experimen-
tal Base of the National Agricultural Informatization Engineering and Technology Research
Centre in Xiaotangshan, Beijing, and the selected kale variety was Zhonggan-21, which
was annotated according to the Pascal Voc dataset format using the open-source image
annotation tool Labelme (v4.5.6), which was then preprocessed synchronously with the
annotated images and their original images. In order to further expand the data samples,
the randomly cropped images were subjected to data enhancement [17] operations, such as
horizontal flipping, vertical flipping, brightness adjustment, and adding Gaussian noise.
Finally, a dataset with a size of 5000 images was obtained. The images were randomly
divided into training and test sets in an 8:2 ratio. The combination of these image enhance-
ment methods simulates the changes in the shooting angle and light intensity during image
acquisition, increases the diversity of training samples, and improves the robustness and
generalization ability of the model. An example of using the LabelMe annotation is shown
in Figure 1, where the black part is the background, the red part is the outer leaf, and the
green part is the leaf bulb.
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Figure 1. Comparison of kale images before and after labelling.

2.2. Experimental Methods
2.2.1. An Improved Semantic Segmentation Model

In this paper, UperNet is used as an implementation framework for semantic segmen-
tation. The feature extractor of this semantic segmentation architecture is set as a Feature
Pyramid Network (FPN) based on the Swin transformer backbone. It utilizes the multi-level
feature representation obtained by the Swin transformer to represent the corresponding
pyramid hierarchies, using a top-down FPN architecture with horizontal connectivity and
downsampling ratios that are consistent with those of the Swin transformer. The Pyramid
Pooling Module [18] (PPM) is located before the top-down branches of the FPN and is
connected to stage 4 of the Swin transformer network, and the PPM is capable of delivering
effective global a priori feature representations that are highly compatible with the FPN
architecture. This form of architecture can effectively cooperate with the hierarchical feature
expression obtained by the Swin transformer to achieve a better semantic segmentation
effect based on the fusion of high- and low-level semantic information. The feature ex-
traction capability of the network is further improved by incorporating EAM on the Swin
transformer module. In the feature fusion module, all the hierarchical features output from
the FPN are adjusted to the same size by bilinear interpolation, and then a convolutional
layer is applied to fuse the features from different levels. The target segmentation header
is appended to the fused feature map with a separate convolutional layer in front of each
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classifier. All additional non-classifier convolutional layers have a batch normalization of
512 channel outputs [19], and ReLU [20] activation functions are applied. STM is added
to the encoder part to avoid omission of the extracted information. The model output is
a category mask generated from the pixel classification prediction labels, which in turn
yields a segmentation map. This results in early recognition of kale while obtaining a
fine segmentation of its target region. The improved UperNet semantic segmentation
framework is shown in Figure 2.

Agronomy 2024, 14, x FOR PEER REVIEW 4 of 12 
 

 

mation. The feature extraction capability of the network is further improved by incorpo-

rating EAM on the Swin transformer module. In the feature fusion module, all the hierar-

chical features output from the FPN are adjusted to the same size by bilinear interpolation, 

and then a convolutional layer is applied to fuse the features from different levels. The 

target segmentation header is appended to the fused feature map with a separate convo-

lutional layer in front of each classifier. All additional non-classifier convolutional layers 

have a batch normalization of 512 channel outputs [19], and ReLU [20] activation functions 

are applied. STM is added to the encoder part to avoid omission of the extracted infor-

mation. The model output is a category mask generated from the pixel classification pre-

diction labels, which in turn yields a segmentation map. This results in early recognition 

of kale while obtaining a fine segmentation of its target region. The improved UperNet 

semantic segmentation framework is shown in Figure 2. 

 

Figure 2. Improved UperNet model structure. 

2.2.2. Swin Transformer 

The Swin transformer serves as the backbone network for our visual task, leveraging 

a fully self-attentive mechanism. It surpasses traditional convolutional neural network ar-

chitectures in semantic segmentation tasks. Unlike standard transformer architectures, the 

Swin transformer excels in constructing hierarchical feature representations essential for 

pixel-dense prediction. Its modeling capability is notably enhanced by the shift-window-

based self-attention mechanism. 

Key features of a Swin transformer: (1) hierarchical feature representation: a Swin 

transformer constructs hierarchical feature representations crucial for precise pixel-level 

prediction, contributing to superior segmentation outcomes. (2) Shift-window-based self-

attention: this mechanism computes self-attention locally within non-overlapping win-

dows of the segmented image, enabling efficient cross-window connectivity and expedit-

ing model inference. The structure of the Swin transformer block is shown in Figure 3. 

The first Swin transformer block maintains a constant number of input and output tokens 

at [H/4, W/4], which is designated as Stage 1 alongside the linear embedding layer. As 

data flows into the Swin transformer block, multi-head self-attention computation for the 

window commences. 

PPM

ARMARMFuse

Conv3×3

Classifier

Improved Swin Transformer Feature Pyramid Module

Figure 2. Improved UperNet model structure.

2.2.2. Swin Transformer

The Swin transformer serves as the backbone network for our visual task, leveraging
a fully self-attentive mechanism. It surpasses traditional convolutional neural network
architectures in semantic segmentation tasks. Unlike standard transformer architectures,
the Swin transformer excels in constructing hierarchical feature representations essential for
pixel-dense prediction. Its modeling capability is notably enhanced by the shift-window-
based self-attention mechanism.

Key features of a Swin transformer: (1) hierarchical feature representation: a Swin
transformer constructs hierarchical feature representations crucial for precise pixel-level
prediction, contributing to superior segmentation outcomes. (2) Shift-window-based self-
attention: this mechanism computes self-attention locally within non-overlapping windows
of the segmented image, enabling efficient cross-window connectivity and expediting
model inference. The structure of the Swin transformer block is shown in Figure 3. The
first Swin transformer block maintains a constant number of input and output tokens at
[H/4, W/4], which is designated as Stage 1 alongside the linear embedding layer. As
data flows into the Swin transformer block, multi-head self-attention computation for the
window commences.
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2.2.3. Channel Attention Module (CAM)

Attentional mechanisms play a crucial role in semantic segmentation tasks by en-
hancing the focus on important features while suppressing distracting ones. However, in
the case of kale, which grows in complex outdoor environments influenced by various
factors such as soil, light changes, weeds, and leaf texture similarity, accurately capturing
the intricate relationship between kale and its surroundings is challenging. While a Swin
transformer excels in integrating spatial context information, it may not accurately capture
the complex interactions and dependencies between channels.

To address this limitation, we propose the channel attention module (CAM), which is
inserted after the W-MSA and SW-MSA stages of the Swin transformer. CAM is used to
assign different weights to each channel of the input feature map based on their importance
in representing relevant information about the kale’s morphology. This mechanism allows
the network to emphasize key features associated with the outer leaves and leaf bulb, such
as texture, shape, and color variations, while attenuating distractions from the background
or other non-essential elements in the image. By adaptively adjusting the weights of
different channels, the CAM module effectively enhances the discriminative power of the
network, enabling it to capture and highlight crucial details about the kale’s structure and
appearance, ultimately improving segmentation performance, particularly in delineating
the boundaries and contours of the outer leaves and leaf bulb with greater accuracy and
precision. The structure of the CAM module is illustrated in Figure 4. Initially, CAM
performs a squeeze operation on the feature map obtained after self-attention to extract
global features at the channel level. Subsequently, an excitation operation is performed
on these global features to learn the relationship between each channel and obtain the
weights of different channels. Finally, the original feature map is multiplied by these
weights to generate the final features. This module preserves the channel dimension
while compressing the spatial dimension, thereby enhancing the interaction of information
between input channels.
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By incorporating CAM into both W-MSA and SW-MSA stages, the correlation between
channels can be better explored and utilized at different levels of the model. Moreover,
since W-MSA mainly focuses on global spatial relations and SW-MSA on local spatial
relations, adding channel attention to both stages allow for better integration of global and
local spatial information with channel correlation. The Swin transformer block enhanced
with CAM is depicted in Figure 5.
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2.2.4. Attention Refinement Module (ARM)

To extract detailed information effectively from kale images, we introduce an attention
refinement module (ARM) [21,22], as depicted in Figure 6. This module plays a crucial role
in improving the model’s ability to capture intricate details and semantic context relevant
to kale leaf segmentation. The ARM takes high-order features extracted from earlier layers
of the network and refines them using channel attention mechanisms. This step allows the
model to focus on important features specific to kale leaves, enhancing their representation
in the feature space. In parallel, the ARM processes low-order features, which typically
capture fine details and edges in the image. Through spatial attention mechanisms, these
features are recalibrated to better align with the semantic information of high-order features.
This refinement process ensures that important details related to kale leaves are preserved
and accurately represented in the final feature maps. The refined high-order and low-order
features are then fused together to create a comprehensive representation of the kale leaves.
This fusion process leverages both the semantic context captured by high-order features
and the fine details captured by low-order features, resulting in a more robust and accurate
representation of kale leaves in the dataset. By refining both high-order and low-order
features, the ARM enhances the model’s ability to segment kale leaves accurately. It ensures
that important details and semantic context are effectively captured, leading to improved
segmentation performance, especially in challenging scenarios with complex backgrounds
or occlusions.
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Firstly, the lower-order features are averaged and pooled across the entire channel axis
to compute the average value of each pixel along the channel axis. Subsequently, a 7 × 7
convolutional operation followed by a sigmoid function is applied to capture local spatial
dependencies. On the other hand, the high-order features are maximally pooled along a
single channel to generate a feature vector, ensuring that each channel of the high-order
features contributes its representative response to the feature vector. The outputs from
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the spatial and channel attention branches are then fused, and the number of channels is
adjusted using a 3 × 3 convolution operation to obtain the final output of the module.

This multi-step process enables the ARM to refine feature representations effectively,
capturing both spatial and channel-wise dependencies to recover fine details while preserv-
ing segmentation accuracy.

3. Model Training and Performance Evaluation
3.1. Test Platform Configuration

The experimental environment of this study is based on a computer with a Windows
10 operating system, an AVX2 central processing unit (CPU), and an NVIDIA GeForce RTX
2080 Ti graphics processing unit (GPU). The programming language is Python 3.8, the
general-purpose parallel computing architecture is CUDA 10.2, the deep neural network
(GPU) acceleration library is cuDNN 7.6.5, the computer vision library is OpenCV 4.7.0, and
the Pytorch 1.7.1 deep learning framework is used to build and adjust the parameters of
the segmentation model in this paper. All the training and testing processes of the models
were completed on the test platform built in this study to ensure the consistency of the
comparison conditions.

3.2. Model Training Strategies

The model training is conducted end-to-end, with the inputs being the original images
and the outputs being the corresponding recognition segmentation maps, with no human
intervention in the process. The Swin transformer backbone network and the semantic
segmentation framework are combined into a holistic model through a decoder-encoder
structure and are trained at the same time. The backbone network acts as a decoder
responsible for feature transformation and extraction, while the semantic segmentation
framework acts as an encoder to reconstruct and fuse the output features of the backbone
network and generate classification predictions based on them. During training, the
optimizer is used to update and compute the network parameters that affect the model’s
training and model’s output, so that they approach or reach the optimal values, thus
minimizing the loss function. In the improved UperNet model, the AdamWarmup, Adam
and Adadelta optimizers are used to fit the data, as shown in Figure 7, which shows a
comparison of the change curve of loss during the training process of the model using
different optimizers; it can be seen that the Adam and Adadelta optimizers have a general
effect, the fluctuation of the value of the loss function is relatively large, and it is obvious
that the AdamWarmup optimizer is more effective. It can be seen that the Adam and
Adadelta optimizers are generally effective, and the value of the loss function fluctuates
during the training process.
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In this paper, we choose the exponential decay learning rate strategy with Warmup [23]
using AdamWarmup as the model optimizer, with an initial learning rate of 1 × 10−3 and
the minimum value of the learning rate set to 1 × 10−5. During the training process, this
learning rate strategy can automatically adjust the learning rate of each Epoch; during
the first training Epoch, the model can quickly correct the data distribution; after the first
training Epoch, the learning rate is set to a smaller value than the initial learning rate to
ensure the model has good convergence. After the first Epoch, the learning rate is set to
a smaller value than the initial learning rate to ensure good convergence of the model.
After the model is relatively stable, the learning rate of the model is gradually increased
to the preset initial learning rate to accelerate the convergence speed of the model, so that
the model training effect is better in the late stage of model training, when the model
can learn less new knowledge, and a larger learning rate will destroy the stability of the
existing one. Therefore, in the subsequent training Epoch, the learning rate of the model is
gradually reduced to approach the minimum value. The cross-entropy loss function is used
to measure the distance between the predicted probability distribution of pixel categories
and the probability distribution of real label categories during the training process, which
is calculated as in Equation (1):

Loss =
1
M

M

∑
i=1

N

∑
c=1

h(bi) log(pic) (1)

where M is the number of pixels; N is the number of categories; i is the current pixel; c
is the current category; bi is the true labelling category of pixel I; h is the 0–1 probability
distribution function, and it is 1 if bi = c and 0 otherwise; pic is the predicted probability of
pixel i belonging to the class c, which is obtained from the computation of the predicted
category score by the Sigmoid function. The training performance of the model is measured
by the calculation of the loss function during the iteration process, and the weights are
adjusted by back propagation so that the error distance represented by the loss values is
gradually reduced to achieve the training goal.

3.3. Indicators for Model Evaluation

The performance evaluation metrics of the model in this paper mainly use the mean
pixel accuracy (mPA), mean intersection, and merger ratio (mIOU) to assess image segmen-
tation model performance. Among them, mPA measures the average accuracy of the model
in correctly predicting the pixels of each category—the higher the mPA value indicates,
the better the pixel prediction accuracy of the model—which is calculated as shown in
Equation (2). mIOU measures the segmentation accuracy of the model by calculating the
ratio of the intersection and concatenation of the predicted segmentation results to the real
segmentation results, with higher metrics indicating that the predicted results overlap with
the real results and the model’s segmentation effect is better. Its definition is shown in
Equation (3).

mPA =
1

N + 1∑N
i=0

nii
ti

(2)

mIoU =
1

N + 1∑N
i=0

nii

ti + ∑N
j=0 nji − nii

(3)

where N is the number of target categories segmented (in the case of no background), nii
denotes the number of correctly categorized pixels, denotes the number of pixels in target
category i, nji denotes the number of pixels in target category i predicted to be category j,
and nji denotes the number of pixels in target category j predicted to be category i.

4. Results and Analysis
4.1. Ablation Experiment

In order to verify the effectiveness of the improved semantic segmentation model for
the kale segmentation recognition algorithm, this paper designs ablation experiments for
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the improved UperNet model based on the original model UperNet. Table 1 shows a data
comparison of kale segmentation recognition performance. In order to do so, the follow-
ing steps were followed: (1) use the original model UperNet-Resnet network structure;
(2) replace the backbone network of the UperNet model with the Swin transformer; (3) add
the CAM on the basis of UperNet-Swin transformer; (4) add ARM to the UperNet-Swin
transformer; (5) add CAM and ARM to the UperNet-Swin transformer. The comparison of
the data in Table 1 illustrates that the network model in this paper will pay more attention
to the detail information after the improvement of the network model, and mPA and mIOU
are both improved, which proves that the modules are effective for network improvement.

Table 1. Ablation experiments.

Programs
mPA (%) mIOU (%)

ResNet Swin Transformer CAM ARM
√

× × × 87.8 85.9
×

√
× × 90.5 89.1

×
√ √

× 93.3 90.7
×

√
×

√
91.7 90.0

×
√ √ √

95.2 91.2

4.2. Comparison of Segmentation Recognition Effect of Different Models

In order to further validate the effectiveness of the model in this paper, a comparative
analysis of the segmentation performance of the model in this paper with FCN, Unet,
PSPNet, Deeplabv3+, UperNet (Resnet), and UperNet (Swin transformer) was performed
on a homemade kale dataset, and the results of the experiments are shown in Table 2.
The improved UperNet-Swin transformer model achieves 91.2% mIOU for kale, which is
higher than the FCN, Unet, PSPNet, Deeplabv3+, UperNet (Resnet), and UperNet (Swin
transformer) models in the following order of mIOU for kale: 11%, 6.9%, 12.1%, 4.7%,
5.3%, and 2.1%, respectively. In this paper, mPA reached 95.2%, as above, and improved
by 13.6%, 9.3%, 12.9%, 6.8%, 7.4%, and 4.7%, respectively. It can be concluded that the
model segmentation effect of this paper has shown a significant improvement, and the
main reason for the better segmentation effect of the model in this paper is that this model
introduces the attention module and displays improvement in the encoder site, which
strengthens the judgement of the target features at each stage and obtains the effective
global contextual information.

Table 2. Comparative experiments with different models.

Module Backbone mPA/% mIoU/%

FCN ResNet 81.6 80.2
UNet ResNet 85.9 84.3

PSPNet ResNet 82.3 79.1
DeepLabv3+ ResNet 88.4 86.5

UperNet ResNet 87.8 85.9
UperNet Swin transformer 90.5 89.1
proposed Swin transformer + ECA 95.2 91.2

4.3. Visualization and Analysis

To verify the effectiveness and interpretability of this paper’s method in the field
kale image segmentation task, this paper combines Table 2 to select the three models of
UNet, DeepLabv3+, and UperNet (Swin transformer)—which have better segmentation
and recognition effects—for visual comparative analysis (shown in Figure 8).
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According to Figure 8, the following conclusions can be drawn. Segmentation details:
(1) The proposed model demonstrates superior segmentation details compared to

the other models. Specifically, UNet exhibits a noticeable pixel area missing in the outer
leaf region, indicating some information loss. DeepLabv3+ misidentifies the leaf sphere,
resulting in information misjudgment. Although UperNet (Swin transformer) also displays
misidentification in the leaf sphere area with slight information loss, our model achieves
segmentation results that closely resemble the ground truth labels.

(2) Precision in leaf sphere identification: While the UperNet (Swin transformer) model
may not be precise enough in identifying the leaf sphere area, our model’s segmentation
effect is remarkably similar to the ground truth when observed by the human eye. We note
that mis-segmentation typically occurs near the edges of the target, where only a few pixels
are misclassified. However, these small discrepancies have minimal impact on the overall
segmentation quality and are challenging to detect without close inspection.

(3) Generalization ability: Combining the visual analysis with the quantitative results
presented in Table 2, the proposed method exhibits stronger practical generalization ability
in terms of pixel recognition accuracy across different growth states of kale. The model’s
ability to accurately segment kale leaves under varying conditions highlights its robustness
and effectiveness for real-world applications.

In summary, the detailed visual analysis of the model confirms the efficacy of the
proposed method for kale image segmentation. The close resemblance of the segmentation
results to the ground truth labels underscores the model’s accuracy and reliability. Addi-
tionally, the model demonstrates strong generalization ability across diverse kale growth
states, further validating its practical utility.

5. Conclusions

This paper presents an enhanced semantic segmentation model aimed at accurately
segmenting kale leaves in complex environments. Leveraging the UperNet semantic seg-
mentation framework, our approach integrates a Swin transformer as the backbone network
and introduces the channel attention module (CAM) to enhance feature extraction from
kale leaves. Additionally, an attention refinement module (ARM) is designed to refine
target features and improve edge extraction. Finally, optimization techniques are employed
to mitigate the issue of an uneven class distribution. Through extensive comparative exper-
iments, the proposed method outperforms other semantic segmentation models, achieving
mIOU and MPA scores of 91.2% and 95.2%, respectively. The successful implementation of
our method enables accurate segmentation recognition of kale in diverse field conditions,
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with significant implications for field management practices, facilitating timely decision
making and risk reduction in the kale industry.

In the future, we plan to further optimize the model and enhance recognition accuracy
through technologies such as reinforcement learning and advanced machine learning.
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