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Abstract: Human herpesviruses are a ubiquitous family of viruses that infect individuals of all
ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad
spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening
encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and
Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some
herpesviruses may be associated with developing neurodegenerative diseases. These viruses can
establish lifelong infections in the host and remain in a latent state with periodic reactivations. To
achieve infection and yield new infectious viral particles, these viruses require and interact with
molecular host determinants for supporting their replication and spread. Important sets of cellular
factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane
trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular
processes are required by these viruses for cell entry and exit steps. Here, we review and discuss
recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components
by using both host and viral gene products to promote the import and export of infectious viral
particles from and to the extracellular environment. Understanding how herpesviruses modulate
autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles
within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and
counteract their negative health effects.

Keywords: human herpesviruses; autophagy; endocytosis; lysosomes; trans-Golgi network; ESCRT;
exocytosis; viral

1. Introduction

Cell entry is a critical step for initiating the replication cycle of viruses and for the
evasion of host antiviral responses. Similarly, the egress of newly synthesized infectious
particles from the infected cell is a determinant step for virus perpetuation and spreading
onto other cells and organisms [1–4]. Because viruses are obligate intracellular pathogens,
the manipulation of host cellular molecular determinants and processes is key for their
perpetuation [5–8]. To achieve this, viruses have undergone natural selection over time
and co-evolved with their hosts, allowing them to harness fundamental cellular processes
in their favor. Among the relevant cellular processes that impact viral infection and yield
from infected cells are those related to membrane trafficking, such as endolysosomal and

Cells 2021, 10, 542. https://doi.org/10.3390/cells10030542 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-0038-0704
https://orcid.org/0000-0001-8623-4518
https://orcid.org/0000-0003-2037-7158
https://orcid.org/0000-0002-7551-8088
https://orcid.org/0000-0001-7709-6870
https://doi.org/10.3390/cells10030542
https://doi.org/10.3390/cells10030542
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10030542
https://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/10/3/542?type=check_update&version=2


Cells 2021, 10, 542 2 of 23

secretory pathways, as well as autophagy [9–11]. Membrane trafficking functions allow
cells to maintain their homeostasis and also to respond to diverse environmental factors,
such as pathogens [12,13]. Although these processes can lead to virus degradation and
clearance if undisrupted by these pathogens, once they are harnessed and modulated
appropriately by viruses, they can benefit viral infection by favoring viral infection, expan-
sion and dissemination by promoting cell lysis [14,15]. For herpesviruses, several steps of
the replication cycle rely on factors involved in the trafficking of membrane components,
such as host determinants used for viral genome localization within the cells, viral protein
synthesis, as well as lipid envelopment-related processes [16].

At present there are eight known human herpesviruses, classified as follows. Human
herpesviruses 1 (HHV-1) and 2 (HHV-2), commonly known as herpes simplex viruses
type 1 (HSV-1) and type 2 (HSV-2) are herpesviruses mainly associated with skin and
mucosal lesions, blindness and encephalitis [4]. Human herpesvirus 3, better known as
varicella-zoster virus (VZV), is the cause of chickenpox and shingles, which manifest as
scattered vesicular lesions on the skin and painful dermatome rashes, respectively [17].
Epstein–Barr virus is the causative agent of infectious mononucleosis, nasopharyngeal car-
cinoma and several lymphoproliferative diseases [18], and it also produces EBV-associated
gastric cancer [19]. Human cytomegalovirus (HCMV) typically does not produce noticeable
clinical manifestations in healthy individuals; however, in immunocompromised people, it
is attributed to promoting the occurrence of pneumonia, gastrointestinal ulcers, hepatitis
and retinitis [20]. Additionally, congenital HCMV infection is the most common infection
during pregnancy worldwide and increases the probability of acquiring sensorineural hear-
ing loss (SNHL) and the development of intellectual disabilities in children [21,22]. Human
herpesvirus 6 (HHV-6) collectively refers to two members of human roseoloviruses, HHV-
6A and HHV-6B, which infect individuals early in life and are mostly asymptomatic [23].
These viruses tend to reactivate in immunocompromised individuals with acquired im-
mune deficiency syndrome (AIDS) or transplanted patients, causing complications such
as encephalitis [17,24]. HHV-6B is the causative agent of exanthema subitum in young
children. Another human roseolovirus is human herpesvirus 7, which rarely elicits clinical
manifestations. Nevertheless, it has been commonly grouped with diseases produced by
HHV-6 viruses [25]. Lastly, Kaposi’s sarcoma-associated herpesvirus (KSHV, HHV-8) is
known for causing sarcoma cancer in immunocompromised individuals, mainly those who
have AIDS [26].

Furthermore, as an important trait of human herpesviruses, these viruses have devel-
oped numerous mechanisms for persisting in the human body [4]. Indeed, the infection
outcome depends on the subversion of numerous cellular processes. In this review, we
focus on those disrupted by herpesviruses that are related to membrane trafficking, namely
endolysosomal and exosomal vesicle factors, as well as autophagy [27,28]. Given the
relevance of these steps in the replication cycle of these viruses, these cellular processes
may be attractive targets for prospective therapeutic approaches.

2. Endocytosis-Mediated Herpesvirus Entry
Role of Endocytosis in Herpesvirus Entry

Endocytosis is a membrane trafficking process in which the cell internalizes macro-
molecules or small particles into the intracellular medium to direct them to different com-
partments, where they may serve to fulfill a broad range of physiological processes [29].
Endocytosis’ main role is to support nutrient uptake, and it may also promote cell devel-
opment through the internalization of morphogenic compounds and regulate cell adhe-
sion [30]. There are two main categories of endocytic processes—phagocytosis, which
is found mostly in mammalian cells, and pinocytosis, which is present in most cell
types. Phagocytosis consists of the uptake of large particles such as cellular debris or
pathogens by specialized cells including macrophages, dendritic cells, monocytes and
neutrophils [31,32]. On the other hand, pinocytosis consists of the uptake of small particles
or soluble compounds. It comprises four types: macropinocytosis, clathrin-mediated endo-
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cytosis, caveolae-mediated endocytosis and clathrin- or caveolae-independent endocytosis
pathways (GLIC/GEEC or ARF6-dependent) lacking dynamin association [33], which
overall provide different degrees of selectivity for the internalized compounds [29,34–37].

Given the ubiquitous ability of cells to perform endocytosis, several viruses utilize
endogenous endocytic mechanisms to some extent in order to facilitate the infection of
target cells [2]. Human herpesviruses mostly undergo cellular infection processes that
involve the fusion of the viral envelope with the plasma membrane of host cells, enabling
viral capsids to be internalized into the cytoplasm (Figure 1) [38,39]. The fusion of the
lipid bilayer membranes of the virion and the cell requires viral attachment to the cell
surface, accomplished by one or more surface viral glycoproteins to specific receptors in
the host cell [4]. Alternatively, some human herpesviruses can also enter the cells through
endocytosis (Figure 1) [40]. Noteworthy, endocytosis-based viral entry may occur more
frequently, preferably over membrane fusion, in some cell types but not in others [41,42].

Herpesvirus internalization mediated by endocytosis can occur due to clathrin-mediated
endocytosis, which requires the virus to induce the oligomerization of a clathrin coat in
the inner side of the cell membrane [43,44]. Endocytosis then occurs due to the assembly
of host protein complexes recruited to the host membrane thanks to protein adaptors,
such as the AP2 complex [34]. The AP2 complex attaches to membrane lipids, particu-
larly phosphatidylinositol 4,5-bisphosphate (PIP2), altogether binding to cargo molecules
targeted to the clathrin vesicle [45]. This causes clathrin to act as a scaffold protein,
together with the epidermal growth factor receptor substrate 15 (EPS15), to fold and in-
teract with the adaptors and themselves and cluster together [46]. Following clathrin
clustering, actin filaments polymerize to form a module for subsequent intracellular tran-
sit [47]. Ultimately, membrane invagination and scission [48] occur when the actin module
recruits the GTPase dynamin, which is involved in membrane constriction, as well as
Bin/Amphiphysin/Rvs (BAR)-domain proteins, which are required for producing curva-
tures in the lipid bilayer [49].

Human herpesviruses 1 and 2 surface glycoproteins have been shown to play a
critical role in the attachment of herpesviruses to the cell surface. The glycoprotein B
(gB) protein of HSV-1 and HSV-2 is involved in the attachment of the virions to heparan
sulfate moieties on the cell surface, whereas glycoprotein C (gC) also participates in this
process for HSV-1, but not for HSV-2 [50,51]. On the other hand, the HSV-1 gB protein
has also been reported to bind to paired immunoglobulin-like type 2 receptor alpha [52].
After gB binds the corresponding host factors, glycoprotein D (gD) of either HSV-1 or
HSV-2 binds non-immune cells primary to nectin cell adhesion molecule-1 (NECTIN1,
HVEC) or nectin-2 (NECTIN2, HVEB), or in immune cells to the herpesvirus entry mediator
(HVEM, TNFRSF14) [53–56]. This promotes the activation of the viral gH/gL complex.
This gH/gL complex then enables the fusogenic activity of gB, which is a type III fusion
protein and which mediates virus and host membrane fusion and capsid entry into the
cytoplasm [57–59].

However, there is evidence that HSV-1 virions enter preferably through endocytosis in
epithelial cells, such as retinal pigment epithelial cells, human epidermal keratinocytes and
human conjunctival epithelial cells [41,42]. The preference towards endocytosis-mediated
entry over membrane fusion likely occurs once the prefusion form of glycoprotein B (gB)
undergoes conformation changes at a low pH, which promotes the fusogenic activity
of this viral protein with budding endosomes before the remaining entry-related viral
glycoproteins interact with their cell ligands [40,60,61]. Interestingly, it has been recently
reported that gC of HSV-1 facilitates conformational changes in gB, which may regulate
intracellular viral uptake and lead to the preference of low-pH endosomes for viral entry in
human epidermal keratinocytes [62]. Endocytosis and virion delivery into acid endosomal
compartments seems to support HSV-2 infection of dendritic cells (DCs) that are present
in the site of primary infection, as impairing this cellular pathway decreases the rate of
infection of these cells [63].
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Figure 1. Mechanisms used by human herpesviruses to enter host cells. (A) Clathrin-mediated entry for herpesviruses in
general. Herpesviruses induce clathrin oligomerization, together with the recruitment of host factors and adapter proteins,
which also induce the polimerization of actin filaments and lastly the invagination of the cell membrane, thanks to the
GTPase activity of dynamin. (B) Cell entry mechanisms exploited by human herpesviruses type 1 and type 2 (HSV-1 and
HSV-2). The binding of viral glycoproteins B and D to their ligands triggers dimerization of the gH/gL complex, which
causes the activation of the fusogenic activity of gB, enabling the release of the viral capsid into the cytosol. On the other
hand, viral capsid delivery through the endosomal pathway has also been described, which is associated with endosomes
having a low pH. (C) The mechanism used by varicella-zoster virus (VZV) for entering cells is also mediated by the gH/gL
complex, but clathrin-mediated entry has also been described for this virus. (D) The Epstein–Barr virus (EBV) has been
described to enter the cell through its binding to the EPHA2 receptor. Alternatively, other entry pathways exist, such as
that mediated by BMRF-2 binding to integrins, causing gH/gL complex activation and gB-mediated fusion of membranes;
lipid raft-mediated endocytosis; or viral entry through micro- and micropinocytosis. (E) The human cytomegalovirus
(HCMV) mainly enters the cell via the activation of the gH/gL complex, triggering gB-mediated membrane fusion, but
a low pH-dependent endocytosis mechanism has also been reported, involving a viral protein complex binding to host
OR14I1. (F) The entry mechanisms exploited by human herpesviruses 6 (HHV-6; HHV-6A and HHV-6B) mainly occurs by
endocytosis through lipid rafts. (G) The only entry mechanism described so far for the human herpesvirus 7 (HHV-7) is
mediated by a fusogenic process mediated by the gH/gL complex. No endocytic pathway has been described yet for this
virus. (H) Finally, Kaposi’s sarcoma-associated herpesvirus (KSV) infects the cells through a gB-mediated membrane fusion
pathway, clathrin-mediated endocytosis and may also induce micro- and macropinocytosis.
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Although varicella-zoster virus (VZV) entry into target cells is not fully understood, it
is presumed to occur similarly to HSV-1 and HSV-2 through a membrane fusion process, in
which several envelope glycoproteins participate [64]. To carry on the initial attachment
event, gB of VZV has been reported to bind to myelin-associated glycoprotein [65]. Other
undetermined viral envelope proteins are also predicted to interact with the mannose-6-
phosphate (M6P) receptor [66]. The interaction of gB of VZV with MAG causes gH/gL to
act as the core fusogenic complex, promoting viral membrane fusion with the host lipid
bilayer [65].

Alternatively, VZV may enter the cell through an endocytosis process mediated by
clathrin, in which the tyrosine-based endocytosis motif (YNKI) in the cytoplasmatic tail of
gH is required [67]. Interestingly, this sequence has been shown to be the main component
responsible for regulating the fusogenic activity of gH and cell-to-cell [68].

Infection with EBV virus seems to have a preferable tropism towards epithelial and B
lymphocytes [69]. Recently, ephrin receptor A2 (EPHA2) was identified as a key host factor,
required as the fusion receptor for membrane fusion-dependent viral entry into epithelial
cells, whereas knocking out integrins did not affect EBV infectivity in HEK293 cells [70].
Previously, it was described in epithelial cells that EBV BMRF-2 protein interacts with αv
or β1 integrins to facilitate basolateral infection [71]. After BMRF-2 interaction with the
abovementioned integrins, EBV uses the gH/gL complex to interact either with the αvβ6
or αvβ8 integrins as receptors to trigger a conformational change in gB for membrane
fusion and virus internalization to occur [72]. Interestingly, EBV has also been reported
to use an alternative route for entering nasopharyngeal epithelial cells, which is lipid raft-
mediated endocytosis or micropinocytosis [73]. Interestingly, the route used for infecting
oral epithelial cells is transcytosis, through apical macropinocytosis, whereas viral exit
occurs via basolateral clathrin-mediated endocytosis [71].

On the other hand, Epstein–Barr virus (EBV) infection of B cells involves endocytosis
through the fusion of the viral membrane with endosomal membranes [70,74]. The viral
glycoprotein gp350 binds to CD21 on the B cell surface as an initial attachment [75] and
thereafter glycoprotein gp42 forms a stable complex with the gH/gL complex, promoting
them to bind to the human leukocyte antigen class II (HLA-II) and triggering the fusogenic
activity of gB with consequent viral and host membranes fusing, allowing the entry of viral
components into the cell [76,77].

Human cytomegalovirus (HCMV) entry into host cells bears a resemblance with
HSVs in regards to the fusion process, with glycoprotein gB mediating viral attachment to
heparan sulfate glycosaminoglycans [78,79]. Nevertheless, HCMV gB has also been shown
to have the ability to engage other receptors, such as tetherin [80], platelet-derived growth
factor-α receptor (PDGF-Rα) [81] and integrins such as αvβ3 [82,83]. The gH-gL complex
also participates in HCMV entry by triggering virus and cell membrane fusion through
gB. However, in endothelial and epithelial cells, but not fibroblasts, this complex requires
the formation of a pentamer with three other viral proteins, namely, UL128, UL130 and
UL131, to be functional [84,85]. Furthermore, it has been shown that HCMV can mediate its
entry into epithelial and endothelial cells through the interaction of the viral fusion protein
complex with the host receptor OR14I1, followed by a low-pH dependent-endocytosis
process [86,87].

The distinct members of the roseoleovirus genus human herpesvirus 6, namely, HHV-
6A and HHV-6B, display differences compared to the other herpesviruses detailed above.
These viruses use a different configuration of glycoproteins for cell attachment and entry
during their lytic cycles [88]. Although they also use gB for attaching to heparan sulfates,
gH forms a complex with gL and gQ, which oversees the recognition and attachment of
the virus to the ubiquitous receptor molecules CD46 for HHV-6A, and CD134 for HHV-
6B [89]. This sequence of molecular interactions then triggers the fusion of the viral and
cellular membranes [89–93]. Current evidence suggests that following cell surface binding,
HHV-6A and HHV-6B glycoprotein complexes gH-gL-gQ mediate cell entry primarily via
endocytosis in T cells (T lymphoblastoid cell line) [94,95], seemingly through lipid rafts [96].
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Consequently, it has been reported that endocytosed virions travel through the cytosol,
where, by unknown means, the capsids suffer de-envelopment, which grants them access
to the external nuclear membrane in the cell [97].

Human herpesvirus 7 uses a similar entry mechanism to HHV-6A and HHV-6B, with
the viral proteins gB and U100 both involved in the attachment of the virus to heparan
sulfate proteoglycans on the cell surface [98,99], or alternatively to CD4 by means of a yet-
unknown viral protein [100]. Notably, an alternative mechanism of entry via endocytosis
has not been described yet for HHV-7 [98,99].

Finally, Kaposi’s sarcoma-associated herpesvirus (KSHV) also uses glycoproteins to
promote viral entry through clathrin-coated mediated endocytosis. In order to do this,
KSHV requires the viral gH/gL complex to bind to the ephrin-binding site of the EPHA2
receptor [101]. Consistent with this notion, an ephrin antagonist applied to epithelial or
endothelial cells inhibits viral entry [102]. KSHV may also bind to the EPHA4 receptor in
epithelial cells with higher efficiency than the EPHA2 receptor [103]. Notably, KSHV has
also been observed to preferentially enter endothelial cells via micropinocytosis [104] by
inducing tyrosine phosphorylation of c-Cbl to promote the translocation of virus receptors,
such as the integrin αVβ3, into lipid rafts [105]. Furthermore, in early infection events, the
adaptor protein c-Cbl interacts with actin and ubiquitinates the myosin light chain IIA,
thus enabling bleb formation, which in turn allows for macropinocytosis-mediated viral
entry [106].

Overall accumulating evidence reveals multiple entry mechanisms into cells by her-
pesviruses, with more than one type of entry for single viruses in many cases (Figure 1).
Moreover, there is evidence that some herpesviruses can trigger actin remodeling, which
causes ruffling of the host plasma membrane and macropinocytosis for endocytic up-
take [73,84,107,108]. In these cases, virus-containing vesicles consequently acidify, mature
and fuse with late endosomes or lysosomes [39]. Nevertheless, it remains to be elucidated
which signals determine that a herpesvirus prefers to use the endocytic pathway for entry
or membrane fusion processes. Interestingly, the essential viral molecular determinants
participating in membrane fusion and virus entry for some herpesviruses, such as VZV
and HHV-7, are still unknown.

3. Role of Autophagy during Herpesvirus Infections
3.1. Autophagosome Function

Autophagy consists of a cellular process that promotes the elimination of damaged or
senescent organelles and proteins to maintain cellular homeostasis and prevent metabolic
deregulation [5,27]. Furthermore, autophagy is important in cellular antiviral responses
because it can help cells to control virus takeover, promote cell survival, favor antigen pre-
sentation, regulate the initiation of inflammatory cytokine responses and target pathogens
for degradation [109]. Some of the immune-modulatory aspects of autophagy are ac-
complished by Toll-like receptors (TLRs), pathogen recognition receptors (PRRs), which
recognize pathogen-associated molecular patterns (PAMPs) from the virus that are present
in endosomes and belong to the autophagosome pathway, causing signaling cascades
with different outcomes [110]. Importantly, autophagy participates in providing the cell
with a source of virus-derived antigens that can be loaded onto major histocompatibility
molecules (MHC) that are involved in antigen presentation to immune cells [111]. This is
achieved by autophagosomes fusing with multivesicular compartments containing MHC
class I (MHC-I) molecules that enable antigen presentation to CD8+ T cells [112]. Further-
more, fusion of autophagosomes with MHC class II (MHC-II)-containing compartments
allows the infected cell to perform type-2 cross-presentation, in which case intracellular
antigens are targeted for presentation to CD4+ T cells [113].

During autophagy, small lipid bilayers that enclose diverse contents in the cytosol
are recruited to form an autophagosome [114]. The engulfed contents are then targeted
for degradation by delivering them to lysosomes [115]. The sequential steps that medi-
ate the synthesis of autophagosomes relate to a series of enzymatic reactions involving,
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among others, autophagy-related (ATG) proteins [116]. In mammalian cells, the initia-
tion of autophagosomes begins with crescent-shaped pre-autophagosome buds, termed
phagophores, that hail from the endoplasmic reticulum (ER) and require ATG13 to form a
complex with ULK1 and ULK2 [115]. Afterwards, nucleation occurs due to ULK1 phos-
phorylation, which in turn activates Beclin-1, the ATG6 orthologue in mammals that (along
with vacuolar protein sorting 15 and PIK3C3/Vps34) forms a membrane-bound complex
that acts as a class III phosphatidylinositol-3 kinase (PI3K) [117,118]. This PI3K complex
phosphorylates phosphatidylinositol into phosphatidylinositol-3-phosphate (PIP3), which
is recruited to the budding autophagosome membrane [119]. This, in turn, leads to an elon-
gation step; as the phagophore becomes larger the complex recruits microtubule-associated
light chain 3 (LC3) and other ATG proteins, such as ATG5, ATG12 and ATG16 [120]. Af-
terwards, LC3 is primed by E1-like enzyme ATG7 for cleavage by protease ATG4 and
converts it into LC3-I [121,122]. Finally, autophagosome maturation is achieved by the
action of an E2-like enzyme, ATG3, which allows LC3-I lipidation and its transformation
into LC3-II through a ubiquitin-like mechanism [123]. LC3-II is the main membrane-bound
protein that characterizes mature autophagosomes capable of fusing with lysosomes, with
which the content is combined to allow the degradation of organelles and proteins by acidic
proteases, such as cathepsins [124,125]. Rab7, SNARE proteins, ATG14 and ATG6 also
play roles in autophagosome-lysosome fusion, with the latter also participating to some
extent in endosomal membrane trafficking [118,126,127]. Furthermore, autophagosomes
can fuse with endosomes to create intermediary membrane structures termed amphisomes,
which have been described to form by reactive oxygen species generated by NADPH
oxidase-containing endosomes that recruit LC3-containing organelles [128].

Depending on the herpesvirus species, the autophagy pathway may be suppressed
in infected cells to promote virus fitness and replication (e.g., HSV-1 and HSV-2), or may
be induced to harness its components in order to promote viral replication and yield [27].
Further details on how these viruses modulate autophagy are described below.

3.2. Herpesvirus Modulation of Autophagosome Function

Human herpesviruses have been described to have the capacity to selectively modulate au-
tophagosome formation and generate different cellular outcomes thereof (Figure 2) [5,110,129].
In macrophages, HSV-1 infection causes the formation of autophagosomes, which can pro-
cess viral proteins prior to their delivery to the proteasome, thus enhancing presentation in
MHC-I molecules [130]. On the contrary, HSV-1 ICP34.5 binds to beclin-1, which results
in autophagy inhibition in neurons, conferring this virus with neurovirulence properties
in mouse models [131]. Furthermore, ICP34.5 has been demonstrated to have an antag-
onistic function against PKR-induced eIF2α phosphorylation, which aids in preventing
autophagy [132] and degrading HSV-1 viral proteins [133]. Through ICP34.5, the inhibition
of autophagosome function in dendritic cells allows HSV-1 to prevent viral antigen pre-
sentation in MHC-II molecules, thus reducing the capacity of DCs to stimulate and induce
the proliferation of CD4+ T cells [134]. ICP34.5 of HSV-2 shares common features with its
homolog in HSV-1, such as promoting neurovirulence [89], but for the former, this viral
protein allows basal autophagy to occur, which seems to be required for the infection of
human corneal epithelial cells [135]. Nevertheless, autophagy is key for enabling protection
against HSV-2, as knocking out ATG5 in DCs causes mice to succumb to HSV-2 intravaginal
infection [136]. At present, it is currently unknown how viral promotion of the persistence
of basal autophagy supports HSV-2 infection and replication.
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Figure 2. Modulation of autophagosome formation by herpesviruses. (A) Autophagosome formation in mammalian cells
begins with the materialization of the phagophore, together with the recruitment of host proteins autophagy-related protein
13, ULK1 and ULK2. (B) Afterward, ULK1 phosphorylation activates the beclin-1 protein and triggers the recruitment of
proteins that finally recruit the class-III phosphatidylinositol-3 kinase to the autophagosome membrane. The activation
of beclin-1 is inhibited by the viral proteins BCL2, TRS1 and ICP34.5 of Kaposi’s sarcoma-associated herpesvirus (KSHV),
human cytomegalovirus (HCMV) and herpes simplex virus (HSV), respectively. (C) The early autophagosome recruits the
LC-3 protein, a process that is enhanced by VZV, which triggers the maturation of the autophagosome due to the lipidation
of LC-3 into LC-3-II. The latter step has been shown to be enhanced by KSHV. (D) Ultimately, autophagy concludes with
fusion of a mature autophagosome with a lysosome. This process has been shown to be inhibited by VZV and the protein
RAB7A by KSHV.

On the other hand, VZV and EBV potentiate the formation of autophagosomes in
virus-infected cells [137]. Indeed, VZV readily induces LC3B (LC3 isoform)-containing
autophagosome formation in human skin vesicles, which has been reported to help VZV-
related glycoprotein biosynthesis and yield increased viral titers [138]. However, although
VZV does not prevent autophagosome formation, it can inhibit late-stage autophagic fluxes,
presumably by inhibiting autophagosome and lysosome fusion, which prevents viral
degradation and increases viral titers [139]. Nevertheless, it remains yet to be determined
what mechanism VZV uses to promote autophagy in infected cells [140,141].

In turn, EBV possesses a latent-lytic switch, which during latent infection activates
host PERK and IRE-1 unfolded protein response (UPR) elements while regulating the pro-
liferation of virus-infected B cells [137,142]. Alternatively, the EBV oncoprotein EBNA3C
increases autophagy markers in infected cells through the upregulation of tumor suppressor
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genes, which results in increased survival in transformed B cells [143]. However, increased
EBV replication and escape from Burkitt’s lymphoma cells occurs when autophagy is in-
hibited due to the early lytic gene products BZLF1 and BRLF1 [144]. EBNA1 was observed
to accumulate in autophagosomes prior to lysosomal processing for antigen presentation
in MHC-II during B cell latent infection [145]. EBV uses an unknown mechanism to down-
regulate reactive oxygen species (ROS) production in infected cells, with a concomitant
reduction in mitochondrial biogenesis, which impairs monocyte differentiation and triggers
their apoptosis [146].

Other human herpesviruses appear to mediate mixed-effects over autophagy-related
processes. HCMV can primarily induce the autophagosome pathway while inhibiting the
degradation of its own newly-synthetized viral proteins by impairing lysosome fusion,
promoting the accumulation of LC3 vesicles as a reservoir for viral particle assembly [147].
Indeed, HCMV directs the accumulation of lipidated LC3 and LC3 homologs GABARAPL1-
and GATE16-containing vesicles towards the viral assembly complex, along with frag-
mented Golgi vesicles, in order to aid the cytoplasmic envelopment of viral particles [148].
Moreover, in fibroblasts, HCMV infection inhibited autophagosome formation, either
dependently or independently of mTOR signaling [149]. Since mTOR complex 1 is a down-
stream effector of PI3-kinase signaling, this factor participates in the negative regulation of
autophagosome formation. Ultimately, HCMV has been reported to inhibit the completion
of autophagy due to the interaction of the TRS1 viral protein with beclin-1, which blocks
autophagosome formation [147].

Finally, KSHV has dual effects over autophagy. It has been reported that the viral
protein named replication and transcription activator (RTA), which is involved in lytic
cycle reactivation from latency, promotes autophagy to facilitate KSHV lytic replication. In
addition, KSHV RTA is capable of increasing LC3 lipidated proteins and the number of
autophagic vacuoles [150]. Interestingly, during KSHV infection, mTORC1 was required
for the synthesis of RTA, but it was unable to affect autophagosome formation or control
autophagic flux [151]. Moreover, when the lytic cycle is induced in vitro in latently-infected
lymphoma B cells, KSHV, similarly to EBV, promoted autophagy to enhance their replica-
tion, while blocking the last autophagic steps by downregulating RAB7A, preventing the
fusion of autophagosomes with lysosomes [150,152]. Conversely, KSHV has been reported
to have the ability to suppress autophagy by expressing a homolog of FLICE-inhibitor
protein vFLIP, which binds to ATG3 and impairs the lipidation and activation of LC3,
which is required for autophagosome vacuole formation [153]. Moreover, KSHV encodes a
homolog of BCL2, which helps the virus inhibit beclin-1 binding to PI3 kinase complex, thus
preventing autophagosome formation [154]. KSHV has also proven to inhibit autophagy
in monocytes by de-phosphorylating JNK2, altering the calpains–calpastatin balance and
increasing the calpain activity responsible for the cleavage of ATG5 [129]. Furthermore,
KSHV also inhibits autophagy in differentiated DCs by hyper-phosphorylating STAT3 [129].
Finally, it is noteworthy to mention that the murine gammaherpesvirus 68 (MHV-68), which
is closely related to EBV and KSHV, has been reported to display enhanced reactivation
from latency by autophagy-related genes [155].

Overall, autophagy inhibition would help these viruses avoid being recognized by
immune components that rely on autophagy-derived class-II antigen presentation [156].

Taken together, although most herpesviruses may lean towards inhibiting autophago-
some formation, as it likely represents a threat for virus viability and fitness in the infected
cells, other herpesviruses may opt to induce the formation of autophagosomes (Figure 2).
Recently, it was reported that HHV-6A promotes autophagy, whereas HHV-6B inhibits
autophagy, which was related to their ability to differently modulate the unfolded protein
response, impacting cell survival [157]. However, further studies are needed to determine
the existing interplay between HHV-6A and HHV-6B viral determinants in autophagosome
formation. The effect of HHV-7 infection over autophagy remains to be determined, as
well as the potential linkage of autophagy deregulation by this virus and the early onset
and development of neurodegenerative diseases [158,159].
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4. Lysosomal and Golgi-Sorting Vesicles during Herpesvirus Exit

Herpesviruses have been reported to harness vesicular trafficking of the endoso-
mal sorting complex required for transport (ESCRT), responsible for the biogenesis of
multivesicular bodies (MVB) [160]. The ESCRT pathway involves the recognition of ubiqui-
tinated cargo and the sorting of membrane vesicles, while vesicles are sculpted to acquire
new morphologies and functions such as deforming endosomal membranes to produce
MVB [161]. The ESCRT machinery is composed of a set of five protein complexes that are
sequentially recruited to late endosomes [162]. Furthermore, it has been described that all
ESCRT complexes, namely complexes-0, -I, -II, -III, and the complex formed between Vps4
and Vps-associated protein VTA1, are required to structure the MVB that can then direct
cargo to be targeted for lysosomal degradation or exosome formation [163]. Interestingly,
MVB plays an important role in transporting glycoproteins to the plasma membrane once
they exit the trans-Golgi network [164].

4.1. Herpesvirus Modulation of the Lysosomal Pathway

Lysosomal vesicles are a significant portion of the recycling mechanism that processes
damaged and senescent macromolecules inside acidic membrane compartments from
the cytosol and operates downstream of endosomal trafficking [165]. Importantly, this
pathway is also used by the cell for targeting incoming viral particles to degradation as a
host antiviral mechanism [166,167].

However, HSV-1 and HCMV can survive within lysosomes by increasing the pH of
this compartment in order to inactivate lytic enzymes, such as hydrolases, and at the same
time by partially acquiring an envelope from these organelles, forming a budding virion
(Figure 3) [168]. Moreover, in a neuronal oxidative stress model, HSV-1 was seen to impair
some functional features of lysosomes that ranged from an increase in the lysosome load to
a reduction in hydrolase activity, as well as the maturation of lysosome cathepsin, along
with the inhibition of EGFR-mediated endocytosis degradation [169]. For VZV, it has been
reported that intracellular viral uptake by CHO cells is inhibited by lysomotropic agents,
which suggests a role for low-pH-dependent endocytic and lysosomal-mediated virus
entrance [170].

Additionally, herpesviruses have also been shown to exploit the lysosomal pathway
to promote viral maturation (Figure 3). Viral particle maturation may require the bud-
ding of virions through intermediary membrane vesicles that compose the interface of
the endosomal-lysosomal pathway to travel within the cells [171]. For instance, HSV-1
glycoprotein B has been found in multivesicular bodies (MVB) coming from late endo-
somes [172]. Of particular interest is the fact that HHV-6A, HHV-6B and HHV-7 all use the
viral protein U21 in order to bind to MHC class I molecules and to direct these host proteins
needed for antigen presentation to T cells to endolysosomal compartments favoring the
evasion of immune system components [173].

Altogether, some herpesviruses can harness the cellular vesicles formed during lysoso-
mal degradation or utilize them to direct glycoproteins to the surface membrane, mediate
their transit within the cells and finally mediate the synthesis of new virions. Nevertheless,
additional studies are needed in order to better understand the viral determinants that are
responsible for modulating lysosomal pathways within cells infected with herpesviruses.
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Figure 3. Human herpesvirus infection affects lysosome- and Golgi-sorting vesicle functions. (A) Lysosome activity has
been shown to be crucial for herpesviruses infection. HSV and HCMV increase the pH levels of lysosomes in order to
inactivate them. UL21 from HHV-6 and HHV-7 bind to MHC-I host proteins and divert them toward lysosomal degradation.
VZV internalization has been shown to be inhibited by lysomotropic agents, suggesting a key role for the lysosomal pathway
in the infection process mediated by this virus. HSV-1 inhibits key steps related to lysosome activation, such as cathepsin
maturation, hydrolase activity and the EGFG-mediated endocytic pathway. (B) Capsid envelopment and glycoprotein
maturation of herpesviruses occur through the Golgi apparatus and the trans-Golgi network (TGN). The corresponding
viral proteins are transported to the cell membrane and then internalized into endosomes. This process has been described
to be enhanced by means of the RAB5A protein by HSV-1. Clathrin-coated vesicles are transported into the cytosol, where
the adapter protein 1 (AP-1) has been shown to interact with the VP22 and ORF9b proteins of HSV-2 and VZV, respectively.
HCMV modifies the TGN, forming a barrel-like structure at the cis and trans sides of the Golgi apparatus.

4.2. The Role of the Golgi Apparatus in Herpesvirus Virion Maturation

After herpesviruses replicate their genome and assemble their capsids within the nucleus,
they are exported from this compartment for further maturation in the cytoplasm. This
maturation process involves the addition of several tegument proteins to the capsids, as
well as capsid envelopment. The latter requires the transport of viral glycoproteins through
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vesicles. Herpesvirus glycoproteins converge in the endoplasmic reticulum and then travel to
the host cell membrane, before being re-internalized to combine with mature capsids [164].
After the viral glycoproteins reach the Golgi apparatus, they are immersed into the trans-Golgi
network (TGN) and are exported to the plasma membrane (Figure 3) [174,175]. Afterward,
these proteins return from the cell surface to the cytosol via early endosomes [176] and
are combined with viral capsids, thereby creating newly infectious virions within these
membranous compartments [177]. This endocytosis step is at least partly mediated by
Rab GTPases, such as RAB5A and RAB11, which enable the plasma membranes with
viral glycoproteins entering the cell to form endocytic tubular membranes and provide
viral capsids with an envelope, as seen in the case of HSV-1 [178]. Regarding anterograde
and retrograde endosomal transport of viral particles in neurons, PC12 cells have been
described to have viral capsids co-localizing with the trafficking regulator RAB5A, as well
as the nerve growth factor NTRK1 (TrkA), which caused a higher expression of the amyloid
precursor protein (APP) and altogether could account for the negative implications of
some herpesviruses, such as HSV-1 in Alzheimer’s disease [179]. Interestingly, HSV-1
has been shown to induce the fragmentation of the Golgi network upon lytic infection
in some cell types, such as Vero and HEp-2 cells [180]. Importantly, the fragments of the
Golgi apparatus retained their glycotransferase activities required for O-glycosylation of
extracellular viral particles [181].

On the other hand, the tegument protein ORF9b of VZV and its HSV-2 homolog
VP22 have been found to interact with adaptor protein 1 (AP-1), which participates in
clathrin-coated intracellular vesicle-mediated transport, as well as in defining the cargo of
proteins shuttling between endosomes and the trans-Golgi network, and likely contributes
to the secondary envelopment stage needed for producing mature herpesvirus virions [182].
Of particular interest was the discovery of the intricate structure of the HCMV assembly
complex. This virus reorganizes in an inward barrel architecture at the cis and trans sides
of the Golgi network, on top of early endosomal vesicles, and is surrounded by MVBs and
recycling endosomes [183]. This process is believed to allow the orchestrated envelopment
of herpesviruses before their exit from the cell [184,185]. Finally, the nucleocapsids of
HHV-6A and HHV-6B are released from the nucleus into the cytoplasm through a de-
envelopment step, where they acquire tegument proteins [186]. This process allows the
viruses to egress with a viral membrane ridden with glycoproteins from the trans-Golgi
network [187].

Taken together, numerous herpesviruses have evolved strategies for surviving the
harsh conditions within lysosomes, and some for benefiting from the ESCRT machinery to
travel through MVBs and into the Golgi network [185,188,189]. The modulation of these
cellular trafficking pathways underscores the steps required by human herpesviruses to
complete effective replication cycles, which result in mature virions that are ready for
molecular signals for exiting the infected cell [190].

5. Exocytosis Vesicles Hijacked by Herpesviruses

To allow the egress of newly-synthesized infectious herpesvirus particles from the
infected cells, the viral capsids that are assembled in the nucleus must travel through
the perinuclear space, through the inner nuclear membrane (INM) and outer nuclear
membrane (ONM) to reach the cytoplasm, followed by their envelopment within vesicles
containing the viral glycoproteins that decorate the viral envelope [175,191]. After an
initial envelopment at the INM, the enveloped capsids are released into the perinuclear
space, from which the virus fuses to the ONM and releases into the cytosol the viral
capsids [192,193]. These capsids are then reenveloped in vesicles that belong to the trans-
Golgi network, or in the case of HCMV, enter secretory pathway-derived vesicles from the
virus assembly complex (vAC) for their extracellular release as enveloped virions within
exocytosis vesicles (Figure 4) [184,194].
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Figure 4. Exocytosis vesicles participate in herpesvirus exit. (A) The accumulation of herpesvirus capsids in the cytoplasm
has been shown to be assisted by VAPB host proteins. (B) The HSV-1 Us9 protein interacts with capsids in the endoplasmic
reticulum (ER), the Golgi apparatus and the cytosol in order to promote the anterograde transport of viral components
through microtubules. Us3 protein has also been shown to stabilize and activate microtubules and CLASP complexes
to promote vesicle transport. The interactions of viral gD with host M6P and its receptors promote the export of virus-
containing late endosomes. On the other hand, viral proteins have been shown to co-localize with CD63 or CD63 and
MHC-II, suggesting a potential immune-modulatory role for late endosomal trafficking. (C) VZV has been reported to use
M6P and its receptors to promote viral export. Additionally, this virus appears to be exocytosed in single-membrane vesicles
from the autophagosomal pathway, which contain LC-3 and Rab II. (D) EBV shuttles LPMI- and miRNA-containing vesicles
derived in exosomal traffic modulation. (E) Exit of HHV-6 occurs through the exosomal pathway, using multivesicular
bodies (MVBs). (F) Finally, KSHV recycles clathrin-coated endosomal vesicles, used during cell entry, for viral exit using the
viral protein ORF65.

5.1. Modulation of Exocytosis by Herpesvirus

Interestingly, several viral glycoproteins that are not found in fully developed and ma-
ture extracellular virions are involved in capsid egress from the perinuclear space. Among
these proteins are pUL31, which is a nuclear matrix-associated phosphoprotein; pUL34, a
nuclear membrane-associated phosphoprotein; and Us3, a serine/threonine kinase that
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interacts with lamins A and C to disrupt the nuclear lamina in order to promote the en-
velopment of nascent viral capsids [192,195,196]. More recently, it has been reported that
depletion of the host vesicle-associated membrane protein-associated protein B (VAPB)
caused the accumulation of viral capsids in the nucleus, which supports its involvement
in primary envelopment during nuclear egress [197]. Furthermore, the HSV-1 envelope
protein US9 has been shown to associate with capsids in the cytoplasm, the endoplasmic
reticulum and the Golgi apparatus, and to function in concert with gE/gI during antero-
grade transport within axons in neurons by promoting both the loading of capsids and
glycoprotein-containing vesicles onto kinesin motors and microtubules [198].

Notably, several viral molecules participate in the active transport of newly synthe-
sized virions through the exocytic route. Similar to the interaction of tegument proteins
in the transport of capsids during cell entry, UL36 and UL37 proteins may be involved in
plus-end capsid transport towards the cell surface [199]. For example, UL20, an envelope
protein that is highly conserved in alphaherpesviruses, has been implicated in syncytia
formation, which is required for cell-to-cell infection, and also for cytoplasmic envelopment
within the trans-Golgi network (TGN) and for virion transport from the TGN to the plasma
membrane or extracellular space, therefore promoting the egress of infectious virions [200].
Importantly, it has been found that the function of UL20 of HSV depends on its localization
at the Golgi apparatus, causing it to be palmitoylated by host GODZ, which allows the
proper trafficking of UL20 and gK to exocytosis vesicles [201]. Here, they would participate,
along with gM, in incorporating other glycoproteins such as gD and gH/gL into mature
virions [202].

Additionally, herpesviruses can stabilize microtubules to enhance virus release [203].
For instance, the HSV-1 protein US3 has been reported to stabilize microtubule structures
and be necessary for viral spread by activating cytoplasmic linker-associated proteins
(CLASPs), a type of plus-end tracking protein (+TIP) that operates in microtubule nucle-
ation at the Golgi apparatus and captures microtubules near the membrane bilayer [204].
HSV-1 employs a mechanism in which glycoproteins such as gD are modified with
mannose-6-phosphate [205] residues that cause their export within late endosomes contain-
ing M6P receptors through the TGN, and which culminates in viral assembly complexes
for virus egress [205].

5.2. Modulation of Endosomal and Exosomal Pathways by Herpesviruses

Herpesviruses have also evolved molecular mechanisms to interfere with the endosomal-
exosomal pathways of infected cells (Figure 4). For instance, gB of HSV-1 is frequently
found in extracellular vesicles and has been shown to co-localize with the late host en-
dosomal marker CD63 and bind to MHC-II molecules (HLA-DR in human cell lines) in
such a way to delay its endosomal trafficking, which may have immunomodulatory ef-
fects [206,207]. Furthermore, exosomal targeting, but not MHC-II interference, is mostly
conserved in other gB-bearing alphaherpesviruses [208]. This finding may prompt in-
vestigations into how the exosomal release of gB improves viral fitness while roaming
in the infected host. On the other hand, VZV utilizes an amalgam of endosomal and
autophagosomal pathways to perform exocytosis of complete viral particles, as observed
by electron microscopy, which shows virions in single-membraned vesicles carrying both
Rab11 and LC3, which resembled amphisomes [209]. Alternatively, VZV has been shown
to have the ability to bind to the mannose-6-phosphate receptor in late endosomes as
a mechanism to egress from infected melanoma cells or fibroblasts, regardless of the
autophagosome pathway [210]. A recent report indicates that the VZV glycoprotein M
(gM) contains two tyrosine-XX-bulk hydrophobic amino acid domains and one dileucine
trafficking-domain associated with trans-Golgi sorting vesicles, which implies that gM is
targeted to endosomal-lysosomal compartments to help viral maturation [211]. Interest-
ingly, manipulating these motifs in VZV mutants did not impair virus assembly or egress,
but rather increased its virulence in the skin in a humanized severe combined immune
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deficient (SCID) mouse model [211]. The actual mechanism by which the glycoprotein M
is responsible for increased virulence is currently unknown.

EBV employs the exosomal pathway to introduce several microRNAs and LMP-1 in
extracellular vesicles, capable of altering the latent-lytic cycle of an infected cell [212,213].
The latter feature likely promotes the communication between epithelial cells undergoing
lytic replication to direct the maintenance of a latently-infected B cell [213]. To this end,
CD63 has been found to promote LMP-1 exosomal trafficking and enhance exosome
production [214].

Meanwhile, as discussed above, HCMV has an organized assembly complex in which
after capsids acquire their tegument layer, they pass through the TGN to acquire an
envelope and likely obtain the necessary glycoproteins from early endosomes, which are
ultimately released from recycling endosomes or Golgi-derived membranes [215,216].

Regarding HHV-6, previous reports indicate that viral glycoproteins co-localize with
CD63, a marker of late endosomes that is found in MVB vesicles, suggesting that the
infectious viruses are released by the cell via the exosomal pathway. Noteworthily, it is
currently unknown what processes are involved during HHV-7 virion exit [187].

In addition to playing an active role in KSHV during entry, actin filaments also un-
dergo rearrangements that drive the trafficking of viral proteins throughout the cytosol
of endothelial cells, as seen with ORF65, through clathrin-coated early and recycled endo-
somes during secondary envelopment steps [107].

Altogether, at present there is relatively scarce information available regarding the
multiple processes by which herpesvirus may prefer to leave infected cells and how
viral-derived exosomes affect neighboring cells. For example, it is unknown whether most
herpesviruses possess a mechanism for egressing similarly to HSV-1, using a UL20/gK/gM
complex directing viral glycoproteins to exocytosis vesicles to assemble mature viri-
ons [203]. Therefore, additional studies are needed to elucidate how herpesviruses egress
infected cells and to explore the pros and cons of these routes.

6. Concluding Remarks

Herpesviruses use and modulate several host intracellular membrane trafficking
pathways in order to elicit productive infection, effective virus replication and synthesis
of new infectious viral particles and, finally, virion exit from the infected cells. Although
significant progress has been made regarding the understanding of the interplay between
herpesviruses and their host, namely at the cellular level, increased knowledge is required
in this respect, which could shed light on novel strategies for their control or inhibition.
Particularly, much remains to be studied in relation to viruses such as HHV-6 and HHV-7,
regarding what viral components mediate and modulate host membrane vesicle trafficking,
their interactions and the key factors in the infectious cycles of these viruses. In particular,
future work may focus on how intracellular viral particles are differentially directed to
specific cell membranes or sites within the cell for exocytosis or cell-to-cell spread.

Additional studies are needed in order to determine the roles of each of the viral and
host factors that mediate the processes involving intracellular host membranes that are
modulated during the replication cycle of herpesviruses. Again, knowledge in this regard
should contribute to the understanding of critical interactions that could be potentially
targeted by different drugs to limit viral replication. Furthermore, we foresee that new
studies providing insights into the workings and regulations of the vast intracellular
transport machinery and how it assists viral infections will be valuable in the long-term for
harnessing herpesviruses and limiting the diseases they produce.
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