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Abstract: Head and Neck Cancer (HNC) is characterized by phenotypic, biological, and clinical
heterogeneity. Despite treatment modalities, approximately half of all patients will die of the disease.
Several molecular biomarkers have been investigated, but until now, without clinical translation. Here,
we identified an integrative nine-gene multi-omics signature correlated with HNC patients’ survival
independently of relapses or metastasis development. This prognosis multi-omic signature comprises
genes mapped in the chromosomes 1q, 3p, 8q, 17q, 19p, and 19q and encompasses alterations at copy
number, gene expression, and methylation. Copy number alterations in LMCD1-A1S and GRM7, the
methylation status of CEACAM19, KRT17, and ST18, and the expression profile of RPL29, UBA7,
FCGR2C, and RPSAP58 can predict the HNC patients’ survival. The difference higher than two
years observed in the survival of HNC patients that harbor this nine-gene multi-omics signature can
represent a significant step forward to improve patients’ management and guide new therapeutic
targets development.

Keywords: survival biomarkers; omics data; copy number alterations; methylation; gene expression;
head and neck cancer

1. Introduction

Head and Neck Cancer (HNC) is a heterogeneous group of cancers, where more
than 90% are squamous cell carcinomas arising from the epithelial mucosa at the upper
aerodigestive tract [1]. Annually, HNC accounts for more than 650,000 new cases and
330,000 deaths worldwide [2]. These tumors, usually diagnosed in older patients with
heavy tobacco and alcohol consumption, are facing a slow decrease globally probably due
to the reduction in tobacco use [3]. Nevertheless, in developed countries, human papilloma
virus (HPV)-positive oropharyngeal cancer has been increasing among younger people [3].
This neoplasm remains a substantial health and economic burden worldwide, given its
high incidence and low survival rate, which have not significantly improved despite the
new therapeutic strategies, such as the introduction of immune-checkpoint inhibitors and
the progress in standard therapy like radiotherapy and the minimally invasive organ-
sparing surgical techniques [4]. The prognosis of these patients is generally poor due to
the frequent late diagnosis making therapy less effective and prone to recurrence. HNC
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patients with advanced disease have an average five-year survival rate of less than 50% [5,6].
The development and progression of HNC result from a multistep process of molecular
accumulated alterations at different levels that compromise key cellular processes [7],
namely, the accumulation of copy number alterations (CNAs), somatic mutations, and
changes in methylation that consequently lead to variations in gene expression levels
and downstream signaling pathways [8]. The advent of new omics technologies has
allowed quantifying the number of specific molecules, such as genes, mRNA, protein, and
metabolite levels of a complex and heterogeneous biological system, describing its intricate
relationships and connections. In multifactorial pathologies, such as cancer, the analysis
and integration of different omics layers are pivotal to deeply understanding the molecular
mechanisms underlying the disease, opening new routes for a personalized diagnosis and
treatment based on different molecular disease subtypes and patient stratification. Some
studies, individually or combined, have decoded the molecular landscape of HNC using
different omics strategies, like genomics [6,9–11], transcriptomics [12,13], proteomics [14,15],
and DNA methylome [16–18], providing new insights of HNC pathophysiology and
potential diagnostic and prognostic biomarkers. However, presently, little progress has
been made in the translation of the molecular data to improve diagnostic and prognostic
tools and to develop new therapeutic strategies for HNC patients [1]. The identification
and validation of specific, robust, and integrative molecular signatures and prognosis
biomarkers with clinical applicability is of utmost importance for HNC fragile patients
to improve their survival and quality of life. In this study, we developed an integrative
approach to analyze and combine multiple omics data, such as genomic, transcriptomic,
and methylome data aiming to identify and validate a multi-omics signature related to
the prognosis of HNC patients. By applying several statistical methods and machine
learning approaches, we identify an integrative multi-omics signature correlated with HNC
prognosis, presenting an association with patients’ survival.

2. Materials and Methods
2.1. Study Sample

The analyzed cohort is comprised of tumor tissue from 410 head and neck squamous
cell carcinoma (HNSCC) patients, obtained from The Cancer Genome Atlas (TCGA). Data
from copy number alterations, mRNA expression, and gene methylation were retrieved
through the Genome Data Commons (GDC) Data Portal. These 410 cases were selected
based on the availability of information regarding metastasis or relapse occurrence. The
detailed description of the cohort in the study is presented in Table 1.

Table 1. Clinic-pathologic characteristics of study population.

Patients (n = 410)

n (%) n (%)
Gender HPV

Male 304 (74) Positive 79 (19.5)

Female 106 (26) Negative
NA

329 (80)
2 (0.5)
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Table 1. Cont.

Patients (n = 410)

Age at diagnosis (Years) Anatomic Subsite
<60 185 (45)

Oral Tongue
Larynx

Oral Cavity
Floor of mouth

Tonsil
Base of tongue
Buccal Mucosa
Alveolar Ridge
Hypopharynx
Oropharynx
Hard Palate

Lip

104 (25)
≥60 225 (55) 88 (21)

Tobacco 54 (13)
Yes 306 (75) 45 (11)
No
NA

96 (23)
8 (2)

37 (9)
23 (6)

Alcohol 19 (5)
Yes 280(68) 15 (4)
No 120 (29) 8 (2)
NA 10 (2) 8 (2)

TNM stage 7 (2)
I 19 (5) 2 (0.5)
II 72 (18)
III 82 (20)
IV 226 (55)

NA 11 (3)
Metastasis

Yes 102 (25)
No 308 (75)

2.2. Statistical Analysis
2.2.1. Multi-Omics HNSCC Data Reduction

Data from CNAs were available as a set of chromosomic regions, therefore, the genes
contained in these regions were determined using the Bioconductor’s Homo.sapiens pack-
age [19]. The frequency of alteration was determined for the identified genes, which were
then filtered by their percentage of alteration-only those that were altered in at least 30% of
patients were kept for further analysis. Considering methylation data, a hard threshold
value of 0.3 methylation level was set, and only the genes that were altered in at least 40%
of patients remained. Data from mRNA expression were filtered by removing the genes
with over 50% null values.

After the initial reduction step, a table (integration table) that reunites the remaining
alterations from each type of omics was created. Further stages were done to reduce the
amount of data that remained. The correlation between variables was determined by
Pearson’s correlation coefficient, and only the variables that were correlated to another with
a coefficient larger than 0.8, indicating a strong correlation, were kept in the integration
matrix. Variables that have weak correlation do not constitute a construct and are excluded
because only robust components are to be kept.

2.2.2. Principal Components Analysis and Survival Analysis

A principal component analysis (PCA) was performed using the selected genes to
reduce the number of variables and analyze the possible relationships between them.
Afterwards, using the scores obtained for the first ten principal components (PCs), a
clustering analysis was performed by a k-means method with a k++ initialization, using
the software Orange Data Mining [20]. The two resulting clusters were assessed at the
clinical level by performing survival analysis using the Kaplan-Meier method.

2.2.3. Classification Using the First Ten PCs as Predictors for Survival

Aiming to test the hypothesis that the first ten principal components (PCs) contained
information that allowed to distinguish between the two clusters found, a classification
algorithm based on a Random Forest (RF) method was applied to distinguish the two
groups using the scores determined for first ten PCs as features. The performance of the
model was evaluated using a Monte-Carlo method with 5000 iterations (9).
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2.2.4. Selection of Genes for the Multi-Omics Signature

After establishing that the first ten PCs determined by PCA seemed to contain enough
information to distinguish the two groups with different survival, the variable loadings
were used to select the most contributing genetic regions. The loadings can be understood
as weights of the genetic regions that contribute to the principal components. Therefore,
the genetic alterations that contributed exclusively to each one of the first ten PCs were
found by firstly selecting the alterations in the genes whose loadings were in the percentile
90 and, secondly, finding the ones that were present exclusively in one of the ten PCs.

For the RF model, the most important genetic alterations were selected using the
Gini’s coefficient that was computed with a Variable Importance Plot. The bootstrap-
ping algorithm was run 5000 times, and all variables with importance below 10,000 were
filtered out.

A LASSO regression was then performed (1000 times), and the distribution of the
number of models in which a particular genetic alteration was observed was employed for
the final variable selection.

2.2.5. Evaluation of the Proposed Multi-Omics Signature

The prediction capacity of the multi-omics genetic signature composed of alterations
present in nine genes was evaluated by applying two algorithms for statistical classification:
A support vector machine (SVM) model and a random forest (RF) model, using the survival
groups, identified in the clustering analysis, as the dependent variable. The performance of
both models is reported for 5000 iterations (9).

A receiver operating characteristic (ROC) curve analysis was carried out for each of
the genetic alterations included in the models to assess its individual separation ability. The
Youden’s index was also computed from the ROC curve, aiming to establish the optimum
cut-off values. In addition, a binary logistic regression was constructed using the nine-gene
signature, which allows quantifying the influence of each gene in the distinction of the
two groups. To obtain a reduced model, the genes that had no statistical significance were
removed from the model and, in order to determine the hazard ratios (HR) for survival
relating to these genes, a Cox regression model was constructed.

2.2.6. Association of the Obtained Clusters with the Metastatic Status of the Patients

Fisher’s exact test was employed to evaluate how the metastatic status of the patients
was related to the two clusters. Furthermore, in each of the groups defined by the metastatic
status, the survival of each cluster was evaluated through the Kaplan-Meier method.

All analyses were performed using R version 4.03, IBM® SPSS® Statistics version 24,
and Orange Data Mining Toolbox. The significance level was established at 0.05.

3. Results
3.1. Multi-Omics HNSCC Data Reduction

Data from CNAs, mRNA expression, and gene methylation were retrieved from TCGA.
After the initial data reduction step, 2193 genes were kept from the CNA data, 17,684 from
the RNASeq dataset, and 13,043 genes resulted from the methylation data, summing a total
of variables in the integration table.

Given the sheer amount of data, further reduction steps were carried out. Firstly,
correlation analysis was performed, and only those variables that correlated to another,
with a Pearson correlation coefficient larger than 0.8, were considered in further analysis.
This resulted in a reduction to 8247 variables (Figure 1).
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Figure 1. Circos plots representing the copy number alterations (A), methylation (B), and expression
level (C) profiles of the genes kept after correlation analysis.

3.2. Principal Components Analysis and Survival Analysis

A principal components analysis was performed on the reduced integration table. A
clustering algorithm was applied to the first ten principal components’ scores, resulting in
two clusters with good separation (Figure 2) evaluated by the silhouette coefficient. The
average silhouette coefficient is 0.533, which indicates good separation between clusters
and good cohesion within each cluster. Cluster 1 includes 240 (58%) patients and Cluster 2
is composed of 170 patients (42%).

Figure 2. Heatmap representing the clusters obtained using the first ten principal components.
Two clusters were found: Cluster 1 (C1) and Cluster 2 (C2), which, according to average silhouette
coefficient (0.533), present good separation and good cohesion.

Survival analysis was performed using the Kaplan-Meier method to estimate the
differences in the survival of the patients belonging to each of the clusters (Figure 3).

Survival analysis was performed using the Kaplan-Meier method to estimate the differ-
ences in the survival of the patients belonging to each of the clusters (Figure 3). In median,
patients that belonged to Cluster 1 survived 836 days (approximately 2 years and 4 months)
longer than those in Cluster 2 (Table 2). Log-rank, Breslow and Tarone tests did not show
significant differences between the Kaplan-Meier curves (pLog Rank = 0.181, pBreslow = 0.615
and pTarone = 0.377, respectively), since for lower survival times, there is an overlap of the
survival curves, which may be due to shorter follow-up times. However, since the median
survival values indicate a clinically relevant difference (>2 years) between the two clusters,
survival was considered as the clinical prognostic variable in the subsequent analysis.
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Figure 3. Kaplan-Meier curves determined for each cluster found using the first ten principal
components of the PCA, indicating that patients in Cluster 1 survive, in median, 2 years and 4 months
longer than those in Cluster 2 Patients belonging to Cluster 1are represented in grey and Cluster 2 is
represented in black.

Table 2. Means and medians for survival times for the two clusters found in the data.

Mean Median

95% Confidence Interval 95% Confidence Interval

Cluster Estimate Std. Error Lower
Bound

Upper
Bound Estimate Std. Error Lower

Bound
Upper
Bound

1 2879.300 276.379 2337.598 3421.003 2900.000 702.434 1523.229 4276.771

2 2085.443 252.901 1589.757 2581.128 2064.000 652.289 785.513 3342.487

Overall 2633.589 214.999 2212.191 3054.987 2319.000 378.696 1576.757 3061.243

Survival was determined by the Kaplan-Meier method and is shown in days. Cluster 1 patients survive, in
median, up to 2 years and 4 months longer than patients found in Cluster 2.

3.3. Classification Using the First Ten PCs as Predictors for Survival

Having associated the survival of the patients with the two clusters, a classification
algorithm based on the Random Forest method was applied to the first ten principal
components, using the clusters as the dependent variable. The goal of establishing the
classification model was twofold: Obtain a way of predicting if a patient belongs to the
cluster with greater survival time or the other, and determine which genes are associated
with this distinction. According to the statistics obtained by cluster analysis, the groups
have good separability and the first ten PCs are good predictors of the clusters that are
related to survival (Table 3). These results (Table 3) indicate that the molecular alterations
presented in the integration table and contribute exclusively to these PCs, will allow the
distinction between the two groups.
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Table 3. Evaluation metrics for test set using RF classification in the first ten PCs.

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

Accuracy 0.8654 0.9519 0.9615 0.9624 0.9808 1.0000
Sensitivity 0.7500 0.9038 0.9423 0.9338 0.9615 1.0000
Specificity 0.8846 0.9808 1.0000 0.9910 1.0000 1.0000

Accuracy, sensitivity, and specificity are reported across 5000 runs.

3.4. Selection of Genes for the Multi-Omics Signature

Each PC is a linear combination of all genes. Therefore, by analyzing the loadings
(weights) of each gene to a specific PC, it is possible to select those genes that contribute the
most. The genes that contribute mostly to each one of the first ten PCs were determined,
which resulted in 2562 variables. Then, an importance plot routine based on the Gini’s
coefficient was applied to these data, and a set of 398 variables was selected by filtering out
all variables with importance below 10,000.

A Lasso regression analysis was performed across 1000 runs, and the genes that
were included in the largest number of models were selected. Resorting to classification
techniques allowed identifying nine genes that included genetic alterations observed in all
of the three selected omics. This genetic signature included the copy number alterations
found in LMCD1-A1S (3p26.1) and GRM7 (3p26.1) genes, the gene expression of RPL29
(3p21.1), UBA7(3p21.31), FCGR2C (1q23.2), and RPSAP58 (19p12) genes as well as the
methylation of CEACAM19 (19q13.31), KRT17 (17q21.2), and ST18 (8q11.23) genes.

3.5. Assessment of Prediction Value of Proposed Multi-Omics Signature

The selected nine-gene multi-omics signature was evaluated as a good predictor for
the two clusters creating two different classification models-one using SVM and another
using Random Forest (Table 4). The signature shows excellent prediction ability, with
mean accuracies of 96% (95% CI = [0.9519; 0.9808]) and 95% (95% CI = [0.9423; 0.9712])
in the test set, respectively. In Figure 4, a heatmap portrays the differences between
the nine gene-signature between both clusters, where two different omics profiles are
easily distinguishable.

Table 4. Evaluation metrics for the test sets from SVM and RF classification using the nine gene
multi-omics signature.

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

Model SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

Accuracy 0.8654 0.8365 0.9519 0.9423 0.9615 0.9519 0.9624 0.9548 0.9808 0.9712 1.0000 1.0000
Sensitivity 0.7500 0.6923 0.9038 0.9231 0.9423 0.9423 0.9338 0.9373 0.9615 0.9615 1.0000 1.0000
Specificity 0.8846 0.7500 0.9808 0.9615 1.0000 0.9808 0.9910 0.9723 1.0000 0.9808 1.0000 1.0000

Accuracy, sensitivity, and specificity are reported for 5000 runs. This signature shows high predictive ability, with
the mean accuracies being 96% and 95% in the test set, respectively, for SVM and RF.

To evaluate the separation ability of each gene, a ROC curve analysis was performed,
using the two cluster groups as the dependent variable. The area under the curve (AUC)
for each of the genes along with the respective 95% confidence interval, are represented in
Table 5. All genes seem to have a good individual separation capacity, especially the CNAs
observed in GMR7 and LMCD1-AS1 genes.
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Figure 4. Heatmap representing the genetic profiles of the two clusters, for the nine gene signature.
Lower values are represented in blue, whereas red indicates higher values. Two distinct signatures
are observable, with a prevalence of lower values in Cluster 2.

Table 5. AUC and corresponding 95% Confidence Interval (95% CI) for the genes in the multi-
omics model.

95% CI

Gene AUC Lower Higher

GRM7 (CNA) 0.959 0.935 0.983
LMCD1-AS1 (CNA) 0.956 0.931 0.981

RPL29 (RNASeq) 0.658 0.605 0.711
UBA7 (RNAseq) 0.726 0.677 0.774

FCGR2C (RNASeq) 0.721 0.672 0.770
RPSAP58 (RNASeq) 0.717 0.667 0.767

CEACAM19 (Methylation) 0.723 0.674 0.772
KRT17 (Methylation) 0.767 0.721 0.813
ST18 (Methylation) 0.703 0.651 0.755

AUC: Area under the ROC curve. Good individual separation capability for patient survival is shown for the nine
genes, with AUC higher than 65%.

By calculating the maximum of Youden’s index for each gene, an optimum cut-off
point for the distinction between the two survival groups was established (Table 6).

Table 6. Optimum cut-off points determined for each gene included in the multi-omics signature.

Gene GRM7 LMCD1-AS1 RPL29 RPSAP58 FCGR2C UBA7 CEACAM19 KR17 ST18

Cut-off point −0.150 −0.150 6885.475 7082.378 33.152 618.547 0.625 0.344 0.573

A logistic regression model was built using the nine-gene signature, aiming to mea-
sure the significance of the variables in the prediction. The genes that were found to be
non-significant (p > 0.05) were excluded from the logistic model, thus, only four of the
initial genes were chosen to be included. The copy number alterations present in LMCD1-
AS1, methylation status of CEACAM19, as well as the expression profiles of RPL29 and
FCGR2C were found to be statistically significant for the distinction between survival
groups (Table 7).
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Table 7. Variables included in the logistic regression model and respective coefficients determined by
the model.

B S.E. p-Value ORadj
95% CI ORadj

Lower Upper

RPL29 2.209 0.668 0.001 9.105 2.456 33.749

FCGR2C 1.729 0.596 0.004 5.635 1.752 18.120

LMCD1-AS1 7.528 0.896 <0.001 1859.334 321.161 10,764.458

CEACAM19 2.668 0.812 0.001 14.405 2.935 70.707

Constant −7.116 1.138 <0.001 0.001
B stands for the regression coefficient, S.E. for standard error and ORadj stands for the adjusted odds ratio. The copy
number alterations present in LMCD1-AS1, methylation status of CEACAM19 as well as the expression profiles of
RPL29 and FCGR2C are statistically significant for the distinction between survival groups (p-value < 0.05).

The resulting logistic model shows an overall accuracy of 95.9%. The null model’s
accuracy was 58.5%. According to the Hosmer-Lemeshow goodness of fit test, the model
has a good fit for the data with a p-value greater than 0.05 (p = 0.948). When taking together
the four independent variables in the logistic model, they account for 93.9% of the variance
in the tumors tested (Nagelkerke R2 = 0.930), meaning that they explain 93% of the reason
why a patient belongs to their respective survival group.

By observing the adjusted Odds Ratios (ORadj) determined for the model in Table 7,
it can be inferred that when the value measured for a given gene (either copy number
alteration, expression, or methylation levels) is below its optimum cut-off point, the odds
that this patient belongs to Cluster 2 is increased. Meaning that the patients that have either
log 2 copy number alteration levels above −0.150 for the gene LMCD1-AS1, measured
genetic expression levels above 6885.475 and 33.152 for RPL29 and FCGR2C, respectively, or
a methylation level higher than 0.625 in CEACAM19 have a higher probability of belonging
to Cluster 1, which signifies a higher likelihood of survival for that patient.

ORadj for LMCD1-AS1 is considerably larger than the ones calculated for the other
three genes included in the model. This is due to the high degree of separation for the
patients above and below the optimum cut point: Essentially, all patients in Cluster 1 have
log2 copy number values over the cut-off point.

The Cox regression model built with the four genes included in the logistic regres-
sion model showed statistical significance (p = 0.002). RPL29 showed a significant effect
upon survival time (p < 0.001) with HR = 0.000042. The HR for LMCD1-AS1, FCGR2C
and CEACAM19 are, respectively, −0.678, −0.000175, and 0.871, however, they are not
statistically significant.

3.6. Association of the Obtained Clusters with Metastatic Status of the Patients

Fisher’s exact test showed no significance for the association between the metastatic
status of the patients and their belonging to a given cluster (p = 0.428). Additionally, the
survival in each of the metastasis groups was evaluated separately, with the clusters as
dependent variables (Figure 5). For the group that developed metastasis the median sur-
vival time for Cluster 1 was 823 days (95% CI = [110.7; 1535.3]) and for Cluster 2 it was
606 days (95% CI = [497.18; 714.82]). In the case of the patients that did not develop metas-
tasis during the time of follow-up, the median survival time of Cluster 1 was 4856 days
(95% CI = [1131.56; 8589.44]) and, in Cluster 2 it was 2570 days (95% CI = [938.99; 4201.01]).
These findings suggest that the clusters identified are not related to the metastatic sta-
tus, and the clusters may comprise different mechanisms that significantly impact the
survival time.
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Figure 5. Kaplan-Meier survival curves for the group that developed metastasis (A) and for the group
that did not present metastasis during the time of follow-up (B). Patients belonging to Cluster 1 are
represented in grey and Cluster 2 is represented in black. Patients that did not develop metastasis
or relapse in Clusters 1 and 2 present well distinguished survival profiles, as opposed to patients
that did.

4. Discussion

The integration of multi-dimensional datasets seems to give better statistical and bio-
logical results than the analysis of a single molecular layer [21]. Nowadays, there are still
several challenges in dealing with multi-omics integrative analyses due to the complexity
of biological systems, the technological limitations, the significant amount of biological
variables, and the rather reduced number of biological samples [21]. In the HNC field,
little progress has been made in utilizing the multi-omics signatures to improve diagnos-
tic tools or therapeutic interventions. Thus, the main aim of our study was to integrate
different omics layers, namely genomic, epigenomic and transcriptomic data, to draw a
more comprehensive view of the biological processes of head and neck carcinogenesis
and consequently to identify an integrative multi-omics signature with predictive impact
on patient survival. We developed a multi-omics approach based on statistical and ma-
chine learning methods using TCGA-HNC data from 410 patients, for which complete
information on clinical and molecular features was available. We identified an integrative
nine-gene multi-omics signature correlated with HNC patients’ survival independently of
relapses or metastasis development. This prognosis multi-omics signature comprises genes
mapped in the chromosomes 1q, 3p, 8q, 17q, 19p, and 19q, and encompasses alterations
at copy number, gene expression and methylation. Based on this multi-omics signature
that includes:

(i) copy number alterations in LMCD1-A1S (3p26.1) and GRM7 (3p26.1) genes;
(ii) gene expression of FCGR2C (1q23.2), RPL29 (3p21.1), UBA7(3p21.31), and RPSAP58

(19p12);
(iii) methylation of ST18 (8q11.23), KRT17 (17q21.2), and CEACAM19 (19q13.31) genes,

we were able to identify HNC patients with differences in survival higher than two
years and consequently with better or worse prognosis.

Additionally, each of the genes had representation in the other two omics that were not
included in the model for that particular gene, and their values were in line with what was
expected. For example, LMCD1-A1S and GRM7 are both located in the same chromosomic
region (3p26.1). We were able to determine that this region exhibited a clear predominance
of loss of genetic material in relation to the amplification. By observing the expression
and methylation profiles for these genes, we were also able to find that they are frequently
under-expressed and hyper-methylated.
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Recurrent genomic and epigenomic alterations in some specific chromosomal regions
are commonly observed in HNC [6,9,10,16,22–24], which has already been reported in the
chromosomes presented in our multi-omics signature, key genes for cancer progression.
However, HNC remains a highly lethal cancer owing to the lack of validated diagnosis
and prognosis biomarkers with clinical utility. To the best of our knowledge, our study is
the first to report this nine gene multi-omics signature related with the patients’ survival,
independently of metastasis/relapse development. The genes included in this multi-
omics signature are associated with known signaling pathways that seem to be linked to
cancer, namely DNA Double-Strand Break Repair, Cytoskeletal Signaling, CREB Pathway,
Keratinization, Gene Expression, Metabolism of Proteins, Signaling in Gap Junctions and
Protein Ubiquitylation. Our results, through the integration of three different biological
levels of data, give a step forward in the understanding of the molecular basis of head and
neck tumorigenesis, as well as in the identification of prognosis biomarkers, which might
have a great impact on patients’ management and with direct application in the clinical
routine practice.

Our study has some potential limitations, such as the fact that we are analyzing as
a single tumor entity, sampling from different anatomic locations in the head and neck
region, from different tumor stages, and different treatment modalities as well as we are
not taking into account the presence of risk factors that could have influence in the patients’
survival. However, considering the individual effect of each of these nine genes for the
prediction of patients’ survival, we verified using a logistic regression model that four
genes are statistically significant. Therefore, deletion in LMCD1-AS1, absence of hyper
methylation in CEACAM19, and subexpression of RPL29 and FCGR2C were found to be
related to unfavorable survival in these patients. Some of these genes are already related to
cancer, namely, high expression of CEACAM19 in tumor breast samples [25] and gastric
cancer tissues [26]. In order to determine the influence of the variables in the prediction
of survival, we performed Cox’s regression with the aim to prove the association of the
variables to the distinction between the two groups, having already proven that they are
distinct at the time of survival level, by using the Kaplan-Meier method. Gene RPL29
was shown to have an adverse effect on survival, augmenting the chance of death by
23,809 times. LMCD1-AS1, CEACAM19, and FCGR2C showed no significance, which could
be due to the sample size since they showed high HR values.

Some of the nine genes have already been associated with survival outcomes in
other studies related to cancer. For example, RPL29 has been included in a five-gene
model that allows for the distinction of high- and low-risk groups with different survival
outcomes in HNC patients [27]. Another study found that the overexpression of KRT17 is
associated with the proliferation and invasion and related to poor survival of non-small
cell lung cancer patients [28]. In esophageal squamous cell carcinoma the upregulation of
protein KRT17 was found to be detrimental to survival [29]. Recently, the downregulation
of ST18 was associated with short event-free survival in acute myeloid leukemia [30].
Furthermore, breast cancer patients with low UBA7 expression levels were shown to have
a poor prognosis and low overall survival [31].

Further studies are needed to understand the molecular mechanism of these genes
in the HNC carcinogenesis as well as to validate their role in patients’ survival, including
external validation, which is lacking in our study. To the best of our knowledge, TCGA
is the most thorough repository of cancer data in existence and there is a lack of equally
complete publicly available databases that contain information on the three omics analyzed
in this paper for the same cohort of patients.

In conclusion, we report an integrative multi-omics analysis of HNC tumors from a
total of 410 patients included in the TCGA database. The analysis and integration of the
complex genomic, epigenetic, and transcriptomic data reveal a multi-omics signature with
genes mapped at chromosomes 1, 3, 8, 17, and 19 that together allow to differentiate the pa-
tients according to their survival and independently of metastases or relapses development.
A major finding of our study is the differences in survival of HNC patients that harbor copy
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number alterations in LMCD1-A1S (3p26.1) and GRM7 (3p26.1) genes, gene expression of
FCGR2C (1q23.2), RPL29 (3p21.1), UBA7 (3p21.31), and RPSAP58 (19p12) and methylation
of ST18 (8q11.23), KRT17 (17q21.2), and CEACAM19 (19q13.31), which could help in the
clinical management of the patients.
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