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Abstract: Among the 33 human adhesion G-protein-coupled receptors (aGPCRs), a unique subfamily
of GPCRs, only ADGRF4, encoding GPR115, shows an obvious skin-dominated transcriptomic profile,
but its expression and function in skin is largely unknown. Here, we report that GPR115 is present in
a small subset of basal and in most suprabasal, noncornified keratinocytes of the stratified epidermis,
supporting epidermal transcriptomic data. In psoriatic skin, characterized by hyperproliferation and
delayed differentiation, the expression of GPR115 and KRT1/10, the fundamental suprabasal keratin
dimer, is delayed. The deletion of ADGRF4 in HaCaT keratinocytes grown in an organotypic mode
abrogates KRT1 and reduces keratinocyte stratification, indicating a role of GPR115 in epidermal
differentiation. Unexpectedly, endogenous GPR115, which is not glycosylated and is likely not
proteolytically processed, localizes intracellularly along KRT1/10-positive keratin filaments in a
regular pattern. Our data demonstrate a hitherto unknown function of GPR115 in the regulation of
epidermal differentiation and KRT1.

Keywords: GPR115; epidermis; keratinocyte; KRT1

1. Introduction

The epidermis, a stratified epithelium, continuously renews from basal keratinocyte
stem cells that migrate outwards to give rise to differentiated keratinocytes that ultimately
form the skin barrier. In healthy epidermis, proliferation is restricted to keratinocytes in
the basal layer, where the various stem cell types reside [1]. Their progeny constantly
undergo differentiation to form the upper suprabasal layers, the stratum spinosum and
stratum granulosum, and ultimately the stratum corneum. In normal skin, keratinocyte
proliferation and differentiation are highly regulated to maintain epidermal homeostasis.
The disruption of the underlying regulatory circuits contributes to conditions such as
psoriasis, which is characterized by hyperproliferation and delayed differentiation [2]. Epi-
dermal cytoarchitecture and tissue cohesion largely depend on the expression of keratins,
which form the cytoskeletons of all epithelia, including the epidermis. Keratins protect
the epidermis against mechanical stress, secure intercellular adhesion, and act as signaling
hubs via multiple protein interactions [3,4]. They form extensive filament arrays through
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the heterodimerization of type I and type II keratins, which assemble into bundles of intra-
cellular filaments. Keratin expression is tightly regulated to support keratinocyte-specific
functions. Basal skin keratinocytes express KRT5 and KRT14 (KRT5/14), whereas differ-
entiated suprabasal keratinocytes switch off KRT5/14 to be replaced by KRT1/10, which
serve as major constituents of the cornified envelope [5]. How epidermal differentiation
and keratin expression are regulated remains incompletely understood.

Adhesion G-protein-coupled receptors (aGPCRs), a unique subfamily of GPCRs [6,7],
participate in a myriad of diverse processes such as immune regulation, brain development,
cell positioning, metabolism, and tumorigenesis [8]. They consist of a large N-terminal
extracellular domain (ECD) connected to the seven-span transmembrane (7TM) helices,
followed by the intracellular domain (ICD). The ECD contains consecutive adhesive folds,
facilitating adhesion, and the juxtamembranous GPCR autoproteolysis-inducing (GAIN)
domain, which harbors the GPCR autoproteolysis site (GPS). The cleavage of most aG-
PCRs into two noncovalently associated fragments at this site is usually a prerequisite
for their activity. Impaired self-cleavage is attributed to alterations in the consensus GPS
sequence [9,10].

Among all human aGPCRs, GPR115, encoded by ADGRF4 (in the following sections
we use GPR115 for the protein and ADGRF4 for the gene), is unique in displaying a marked
skin-dominated transcriptomic profile [11]. In fact, ADGRF4 is among the 100 genes (39th
place) that exhibit the highest mRNA expression in the skin, according to analyses of
100 different tissues and cell types [12]. Given the limited knowledge about GPR115
expression and function in the skin, we set out to investigate its expression, interaction, and
function. Following epidermal single-cell RNA sequencing (scRNAseq) analyses suggesting
that GPR115 protein should correlate with a rare subset of basal and most suprabasal
keratinocytes, we verified its expression in these compartments. Further, we demonstrated
that a loss of ADGRF4 reduces epidermal stratification in human keratinocytes grown in
organotypic mode and abrogates KRT1, indicating a role of GPR115 in epidermal differentiation.

2. Materials and Methods
2.1. Ethics Statement

The Ethics Committee of the Medical Faculty of Leipzig University approved the study
of human skin for aGPCR expression (no. 386/18). All patients gave informed consent.

2.2. Antibodies (Abs) and Plasmids

The Abs used are summarized in Table S1. ADGRF4, amplified from human ker-
atinocytes by RT-PCR, was cloned into the pcDNA3.1 plasmid. mGPR115 pcDps, encoding
mouse GPR115, was kindly provided by I. Liebscher (Leipzig University).

For detection purposes, an HA tag was inserted directly downstream of the signal
peptide, and a Flag tag was inserted at the C-terminus of the receptor using the Q5®

Site-Directed Mutagenesis Kit (New England Biolabs GmbH, Frankfurt, Germany). The
constructs encoding GPR115 with mutated glycosylation sites (GPR115 mutGlyc and
GPR115 noGlyc) were purchased from OriGene Technologies GmbH (Herford, Germany).
All created mutations were confirmed by sequencing. The plasmids were transfected into
suitable cells using Lipofectamine 2000 (Thermo Fisher Scientific, Darmstadt, Germany).

2.3. Culture of Primary Cells and Cell Lines

HaCaT [13] (CLS GmbH, Eppelheim, Germany), Cos-7 (DMSZ GmbH, Braunschweig,
Germany), and NIH-3T3 cells (LGC Standards GmbH, Wesel, Germany) were cultured in
DMEM/10% fetal calf serum. For the N-glycosylation analysis, cells were incubated with
5 µg/mL tunicamycin (Merck KGaA, Darmstadt, Germany) for 30 h before lysis. Mouse
wild-type (WT) keratinocytes and keratinocytes deficient of type I keratins (KtyI-/-) were
cultured as described in [14].
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2.4. GPR115 Knockout (KO) HaCaT Clones

Single guide RNAs (sgRNAs) for ADGRF4 were designed (www.e-crisp.org/E-CRISP/
designcrispr) (accessed on 1 February 2018). sgRNA1 (ggtgaatcttggatctatag) and sgRNA2
(ctatagatccaagattcacc) targeted exon 2 and 6, respectively. pSpCas9BB-2A-GFP PX458, a
gift from Feng Zhang (Addgene plasmid #48138), was digested with BsmB1 and ligated
with annealed sgRNAs [15]. HaCaT cells were transfected with these plasmids. After
24 h, GFP-positive cells were sorted (FACSAria SORP, Becton Dickinson, Heidelberg,
Germany), cultured as a monolayer, recloned, and stained for GPR115. Clones of both
ADGRF4 sgRNAs with decreased numbers of GPR115-positive cells were selected and
named according to the applied sgRNA as GPR115KO1 and -KO2. gDNA sequencing of all
clones confirmed the mutation of the target loci. Mutations partly hit both alleles differently
and are multifaceted. RNA sequencing was performed as recently described in [16].

2.5. Organotypic Skin Constructs

NIH-3T3 fibroblasts were treated with 4 µg/mL mitomycin C (Merck) for 2 h. Then,
4 × 104 postmitotic fibroblasts were embedded in 400 µL of rat tail collagen type I (Corning
GmbH, Kaiserslautern, Germany) in a cell culture insert used in a 12-well carrier plate.
After 24 h, the gel was coated with 5 µg/mL fibronectin (Merck) for 1 h, overlayered with
4 × 105 HaCaT cells, and cultured for 10 days. Constructs were fixed in phosphate-buffered
4% formaldehyde for 45 min and embedded in Tissue Tek (Thermo Fisher).

2.6. Crystal Violet Assay

To quantify the cell numbers of HaCaT clones, 1 × 103, 2 × 103, and 4 × 103 cells/well
(three wells/density) were seeded in a 96-well plate and cultured for 48 h. The adherent
cells were fixed for 10 min in 96% ethanol then washed and stained with 0.5% crystal
violet/20% methanol for 25 min. After washing, the cells were lysed overnight with 100 µL
of 0.5% Triton X-100. The absorbance was measured at 590 nm.

2.7. Immunolabeling and Proximity Ligation Assay (PLA)

Attached cultured cells or 6 µm tissue cryosections were fixed with ice-cold acetone
for 10 min and immunostained as described in [16]. The Abs used for labeling are listed
in Table S1. To detect and localize the specific interactions of endogenous proteins, the
DuoLinkTM in situ PLA (Olink Bioscience, Uppsala, Sweden) was performed [17]. All
immunofluorescence stains were imaged by confocal laser scanning microscopy (LSM800
or LSM880 fast Airyscan; Carl Zeiss AG, Oberkochen, Germany).

2.8. Immunoelectron Microscopy

Postembedding immune-gold labeling was performed as described in [18]. Briefly,
human skin samples were fixed in 0.1 M phosphate buffer with 0.1% glutaraldehyde and 4%
paraformaldehyde. Samples were embedded in LR White resin (Merck) and polymerized
at 4 ◦C via UV radiation. Ultrathin sections were stained with the GPR115ECD Ab in
combination with the secondary Ab conjugated with NanogoldTM (Nanoprobes, Yaphank,
NY, USA). For subsequent silver enhancement [19], the particle size was adjusted by the
duration of incubation. Sections counterstained with ethanolic uranyl acetate underwent
an analysis using an FEI Tecnai12 BioTwin TEM equipped with an SIS Mega-View3 CCD
camera (Olympus Soft Imaging Solutions GmbH, Muenster, Germany). The images were
analyzed using Fiji.sc.

2.9. Flow Cytometry

Cell surface expression was quantified by flow cytometry. Cells were incubated with
the primary Ab for 30 min, followed by a fluorophore-labeled secondary Ab for 20 min.
Cells were fixed with 1% paraformaldehyde/PBS and analyzed in an FACSAria III.

www.e-crisp.org/E-CRISP/designcrispr
www.e-crisp.org/E-CRISP/designcrispr


Cells 2022, 11, 3151 4 of 15

2.10. Western Blot Analysis

To isolate the epidermis, skin samples were incubated in PBS for 2 min at 60 ◦C. The
epidermis was pulled off and stored in liquid nitrogen for further applications. Cells and
epidermal samples were lysed either in 6.5 M urea buffer (50 mM Tris pH 7.4, 1 mM EGTA,
6.5 M urea, 2 mM DTT), RIPA lysis buffer, or M-PER (Thermo Fisher), each containing
Halt™ protease and a phosphatase inhibitor cocktail (Thermo Fisher). For the glycosylation
analysis, lysates were incubated with PNGase F (NEB GmbH, Frankfurt, Germany). The
Western blot analysis was performed as described in [20].

2.11. Single-Cell RNA Sequencing (scRNAseq) Data Reanalysis

Data (GSE147482) [1] were downloaded from the GEO database. Using 300 marker
genes for basal cell types I-IV (BAS I-IV), spinous types I-II (SNP I-II), and granular (GRN)
keratinocytes as well as melanocytes (MEL) identified by Wang et al. [1] (library clustering),
we ran a self-organizing map (SOM) analysis of all cells to identify cells with specific
expression profiles [21]. The SOM spot analysis allowed the identification of cells that
significantly overexpressed BAS I-III, GRN, and MEL signatures. The BAS IV and SPN I-II
signatures were rather broadly distributed. A cluster of cells overexpressing these three
signatures together and a part of the GRN signature was labeled as ‘MIX’. Violin plots of
the expression of individual genes were generated using the R-package Seurat 4.1.1 [22].

2.12. Statistical Analysis

Means ± SEM are given. Differences between HaCaT WT and GPR115 clones were
analyzed by the Mann–Whitney U test. p values < 0.05 were considered significant.

3. Results
3.1. High ADGRF4 Levels in Rare Basal and in Most Suprabasal Keratinocytes

ADGRF4 shows a distinct skin-dominated transcriptomic profile when comparing
different human tissues (Figure 1a) [11]. To define this more precisely, we reanalyzed
scRNAseq data of human neonatal epidermis [1]. We identified three subsets of basal
keratinocytes (Figure 1b). The ADGRF4 level was low in most type-III basal cells, character-
ized by high COL17A1, encoding a structural component of hemidesmosomes. Notably,
these are stem cells with an unlimited capacity for self-renewal that are generally quiescent.
Most type-I and -II basal cells proliferate; they are characterized by high levels of cell-cycle-
related CDC20. The type-II restricted expression of UHRF14, playing a role in the G1/S
phase transition, discriminates this population from type-I basal cells, and 14.5% and 20.3%
of type-I and -II basal cells, respectively, had high ADGRF4 levels. Thus, GPR115 is likely
expressed in a rare subset of basal keratinocytes. High ADGRF4 was present in 71.0% of
the cells in the MIX cluster, including spinous keratinocytes, and in almost all granular
keratinocytes. Consistent with the predominant ADGRF4 in differentiated keratinocytes,
DSC1, encoding the desmosomal protein desmocollin-1, and IVL, encoding involucrin
starting to be synthesized in the stratum spinosum, showed profiles similar to that of AD-
GRF4. The closest relative of ADGRF4, ADGRF2, was almost absent in human keratinocytes.
Melanocytes, positive for the specific transcription factor MITF, were ADGRF4-negative.
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Figure 1. GPR115/ADGRF4 is present in rare basal and almost all suprabasal keratinocytes.
(a) Transcriptomic profile of ADGRF4 in human tissues (bulk RNAseq) [11], given as RPKM (reads
per kilobase per million mapped reads). (b) Reanalysis of scRNAseq data of human epidermis [1].
Violin plots of relative gene expression from basal cell types I-III (BAS), a mixed cluster (MIX, char-
acterizing the transition from type-IV basal cell to spinous and granular keratinocytes), granular
keratinocytes (GRN), and melanocytes (MEL). (c) Costaining for GPR115 and keratins of normal skin
cryosections (star: cornified layer). (d) In images of a horse radish peroxidase based immunostained
epidermis, few GPR115+ basal cells were seen at higher magnification (arrows; broken line: basal
membrane). (e) Quantitation of GPR115+ cells in the basal layer, which either “sit at” or “touch” the
basal membrane with extensions (dorsal skin, n = 4 donors; n = 1000–2000 basal cells/donor, mean
± SEM).

3.2. GPR115 Shows Intracellular Distribution in Human Epidermis

To validate these transcriptomic data at the protein level, we first carefully character-
ized GPR115 antibodies (Abs). We applied HaCaT wild-type (WT) keratinocytes and a
HaCaT GPR115 knockout (KO) clone in which most ADGRF4 transcripts were lost as well
as Cos-7 cells expressing HA-tagged GPR115 (Figure S1a,b). We focused on the GPR115ECD

Ab, which binds the receptor at its ECD and stained 5–8% of the HaCaT WT cells but
almost none of the ADGRF4-deficient GPR115KO2/2 cells. In HA-GPR115 Cos-7 cells, a
one-to-one overlapping of the Tag with GPR115ECD Ab labeling was seen.

Applying this Ab on cryosections of human epidermis, we detected GPR115 in few
basal and in almost all KRT10-positive suprabasal, noncornified keratinocytes (Figure 1c),
which is in full agreement with the transcriptomic profile. We noted that basal GPR115-
positive cells touched the basal membrane only with little membrane extensions but not
across their entire basal site (Figure 1d,e). Unexpectedly, GPR115 displayed an apparent
intracellular distribution in keratinocytes in vivo and lacked the expected membrane-
associated localization pattern (Figure 1d). To further control GPR115ECD Ab specificity,
epidermal staining was repeated after the preincubation of the Ab with Cos-7 cells express-
ing GPR115, which strongly reduced intracellular epidermal staining (Figure S1c).
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In addition to the interfollicular epidermis, GPR115 expression was examined in skin
appendages such as sebaceous and sweat glands and hair follicles (Figure S2), where it
showed a very similar distribution as KRT1 and KRT10 (Table S2).

3.3. Delayed GPR115 Expression in Suprabasal Psoriatic Keratinocytes

Our in vivo data are compatible with an involvement of GPR115 in epidermal differ-
entiation. To obtain further insight, we turned to psoriatic skin as a model for disturbed
epidermal homeostasis. In lesional psoriatic skin, characterized by excessive keratinocyte
proliferation and altered differentiation, the distribution of GPR115 and keratins was
changed, especially in rete ridges (Figure 2a,b). The expression of GPR115 and KRT1/10 was
delayed until keratinocytes reached the granular layer. Simultaneously, many suprabasal
cells expressed the proliferation marker Ki-67 (Figure 2b). Of these Ki-67+ keratinocytes,
~25% were positive for GPR115. In granular keratinocytes outside the rete ridges, GPR115
and KRT1 are always present but consistently appear non-homogenously in various cells.
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Figure 2. GPR115 and KRT1/10 were delayed in rete ridges of lesional psoriatic skin. (a) In
a rete ridge, suprabasal keratinocytes still expressed KRT5, whereas the emergence of GPR115+

keratinocytes was delayed. (b) Triple immunostaining of Ki-67, GPR115, and KRT10 revealed a
markedly increased proportion of proliferating Ki-67+ in the suprabasal layer. Some of these Ki-67+

cells expressed GPR115 (arrowhead). The epidermal basal membrane is indicated by a broken line.
Right: Quantitation of the percentage of GPR115+ cells among Ki-67+ suprabasal keratinocytes
(n = 10 optical fields, means ± SEM). (c) Determination of whether the first stained suprabasal cell is
GPR115+ and/or KRT1+. Left: Costaining; in the insert the rated cells are indicated by asterisks. Right:
quantitation of the first GPR115- or KRT1-Ab-stained cells (n = 10 optical fields, means ± SEM).

To address whether GPR115 preceded KRT1 or vice versa, immunostaining for both
proteins was performed, focusing on the first GPR115-positive or KRT1-positive cells upon
leaving the basal layer (Figure 2c). The notion that GPR115+ KRT1− but no GPR115−

KRT1+ keratinocytes exist supports the hypothesis that GPR115 precedes the expression of
KRT1. To investigate this, we turned to HaCaT-based organotypic skin equivalent models
and performed loss of function studies.
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3.4. Loss of ADGRF4 Negatively Regulates KRT1 Expression and Epidermal Differentiation

In 2D cultures, HaCaT keratinocytes formed monolayers in which 5–8% of the cells
expressed KRT1/10, consistent with previous findings [13], and GPR115 (Figure 3a,b).
Notably, when the experiment was repeated with GPR115KO HaCaT clones, the percentage
of KRT1/10-positive cells declined obviously (Figure 3a,b), caused by a strong, up to 220-
fold decrease in KRT1 transcripts compared with HaCaT WT cells (Figure 3c). Notably,
the level of remaining KRT1 transcripts and the percentage of KRT1/10-positive cells in
the various clones were correlated. The moderate up to 12-fold reduction in KRT10 in
GPR115KO HaCaT clones is compatible with the individual, but not pairwise, regulation
of type I and type II keratins [23].
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Figure 3. Loss of ADGRF4 abrogated KRT1 and disturbed differentiation in HaCaT keratinocytes.
(a) Monolayered HaCaT WT cells and GPR115KO clones were costained for GPR115 and KRT10.
(b) The percentages of GPR115+ and KRT10+ cells were determined in each clone (n = 10 optical fields,
n = 70–100 cells/field, means ± SEM, *** p < 0.001 compared with WT). (c) RNA sequencing of HaCaT
WT and GPR115KO clones. The ratio of FKPM values in clones and WT is given as an x-fold decrease.
(d) Scheme generating organotypic skin constructs consisting of Matrigel-embedded 3T3 fibroblasts
overlayered with HaCaT WT or GPR115KO cells. (e) Cross-cryosections of constructs built with
HaCaT WT cells (upper panels) and the GPR115KO2/2 clone (lower panel) were costained for GPR115
and keratins. (f) The percentages of GPR115+ and KRT1/10+ cells were determined in these constructs
built with HaCaT WT cells (n = 10 optical fields, n = 20–27 cells/field, means ± SEM). (g) Scheme
of the determination of the HaCaT layer number. The number of DAPI+ nuclei was counted in
10 uniform segments; the distances between the segments were equal (three segments are shown).
(h) Quantitation of the HaCaT layer number in organotypic skin constructs (n = 5–8 experiments/WT
or GPR115KO clone, 3 cross sections/experiment, 10 segments/cross section, means ± SEM, * p < 0.05,
** p < 0.01 compared with WT). (i) Crystal violet assay of 1 × 103, 2 × 103, and 4 × 103 seeded HaCaT
WT and GPR115KO cells. Attached cells over time were quantified. Absorbance was measured after
48 h at 590 nm (n = 3 experiments, n = 3 replicates/experiment; means ± SEM).
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Upon the 3D organotypic growth of HaCaT WT cells, schematically shown in Figure 3d,
GPR115 was strongly induced in nearly all suprabasal cells, whereas most basal cells were
GPR115-negative, as in a normal epidermis (Figure 3e,f). Remarkably, in HaCaT GPR115KO
clones, the suprabasal cells remained negative for KRT1/10 (Figure 3e), indicating their
likely inability to differentiate, and the keratinocyte layer formation looked disturbed.

To investigate this further, the number of keratinocyte layers in organotypic-grown
HaCaT WT or GPR115KO clones was quantified (Figure 3g). The loss of ADGRF4 signifi-
cantly decreased the number of suprabasal, differentiated epidermal layers, and thus the
number of epidermal cells in organotypic constructs built from these two clones showed
the lowest ADGRF4 levels (Figure 3h). To exclude that these differences between HaCaT
WT cells and GPR115KO clones might be due to a direct regulation of proliferation by
GPR115, their cell numbers were quantified in monolayer cultures where no difference was
found (Figure 3i). Thus, HaCaT WT cells proliferate more compared to the GPR115KO
clones under organotypic conditions but not under monolayer conditions. In sum, our data
strongly indicate that GPR115 promotes epidermal differentiation and regulates KRT1.

3.5. Endogenous GPR115 Colocalizes with KRT1/10-Positive Filaments

In human epidermis, GPR115 was localized inside keratinocytes (Figure 1d). A highly
similar distribution was found in immunostained monolayered HaCaT keratinocytes
(Figure 4a). Flow cytometry confirmed the intracellular localization of endogenous GPR115;
HaCaT keratinocytes did not show GPR115 at the cell surface (Figure 4b). In contrast, Cos-7
cells transfected with GPR115 pcDNA3.1 localized GPR115 along the cell surface. One
major difference between Cos-7 and HaCaT cells relates to the set of keratins they express.
While the former are characterized by the simple epithelial keratins KRT8/18, the latter
express KRT5/14 under proliferative and KRT1/10 under differentiation conditions.

To exclude the possibility that only a fragment of the GPR115 ECD locates intracellu-
larly or that a C-terminal fragment might escape detection by the GPR115ECD Ab, an Ab
binding to the ICD (GPR115ICD) was applied (Figure S1a, Table S1). This Ab confirmed
the former results (Figure 4c). Consistently, both Abs yielded an intracellular, filament-like
pattern resembling that of cytoskeletal keratins (Figure 4a,c). Costaining with keratin-
specific Abs showed a strong overlap of GPR115 with KRT1/10. All GPR115-positive cells
expressed KRT1, and most were also positive for KRT10 (Figure 4d). To independently
probe for this unexpected association of an aGPCR and a cytoskeletal keratin, a PLA was
performed for endogenous proteins in HaCaT keratinocytes (Figure 4e), confirming the
double immunofluorescence results.

To further substantiate the close proximity of epidermal GPR115 and keratins, we
performed silver-enhanced immunogold electron microscopy using the GPR115ECD Ab. In
normal skin, immunogold particles were present in suprabasal, noncornified keratinocytes,
where KRT1/10 represents almost all keratins, in addition to low, residual KRT5/14
(Figure 4f). The label was highly enriched at and restricted to bundles of keratin fila-
ments (Figure 4g). Of note, the distribution of immunogold particles at the filaments
showed a remarkable periodicity of ~48 nm (Figure 4h). Given the length of ~45 nm for the
coiled-coil backbone of keratins, this is compatible with an association of GPR115 with the
KRT1 head or tail domains [24]. Further, groups of silver-enhanced gold particles located
along the desmosomes with a distance of ~58 nm to the plasma membrane (Figure 4i), in
approximate agreement with the known distance of keratins inserting at the C-terminus
of desmoplakin [25]. In sum, GPR115 and KRT1 are highly colocalized inside suprabasal
keratinocytes in vivo and in HaCaT keratinocytes, despite GPR115 being a 7TM receptor.
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Figure 4. Endogenous GPR115 colocalizes with KRT1/10. (a) GPR115 and KRT1 costaining of
HaCaT cells. The insert illustrates the obvious colocalization and the filament-like, partly dotted
GPR115 staining. (b) HaCaT WT cells and Cos-7 cells, transfected with GPR115 pcDNA3.1, were
cell-surface-stained with the GPR115ECD Ab and analyzed by flow cytometry. (c) GPR115ICD and
KRT1 Ab costaining of HaCaT cells. (d) Calculation of the percentage of GPR115ECD-labeled HaCaT
cells costained with the KRT1 or KRT10 Abs (n = 10 optical fields, n = 220–320 cells/field, means
± SEM). (e) Proximity ligation assay (PLA) applying the rabbit GPR115ECD and mouse KRT10 Abs
in HaCaT WT cells. After visualization of the PLA interaction dots, the cells were stained with a
fluorophore-labeled antirabbit secondary Ab to visualize GPR115. (f–i) GPR115ECD Ab immunogold
labeling of normal skin via electron microscopy. (f) Immunogold particles were present in all
suprabasal, nonkeratinized epidermal layers (sb: stratum basale, ss: stratum spinosum, sg: stratum
granulosum, sc: stratum corneum). (g) The immunogold particles were located at keratin filaments
and grouped with defined distances from each other. (h) These distances were quantified in pictures;
the frequencies of a certain distance between the particle groups are given. The distances between
groups were multiples of 48 nm (48.8 ± 0.4, 96.2 ± 0.3, 144.8 ± 0.4, 193.1 ± 0.5 nm; n = 16 figures,
10–45 particle groups at filaments/figure, means ± SEM). (i) Alongside desmosomes (arrowheads),
immunogold particle groups were also located at filaments. The distance of such groups to the
desmosomes was 57.6 ± 1.3 nm (n = 8 pictures, 2–6 particle groups/picture, means ± SEM).

3.6. Endogenous GPR115 Is Unglycosylated and Uncleaved in HaCaT Keratinocytes

To gain some insight into principles that might explain this unexpected intracellular
localization of GPR115, we turned to biochemical analysis. First, we probed whether
endogenous GPR115 extracted from the epidermis and HaCaT keratinocytes represents the
naked protein core, as predicted from its keratin-based localization. In total protein extracts,
a strong band at ~68 kDa was detected in the epidermis and HaCaT cells, and a weaker
one was detected at 75 kDa in HaCaT cells (Figure 5a), which is in reasonable correlation
with the calculated molecular weight of GPR115 (NP_722580.3) of 75.3 kDa. The relative
molecular weight of GPR115 remained unaltered upon the treatment of HaCaT cells with
tunicamycin to block N-linked glycosylation (Figure 5b). Thus, endogenous GPR115 is not
N-glycosylated.
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Figure 5. Endogenous GPR115 is not N-glycosylated and is likely not cleaved at the GPS. (a) West-
ern blot analysis of epidermis, HaCaT, and HA-GPR115 Cos-7 cells in urea-based (left) and detergent-
based (right) lysates applying the GPR115ECD Ab. Only 1 µg of epidermal protein/lane was blotted,
while 40 µg/lane of the other lysates were blotted. In the lower part, the loading control using
a β-actin Ab is shown. It is negative for the epidermis because only 1 µg of protein was applied.
(b) Western blot analysis of lysates (urea buffer) of epidermis and HaCaT cells; two different blots
are shown. Tunicamycin (*) did not decrease the molecular weight of endogenous GPR115 (left)
but decreased that of desmoglein 1 (DSG1, right), which served as a positive control. (c) Western
blot analysis of lysates of HA-GPR115 Cos-7 cells treated with PNGase F (left) or of HA-GPR115
Cos-7 cells cultured with tunicamycin (right); the Abs used are indicated. Most transfected GPR115
is N-glycosylated (arrows); deglycosylation reduced the molecular weight to 65 kDA (arrowheads).
(d) Lysates of Cos-7 transfected with constructs encoding N-terminal HA- and C-terminal Flag-tagged
mouse or human GPR115 and human CD97 were analyzed with the indicated Abs by Western blot;
the coding part of the constructs is shown schematically above (arrowhead: putative GPS). In the
blots, arrowheads indicate uncleaved full-length human GPR115, and the arrows indicate the N-
and C-terminal fragments of cleaved CD97 (positive control). Mouse GPR115, a little smaller than
human GPR115 also was not cleaved. (e) Western blot analysis of urea-based lysates of HaCaT WT
cells and the various GPR115 clones. The applied Abs are indicated on the right. Upper part: First,
the blot was consecutively incubated with the rabbit GPR115ECD and mouse KRT1/10 primary Abs.
Afterwards both fluorophore-labeled secondary Abs were applied; pictures taken from this blot are
shown (the single Abs in grey and their overlay colored). Lower part: same blot after stripping and
restaining; the stripped blot was horizontally cut, and the three parts were incubated with either the
KRT1, KRT5, or β-actin Abs.

To further substantiate this, HA-GPR115 was transfected into Cos-7 cells, which
resulted in protein species that migrate as multiple bands at ~90–110 kDa (Figure 5a). Their
extractability with RIPA buffer is consistent with that of other aGPCRs [16,17]. The GPR115
expressed in Cos-7 cells is N-glycosylated because, in PNGase F-treated lysates or in lysates
of these cells cultured before with tunicamycin, the GPR115 molecular weight was reduced
to 65 kDa (Figure 5c).

To examine whether human GPR115 was cleaved at the GPS as with most aGPCRs [10],
N-terminal HA- and C-terminal Flag-tagged GPR115 was expressed in Cos-7 cells. Most
human GPR115 remained noncleaved (Figure 5d), confirming data obtained from mouse
GPR115 [9]. Because the molecular weights of endogenous GPR115 and of the de-N-
glycosylated GPR115 expressed in Cos-7 cells are similar, endogenous GPR115 is very likely
also not cleaved, arguing that the naked protein core localizes to KRT1/10.
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Biochemical analyses of HaCaT WT cells and the GPR115KO clones further confirmed
our data (Figure 5e). The amount of GPR115 and KRT1/10 protein decreased simultane-
ously in all HaCaT GPR115KO clones.

3.7. Transfected GPR115 Fails to Colocalize with KRT1 in Cos-7 Cells, Even upon Deglycosylation

One major difference between endogenous and transfected GPR115 resides in the
extensive N-glycosylation of the latter. Thus, we asked whether this difference determined
either the KRT1 association or the membrane localization. Upon the transfection of Cos-7
cells with a GPR115 variant in which most N-glycosylation sites were mutated (GPR115
mutGlyc, Table S3), its molecular weight decreased to ~75–80 kDA; when treated with
PNGase F, it decreased to 65 kDa (Figure 6a). The mutation of all N-glycosylation sites
(Table S3) decreased the size to 63–65 kDa (Figure 6b). These N-glycosylation mutants lost
their membrane localization, and unglycosylated GPR115 showed a diffuse intracellular
distribution (Figure 6c,d). This was not surprising, given that Cos-7 cells lack KRT1.
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Figure 6. GPR115 transfected into Cos-7 cells is not keratin-associated. (a) Western blot analysis
of Cos-7 cells transfected with the various indicated GPR115 pcDNA3.1 constructs. Mutation of
seven potential GPR115 N-glycosylation sites (GPR115 mutGlyc) reduced the molecular weight of
transfected GPR115 from ~90–110 to ~75–85 kDa (brackets). PNGase F treatment (*) of the cellular
lysates resulted in a ~65 kDa band (arrowhead); thus, further potential GPR115 N-glycosylation sites
were used. (b) Consistently, mutation of all potential GPR115 N-glycosylation sites (GPR115 noGlyc)
reduced the molecular weight to ~63–65 kDa (arrowhead). (c,d) Cos-7 cells, transfected with GPR115
or GPR115 mutGlyc pcDNA3.1, were stained for GPR115. Mutant GPR115 mainly disappeared from
the cell surface, as seen in flow cytometry (c) and in stained monolayered cells (d). (e–g) HaCaT WT
cells were transfected with HA-GPR115 pcDNA3.1. (e) These cells were stained with the GPR115ECD

Ab and compared with nontransfected cells in flow cytometry. (f) The transfected HaCaT cells
were costained using the GPR115ECD and HA Abs to differentiate between endogenous (HA-) and
transfected (HA+) GPR115. (g) Mouse WT and keratin type I-deficient (KtyI-/-) keratinocytes were
transfected with HA-GPR115 pcDNA3.1 and costained for KRT5 and GPR115; the GPR115ECD Ab
labeled only human GPR115. The staining pattern of transfected GPR115 was similar in WT and
KtyI-/- keratinocytes. (h) HaCaT WT cells were costained for GPR115 with the ER tubule marker
RTN4 and the ER sheet marker CKAP4.
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Thus, we transfected HaCaT keratinocytes with HA-tagged WT GPR115, which ap-
peared partly at the cell surface (Figure 6e). The fraction of transfected GPR115 that was
localized inside cells did not costain with keratins when using either GPR115 or the HA-
tagged antibody (Figure 6f). Further, the localization of transfected GPR115 was similar in
HA-GPR115-transfected keratinocytes of WT mice and of mice deficient for type I keratins
(KtyI-/-) (Figure 6g). Thus, transfected GPR115 localized independent of keratins.

To address whether endogenous GPR115 might be associated with intracellular mem-
branes via keratins, we focused on the recent finding that the peripheral endoplasmic
reticulum (ER) partly exhibits nanometer proximity to keratin filaments [22]. We stained
HaCaT keratinocytes using the GPR115ECD Ab and Abs directed to reticulon 4 (RTN4),
a marker for peripheral ER tubules, and to cytoskeleton-associated protein 4 (CKAP4), a
marker of ER sheets. These proteins and GPR115 localized in distinctly different patterns
(Figure 6h). Thus, the colocalization of endogenous GPR115 and KRT1 most unlikely does
not occur along the peripheral ER.

4. Discussion

By now, the occurrence of actin in the nucleus, in addition to the cytoplasm, and of
β-catenin at adherens junctions and in the nucleus represents textbook knowledge and
serves as examples for many other proteins that display noncanonical localization and
function [26,27].

Here, we provide strong evidence for the localization of GPR115, an aGPCR, inside
keratinocytes in either skin cryosections or cultured HaCaT cells. In agreement with the
reanalyzed epidermal scRNAseq data [1], we detected the protein in rare basal and in almost
all suprabasal, nonkeratinized keratinocytes of normal skin by immunotechniques applying
a carefully validated specific Ab directed to the ECD of this aGPCR. In psoriatic skin,
characterized by excessive keratinocyte proliferation and altered differentiation, GPR115
expression was diminished. GPR115 also occurred in a subset of Ki-67-positive suprabasal
keratinocytes. These data suggest an involvement of GPR115 in epidermal differentiation.

To further evaluate the roles of GPR115 and keratinocyte differentiation, organotypic
cocultures of HaCaT keratinocytes with fibroblasts were established, conditions that induce
differentiation and the formation of a stratified epithelium with all features of a normal
epidermis [28]. In these constructs, almost all suprabasal keratinocytes coexpressed GPR115
and KRT1/10. Most notably, a CRISPR/Cas9-mediated deletion of ADGRF4 decreased the
number of keratinocyte layers and abrogated KRT1. In similar experimental settings, a
disruption of PTTG1 reduced epidermal stratification to the extent that cells appeared as a
simple epithelium [1,29]. Disruptions of either HELLS or UHRF1 also resulted in a thinner
epidermis and the suppression of epidermal homeostasis [1]. In light of these observations,
it is likely that GPR115 not only regulates KRT1 but controls the early stages of epidermal
differentiation, which is consistent with its expression in few proliferating basal cells [1]. In
support, Kty1-/- mice showed a near-normal epidermis in which all epidermal layers were
maintained, although these mice died a few hours after birth [23].

Our hypothesis that GPR115 is involved in epidermal differentiation is not contra-
dicted by the lack of an overt skin phenotype in Adgrf4-/- mice [9]. Given that ADGRF4
clusters tightly with ADGRF2 and that both are only present in land-living mammals [9],
they likely exert redundant functions in mouse skin. To what extent GPR111/ADGRF2,
nearly absent in human keratinocytes [1], can substitute for GPR115 remains to be analyzed.
Interestingly, Adgrf4-/- mice revealed that this protein plays an important role in enamel
mineralization via the regulation of carboanhydrase-6 expression in ameloblasts [30].

The most unexpected finding of our study is the close colocalization of endogenous
GPR115 and KRT1/10, which is strongly supported by immunogold electron microscopy.
At first glance, such a colocalization appears unusual for a GPCR that is commonly present
at and signaling from extra- and intracellular membranes [31,32]. Is it conceivable that
only a GPR115 fragment such as the ECD or a part thereof associates alongside KRT1/10
filaments? Although not rigorously disproving this, the fsct that both GPR115 Abs, binding
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near the N- and C-terminus, respectively, reveal a close keratin association supports the
view that intact GPR115 associates with keratins. Moreover, both human and mouse [9]
GPR115 are not proteolytically cleaved at the GPS, and they display a similar molecular
weight predicted for the nonglycosylated protein species in Western blots. This infers that
full-length endogenous GPR115 is associated with KRT1/10.

The noncanonical, intracellular localization of an aGPCR has not been reported until
now. At the same time, the noncanonical occurrence of cytoskeletal keratins is widely
accepted, as exemplified by nuclear KRT17 and by extracellular KRT19 [33,34]. Given that
GPCRs contain hydrophobic 7TM helices, it is unlikely that they exist as freely floating enti-
ties inside the cytoplasm but reside in membrane compartments, which is fully consistent
with our localization data for transfected but not endogenous GPR115.

Having said this, KRTs 8, 18, and 19 have all been reported to functionally interact
with the cystic fibrosis transmembrane regulator (CFTR), a multispan transmembrane
receptor. The interaction of KRT8 with the CFTR∆F508 mutant, the most common mutation
in patients with cystic fibrosis, at nucleotide-binding domain 1 (NBD1) inhibits the translo-
cation of CFTR to the cell surface [35,36]. A deletion of KRT8 rescued CFTR cell surface
localization [37]. KRT18 and KRT19, on the other hand, were shown to stabilize CFTR at
the cell surface by direct protein interactions [38,39].

Most recently, epidermal keratins were identified in close association with peripheral
ER compartments at desmosomes, where they are crucial to maintaining desmosome-
associated ER compartments, as seen by the disruption of ER-desmosome complexes upon
the expression of a disease-associated KRT14 mutation [40]. Based on parallel staining of
GPR115 and the ER markers RTN4 and CKAP4 in HaCaT keratinocytes, it appears unlikely
that the GPR115 species that localize close to KRT1/10 reside in an ER compartment. Fur-
ther experiments are required to identify the nature of the intracellular, KRT1/10-associated
compartment in which GPR115 resides. This should pave the way to understanding the
biological significance of GPR115’s association with KRT1/10.
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