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Abstract: Radiation-induced pulmonary fibrosis (RIPF) is a general and fatal side effect of radio-
therapy, while the pathogenesis has not been entirely understood yet. By now, there is still no
effective clinical intervention available for treatment of RIPF. Recent studies revealed mesenchymal
stromal cells (MSCs) as a promising therapy treatment due to their homing and differentiation
ability, paracrine effects, immunomodulatory effects, and MSCs-derived exosomes. Nevertheless,
problems and challenges in applying MSCs still need to be taken seriously. Herein, we reviewed the
mechanisms and challenges in the applications of MSCs in treating RIPF.
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1. Introduction
1.1. Radiation-Induced Pulmonary Fibrosis (RIPF)

RIPF is a common and serious adverse effect of radiotherapy for thoracic malignancies,
including lung, breast, and esophageal cancer. The average incidence of RIPF varies,
ranging from 16% to 28% [1]. RIPF is considered to be the chronic injury stage of radiation-
induced lung injury(RILI), which often occurs 1 year after radiotherapy, while the acute
injury stage—radiation pneumonitis (RP)—mostly occurs within 12 weeks [2]. It manifests
as progressive dyspnea, irreversible destruction of lung tissue, and worsening lung function,
thereby leading to a decreased survival rate and poor quality of life [3].

Currently, there are four processes involved in the pathogenesis of RIPF: release of
reactive oxygen species (ROS), injury of microvasculature, collection of inflammatory cells,
and activation of myofibroblasts [4]. Primary treatment measures in RIPF are mostly
supportive, such as supplemental oxygen or pulmonary rehabilitation. Current pharma-
cotherapies encompassing corticosteroids or azathioprine are proven to be effective only
in RP. However, the pharmacological intervention has yet to be determined in RIPF [5].
Studies have revealed that “triple therapy”, including prednisone, azathioprine, and N-
acetylcysteine, even increases the risk of hospitalization and mortality in patients with
RIPF [6]. Pirfenidone and nintedanib are effective treatments for idiopathic pulmonary
fibrosis (IPF); however, their role in treatment of RIPF is uncertain [7]. Currently, there are
no effective clinical interventions available for RIPF. Thus, new strategies are paramount
and urgently needed.

1.2. MSCs

Mesenchymal stem cells (MSCs) are multilineage stromal cells with the capability of
differentiation and self-renewal. MSCs can be obtained in the umbilical cord, bone marrow,
adipose tissue, dental tissue, endometrial polyps, synovial fluid, skin, and placenta from
newborns and adults [8,9]. According to the International Society for Cellular Therapy
(ISCT) [10], there are basic characteristics defined for MSCs: (1) adherent growth must
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be observed under standard cultural conditions; (2) surface molecules including CD105,
CD73, and CD90 must be expressed in MSCs while the expression of CD45, CD34, CD14
or CD11b, CD79alpha, or CD19 are lacking; (3) MSCs can differentiate into adipocytes,
chondroblasts, and osteoblasts in vitro. MSCs also enhance the regeneration of damaged
tissues and the differentiation into type II alveolar epithelial cells. In addition, MSCs have
low immunogenicity the ability to suppress the release of fibrotic cytokines, and they inhibit
epithelial-mesenchymal transition(EMT), a key process in lung fibrosis [11–13]. Although
MSCs show considerable promise for treatment of acute and chronic inflammatory lung
disorders as well as repair of RIPF [14–16], the mechanisms are not understood. Herein, we
summarize the mechanisms, potential applications, and challenges of MSCs in RIPF.

2. The Pathogenesis of RIPF

Radiation exposure induces the generation of numerous reactive oxygen species (ROS),
which further causes damage-associated molecular patterns (DAMPs) in the lungs [17].
Inflammatory cells migrate to and accumulate in the injury sites, thereby facilitating the
secretion of mediators, such as pro-IL-1β, pro-IL-18, and type I interferon and activation
of cell surface-bound TOLL-like receptors (TLR) 2 and 4. Simultaneously, inflammasome
NLRP3 can be activated by irradiation leading to upregulation of caspase-1, pro-IL-1β, and
pro-IL-18, and the formation of active IL-1β and IL-18. These changes result in cell pyropto-
sis, a highly inflammatory form of programmed cell death [1,18,19]. Several studies have
demonstrated that IL-1β stimulates the release of TGF-β, a key molecule in the process of
fibrogenesis in human lung tissue cells. For example, TGF-β/SMAD pathway is associated
with lung fibrosis [20]. Specifically, TGF-β binds to transforming growth factor β receptor
II (TGFβRII) and leads to phosphorylation of transforming growth factor β receptor I
(TGFβRI), thereby increasing phosphorylation of downstream functional molecules, Smad2
and Smad3, the latter usually upregulates the expression of profibrotic molecules [21].
These increased cytokines trigger myofibroblast activation, matrix deposition, and EMT,
and eventually leads to lung fibrosis [22] (Figure 1). Ionizing radiation may also induce
activation and dysfunction of endothelial cells and then damage the ability of tissue vessels
to repair during EMT and tissue fibrosis progression [23]. In addition, the alternative
macrophage activation (M2) has been observed rather than classic activation (M1) in the
pro-fibrotic immune response [24]. Finally, higher expression of senescence-associated β-
galactosidase (SA-β-Gal) and senescence-specific genes (p16, p21, and Bcl-2) are observed
in irradiated bone marrow-derived macrophages, suggesting senescent cells may be crucial
contributors to RIPF [25,26]. Therefore, multiple cell types are involved in the initiation
and development of RIPF.
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thereby releasing IL-1β and IL-18 and leading to pyroptosis. IL-1β promotes the release of TGF-β,
which triggers TGF—β/SMAD signaling pathway and induces EMT and fibrosis. (This figure was
made with Biorender.).

3. Mechanisms of MSC-Based Therapy for RIPF
3.1. Homing and Differentiation Processes

Studies have revealed that MSCs have a homing ability; that is, MSCs may migrate
to the injured sites and secrete growth factors and chemokines that facilitate tissue re-
pair [27,28]. One study found a 20-fold increase of MSCs in the mouse lungs with thoracic
irradiation [29]. A study by Jiang et al. demonstrated that copious transplanted adipose-
derived MSC2 may migrate to the injured lung within 12 h after irradiation [30]. The ability
of MSC to reach the injured tissues or organs is a prerequisite for their functions.

MSCs homing ability is a complex process associated with a variety of chemokine
receptors and their ligands. Stromal cell-derived factor one (SDF-1) upregulated by tissue
damage activates the CXCR4—the well-known SDF-1 receptor—then induces migration of
MSCs toward injured lung tissue [31], indicating that SDF-1/CXCR4 signal axis plays a
crucial role in this process. It has also been demonstrated that the homing of MSC to injured
tissues may be regulated by the inflammation state. Among these inflammatory cytokines,
TNFα can significantly increase the expression of CXCR4 and enhance the sensitivity of
MSC to chemokines [32]. Integrins α4/β1 have been known to participate in the homing
process through adhesion to the vascular cell adhesion molecule (VCAM)-1 [33]. Other
factors regulating MSCs homing encompass basic fibroblast growth factor (bFGF), matrix
metalloproteinases (MMPs), and TLRs [31,34].

Recently, one study by Maria et al. discovered changes in lung-specific Clara and
type II pneumocyte cells when MSCs were cocultured with healthy lung tissue [35]. MSC
transplantation may increase MSC residency in the lung by activating the Wnt/β-catenin
signaling pathway to promote MSC differentiation to ATII, improving lung epithelial
permeability and alleviating inflammation in rat models [36]. These data show in response
to lung injury, MSCs may reach the damaged area rapidly and differentiate the cell types
for improvement of lung function.

3.2. Paracrine Effects

MSCs have homing and differentiation abilities. However, their relative percentage
in lung is too low to account for their significant therapeutic effects [30]. For example, the
replacement of injured sites by differentiated storm cells is only around 5% [37], suggesting
that the regenerative effects are mainly through the paracrine mechanisms [38].

As we discussed above, pro-IL-1β, pro-IL-18, TGF-β, and type I interferon are re-
leased after radiation and lead to the accumulation of fibroblasts and the development of
fibrosis [39]. MSCs paracrine effects may release interleukin 1 receptor antagonist (IL1Ra)
and TNF receptor 1 characterized as a competitive inhibitor of IL-1, thereby suppressing
their activity [40]. Animal experiments have shown that rats with Ad-MSCs exhibited
significantly reduced levels of pro-fibrotic factors, TGF-β1 and α-SMA [41,42]. Dickkop-1
(DKK-1) is a potent antagonist of the Wnt pathway and plays an important role in fibro-
sis [43] Studies demonstrated that MSCs may induce DKK1 from external sources and
then inhibit the induction of EMT in vitro through the Wnt-pathway [44]. Liu revealed
that decorin-modified umbilical cord MSCs promoted the release of interferon-γ and in-
hibited the expression of collagen type III α1 in lung tissues, thereby attenuating fibrosis
progression [45]. Recent studies also demonstrated that the anti-fibrotic effects of MSCs
on irradiated lungs by stimulating the endogenous secretion of hepatocyte growth factor
(HGF) and prostaglandin E2 (PGE2) [46].

Inflammation is a part of the process of pulmonary fibrosis. MSCs possess the anti-
inflammation effect by promoting the expressions of the anti-inflammatory factors consist-
ing of IL-1, IL-6, and IL-10, and reducing the expressions of pro-inflammatory factors, such
as IL-6 and interferon β [47]. IL-1Ra secreted from MSCs can degrade inflammasomes and
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inhibit the expression of IL-1β [48]. Studies also revealed that MSCs can diminish NF-kB
nuclear transfer and enhance the secretion of HGF, IL-10, and keratinocyte growth factor
(KGF) to attenuate the inflammation state in lung tissues [49].

Moreover, the superoxide dismutase (SOD) secreted by MSC is an effective ROS
scavenger, which may protect the lungs from reactive oxygen damage and decrease the level
of TGF-β and collagen production, thereby reducing intercellular matrix deposition and
improving pulmonary fibrosis. A study by Klein et al. indicated that MSCs counteracted
vascular damage and endothelial cell loss after radiation through restoring the reduction
in SOD1 levels [50]. A study by Chen et al. demonstrated that manganese superoxide
dismutase (Mn-SOD) gene-modified (MSCs) can improve the survival of rats and exert an
antifibrotic effect [51]. In another experiment, SOD-3 was administered simultaneously
with human umbilical cord-derived MSC (hUC-MSC) to treat irradiated mice, and SOD-3
significantly improved the therapeutic effect of hUC-MSC by inhibiting the proliferation
of myofibroblasts [52]. These experiments illustrated the importance of SOD in treating
fibrosis and suggested the therapeutic potential of MSC in treating RIPF.

3.3. Immunomodulatory Effects

It is known that thorax irradiation may induce the recruitment of immune cells to the
pulmonary system. For instance, a Th2-like immune response is involved in RIPF [53]. It
is also wildly understood that MSCs may regulate intrinsic and adaptive immune cells
through direct cell-to-cell contact or production of soluble factors [54,55], and suppress
the proliferation of CD4+ T cells, CD8+ T cells, B cells, NK cells, dendritic cells (DCs),
and regulatory T cells (Tregs) [56–58]. A study by Akiyama et al. suggested that MSCs
possessed the ability to promote activated T cells apoptosis through the Fas/Fas ligand
pathway [59] while other studies indicated that MSCs may support the survival of T cells
in a quiescent state, which is related to the CD95–CD95-ligand-associated cell death [60].
Studies also proposed the mechanism by which MSCs induce the proliferation of T-regs is
through release of the human leukocyte antigen-G5 (HLA-G5) [61]. Except for the direct
suppression of T cells, MSCs may also curb the generation of Th1, Th2, and Th17 cells by
modulating the antigen-presenting function of DCs via IL-6, IL-10, and PGE2 [14]. B cells
are the other major population that participate in adaptive immune response in addition to
T cells. MSCs may downregulate the expression of CXCR4, CXCR5, and CCR7, thereby
leading to a negative modulation in B cell activation [62]. Several signaling pathways, such
as extracellular response kinase 1/2 (ERK1/2), PI3K/AKT/mTOR, and p38 are involved
in these steps [63]. Moreover, MSCs block the stimulatory activity of DCs to NK cells and
result in the impairment of antigen presentation to T cells and the inability of T cells to
proliferate [64].

Several immunosuppressive soluble factors, such as indoleamine 2,3-dioxygenase
(IDO), nitric oxide (NO), PGE2, heme oxygenase-1 (HO-1), TGF-β, have been reported
to be involved in the immunomodulatory process [65]. In the late stage of inflammatory
response, the cytokines IL-1β and TNF-α secreted by Th1 and Th2 induce the migration of
MSCs to the injury sites with an environment of increased inflammatory cytokines, such as
IFN-r and TNF-α. These cytokines participated in the regulation of T cell suppression by
MSCs and downregulated the secretion of immune cytokines to reduce lung injury [66].
Therefore, MSCs can mitigate RIPF through immunosuppression and offer an alternative
way to regulate the immune response in the treatment of RIPF.

Although the immunosuppressive effect of MSCs has been well clarified, it is im-
portant to point out that MSCs may also stimulate the immune system to exert their
immunomodulatory function through releasing proinflammatory molecules when the lev-
els of inflammatory cytokines are low [64], suggesting that the specific immunomodulatory
effect of MSCs may depend on the inflammatory environment [67].
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3.4. MSC-Derived Exosome

In addition to the release of a variety of soluble cytokines we discussed above, MSCs
may also secret a series of extracellular vesicles (EVs) to exert their function [68]. MSCs-
derived exosomes are membranous extracellular vesicles with a lipid bilayer structure that
ranges from 30 to 2000 nm in diameter [69]. EVs may present stably in a large number of
body fluids, such as breast milk, bronchoalveolar lavage fluid, saliva, blood, and urine [70].
EVs can also mediate messenger RNAs, microRNAs (miRNAs), and proteins to the recipient
cells for targeted delivery of genetic information, thereby altering the biological properties
of the target cells [71]. Exosomes exhibit unique strengths for biological functions of MSCs,
since EVs may travel freely through blood owing to their small size and reach injured
sites rapidly and efficiently [72]. Exosomes are considered to be low immunogenicity since
they do not express MHC I or II antigens, suggesting a promising cell-free therapeutic
strategy [73]. Studies demonstrated that exosome miR-466f-3p derived from MSCs may
possess anti-fibrotic effect and preclude radiation-induced EMT through inhibition of
AKT/GSK3β [74]. Another study by Lei et al. showed that MSC-EVs may attenuate lung
radiation injury through transferring miR-214-3p [75]. Thus, MSCs-exosomes represent a
promising therapeutic strategy for treating RIPF.

However, clinical translation may be difficult due to the low amount of EVs produc-
tion [16]. A widely accepted protocol for exosome isolation, production, and evaluation is
still lacking [76].

4. Effectiveness of MSCs in Pre-Clinical and Clinical Studies of RIPF

Animal models have been widely used to evaluate the therapeutic effect of MSCs. Most
studies have indicated an anti-fibrosis effect of MSCs through detecting histopathological
features and cytokines associated with fibrosis. Shao et al. found that adipose-derived MSCs
(Ad-MSCs) may inhibit EMT in irradiated type II alveolar epithelial cells and diminish
fibroblast activation in mice through the DKK-1/Wnt/β-catenin pathway [44]. MSCs
treatment led to an improvement in blood oxygen partial pressure and honeycomb shadows
in pulmonary pleurae through CT scan in a canine model [77] and a higher survival
rate in a mouse model [40]. In addition to traditional MSCs therapy, genetically and
molecularly modified stem cell therapies also show potential. For example, researchers
studied umbilical cord-derived MSCs modified with CXCR4, superoxide dismutase 3,
or decorin (DCN) and found more better outcomes compared to conventional MSCs in
anti-fibrosis function [45,52,78]. These pivotal studies in the last ten years are listed in
Table 1.

Kursova reported an improvement in pulmonary fibrosis in 11 patients diagnosed with
RIPF treated with MSCs and standard treatment within a one-year follow-up. Even though
it was not clear whether it was a drug effect or MSC efficacy, the study still demonstrated
the safety of MSCs [79]. A Phase I study (https://clinicaltrials.gov/show/, accessed on
25 November 2022, NCT02277145) included eight patients diagnosed with RIPF and found
UC-MSC treatment did not harm the liver, kidney, or other major organs of patients and
reduced the clinical symptoms and the density of pulmonary fibrosis. Another Phase
I-II study (http://www.chictr.org.cn, accessed on 25 November 2022, ChiCTR1800019309)
recruited twelve patients diagnosed with chronic phase radiation-induced pneumonitis or
radiation-induced pulmonary fibrosis. The safety was verified with transplanted human
umbilical cord MSCs by intravenous infusion (1 × 108/person) once every other week
with a total of three times. These clinical trials preliminarily confirmed the safety and
effectiveness of MSCs. However, the exact therapeutic effect and mechanism need to
be further confirmed by more rigorous studies. Despite all the positive results, it is still
noteworthy that a pro-tumorigenic effect was also found is MSCs [80].

https://clinicaltrials.gov/show/
http://www.chictr.org.cn
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Table 1. Summary of important preclinical studies examining the efficacy of MSC in RIPF.

Year Model Dose Cell Source Cell Dose Timepoint
after IR Biological Function Cytokines/Pathway

Involved

2021 BALB/c
mice [44] 20Gy Ad 4 × 106 1 month inhibited EMT

and fibroblast activation Wnt/β-catenin

2019 C57BL/6
mice [79] 13Gy CXCR4- UC 5× 105 1 day improved histopathological

changes
SDF-1, TGF-β1,

α-SMA, collagen I

2019 C57BL/6
mice [52] 20Gy SOD3-UC 1 × 106 2 h

attenuated collagen
deposition and

myofibroblast proliferation

TGF-β1, IFN-γ,
collagen I

2019
Sprague-
Dawley
rats [42]

15Gy Ad 5× 106 2 h/7 days
increased the number of
SP-C, inhibited ATII to
fibroblastic phenotype

TGF-β1 and α-SMA,
TNF-α, IL-1 and IL-6

2018 Beagle
dogs [78] 15Gy UC 1 × 106/kg 180 days reduced oxidative stress

and inflammation
TGF-β-Smad2/3
pathway, TGF-β

2018 C57BL/6
mice [45] 20Gy decorin (DCN)-

modified-MSC 1 × 106 6 h/28 days alleviated histopathologic
injuries and later fibrosis IFN-γ, Tregs

2017 NOD/SCID
mice [51] 13Gy MnSOD- MSC 1 × 106 1 day improved survival

anti-fibrotic TGF-β1

2017 C57BL/6
Mice [50] 15Gy AO/BM 0.5× 106 24 h/14 days

counteracted
radiation-induced vascular

damage and EC loss

SOD1, Mmp2, Ccl2,
Plau/uPA

2016 C57BL/6
mice [40] 18Gy BM

1 × 103

/5 × 103

/1 × 104
24 h improved survival and

histopathological features
SPC, PECAM,
IL-10, TNF-α

2015
Sprague-
Dawley
rats [30]

15Gy Ad 5× 106 2 h
Anti-inflammation

anti-fibrotic-maintained
lung epithelium integrity

IL-1, IL-6, IL-10,
TNF-α, TGF-β1,

CTGF,
α-SMA, collagen

2015
Sprague-
Dawley
rats [46]

15Gy Ad 5× 106 NM Inhibited EMT HGF, PGE2,
TNF-α, TGF-β1

2013 C57BL/6
mice [29] NM Ad-sTβR-MSC NM day 0/day 14 alleviated survival and

histopathology data MDA, CTGF, α-SMA

2013 C57BL/6
mice [81] 20Gy HGF- MSC 1 × 106 6 h

improved histopathological
and biochemical markers of

lung injury

TNF-α, IFN-γ,
IL-6, ICAM-1

NM: not mentioned IR: ionizing radiation; EMT: epithelial-mesenchymal transition; Ad-MSCs: adipose-derived
mesenchymal stromal cells; UC: umbilical cord blood; Ao: aorta; DKK-1: Dickkop-1; SDF-1: stromal cell-derived factor-
1; EC: endothelial cell; α-SMA: alpha-smooth muscle actin; HGF: hepatocyte growth factor; PGE2: prostaglandin E2;
SP-C: lung epithelial cells; SOD: superoxide dismutase; MnSOD: superoxide dismutase; ICAM-1:intercellular adhesion
molecule-1; Mmp2: matrix metalloproteinase 2; Ccl2: chemokine (C-C motif) ligand 2; Plau/uPA: urokinase-type
plasminogen activator; NOD/SCID: nonobese diabetic/severe combined immunodeficiency.

Many factors may influence the efficacy of MSCs. First, culture conditions are associ-
ated with the phenotype and function of MSCs. Therefore, cells with superior functionality
can be obtained by modulating culture conditions. While MSCs are normally cultured with
20% oxygen tension, studies revealed that hypoxic conditions may reduce MSC senescence,
increase proliferation, and significantly enhance the immunosuppressive ability to sup-
press T-cell proliferation [82]. Lan et al. demonstrated that hypoxia-preconditioned MSCs
attenuate bleomycin-induced pulmonary fibrosis through and increase in the production
of anti-inflammatory and anti-fibrotic cytokines [83]. H2O2-preconditioned MSCs in mice
with bleomycin-induced pulmonary fibrosis results in significantly decreased connective
tissue and collagen deposition compared to untreated cells [84]. In addition to modulating
culture conditions, genetically modified MSCs exhibit a more efficient therapeutic effect.
For example, hepatocyte growth factor (HGF)-modified Ad-HGF-MSC showed a better
ability to reduce expression of inflammatory cytokines, thereby protecting ATII cells and
inhibiting pulmonary fibrosis [81]. To maximize the therapeutic benefits of MSCs, in-depth
studies related to the optimal timing of MSCs administration have been conducted. MSCs
injected 4 h after thoracic exposure reach the damaged sites and differentiate into functional
cells. This leads to increased deposition of collagenous fiber after 60 and 120 days, sug-
gesting the importance of the time window in the treatment of RIPF [85]. Jiang described
a strategy with two Ad-MSCs vein injections, one at 2 h and another at 7 days, were



Cells 2023, 12, 6 7 of 10

effective in abating lung fibrosis compared with single delivery at either time point [42]. In
addition, different types of MSCs may differ in treatment efficacy. Bone marrow-derived
MSCs are the most commonly used source, while adipose tissues are more accessible for
the generation of MSCs. The number of transplanted cells also needs to be studied. In a
mouse model of radiation damage treated with BM-MSC, the therapeutic effects of high
(1 × 104 cells/g), medium (5 × 103 cells/g), and low (1 × 103 cells/g) doses of transplanted
cells were compared, and the results showed that low doses of cells had better results for
lung damage [40].

5. Conclusions

RIPF is a fatal adverse effect of radiotherapy for thoracic tumors and there is no
effective pharmacological therapy available. MSCs with their copious sources, bioactive
characteristics, easy cultivation, and low immunogenicity have unique advantages in the
treatment of RIPF due to their homing, differentiation, paracrine, and immunomodulatory
effects. Genetically and molecularly modified stem cell therapies have also shown potential
in clinics. Several studies also suggested MSC-derived exosomes as a promising treatment
for RIPF. While abundant preclinical studies have demonstrated the effectiveness and
safety of MSCs in treating RIPF, more clinical trials are still needed. Current clinical studies
demonstrate safety whereas the validity in patients requires more evidence. Moreover,
further studies are needed to identify the ideal culture conditions, time point of application,
optimal cell source, and dose in MSCs treatment.
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